Fault Detection and Diagnosis in Multiprocessor
Systems with Point-to-Point Connections*

Krishnendu Chakrabarty, Mark Karpovsky and Lev Levitin

Research Laboratory for Design and Testing of Computer Systems
Department of Electrical, Computer and Systems Engineering
Boston University
44 Cummington Street
Boston, MA 02215

March 1996

Contact author: Krishnendu Chakrabarty
Phone: (617) 353-1235
FAX: (617) 353-6440
Email: kchakrab@hilsa.bu.edu

ABSTRACT

We describe a practical software-implemented system-level testing technique for multiprocessor
systems with dedicated connection links. We address the detection and diagnosis of processor, link,

and hybrid faults of arbitrary multiplicity, and investigate the testing of several multiprocessor
topologies including trees, hypercubes and meshes.

Keywords: Error-correcting codes, fault detection, fault diagnosis, graph theory, monitors, mul-
tiprocessors, system-level testing.

Topic area: System test.

*This research was supported by the National Science Foundation under grant no. MIP 9208487, by NAT(O
under grant no. 910411, and by a start-up grant from Boston University's College of Engineering.

—— . .- .l] T T AT shmrwrl T Em T TrET —Er EUTE LEm Ty - — — - r - g - B

Fault Detection and Diagnosis in Multiprocessor
Systems with Point-to-Point Connections

Krishnendu Chakrabarty, Mark Karpovsky and Lev Levitin

SUMMARY

We describe a practical software-implemented system-level testing technique for multiprocessor
systems with dedicated communication links. The testing is carried out using test patterns that are
obtained from a test generation program residing in the local mnemories of a small number of selected
processors, called monitors. We address the detection and diagnosis of processor, link, and hybrid
(combination of processor and link) faults and investigate the problem of minimizing the number
of monitors and determining their placement for several multiprocessor topologies including trees,
hypercubes and meshes. A major advantage of this approach is that the detection of all three fault
types of arbitrary multiplicity i1s achieved. While a link fault of any multiplicity is diagnosable,
we analyze the diagnosability of processor and hybrid faults and show that an exceptionally large

fraction of these faults are also diagnosable.

1 Introduction

Multiprocessor systems must be throughly tested to ensure their reliable operation. The testing
process, which includes fault detection and location {diagnosis), should be quick as well as effective.
The fault detection and diagnosis problems have been the subject of intensive research in the past
and studied under the general area of system-level diagnosis [1, 2, 15, 16, 21, 27]. Traditional
system-level diagnosis techniques model the multiprocessor system as a diagraph, termed the test
graph, whose vertices denote processors and an edge (p;,p;) from processor p; to p; indicates that
p; tests p;. Connection assignment refers f{o the problem of determining the structure of the test
graph required to diagnose all faults in a given fault set. The connection assignment problem and
related diagnosability problems have received considerable attention in the past. However, the
fault model in system-level diagnosis has been limited to processor faults {link faults have not been
considered explicitly) and practical applications of these diagnosis methods are few and limited
15]. Most previous research focusses on processor faults on the assumption that because of circuit

complexity, processor faults are more likely than link faults. However, a survey of fault occurrences

—_ e m e p R —— e — gy — e — o — f o e P il S % T T ke L = [T L

in Tandem Computers’s fault-tolerant multiprocessors reveals that link faults cause twice as many

system failures as processor faults [25].

In this paper, we present a practical system-level fault detection and diagnosis approach that
provides a unified methodology for processor, link, and a combination of processor and link faults
in mutiprocessor systems with point-to-point, dedicated communication links. We assume that
the faults are permanent, ie., they remain indefinitely when no corrective action is taken. A
major advantage of this method is that it guarantees the detection of all faults, diagnosis of all
single processor faults and link faults, and the diagnosis of a large fraction of processor and link
faults. As the number of processors and links increases in multiprocessor systems, faults of higher
multiphcity become more likely. Therefore, any practical and scalable system-level testing technique
should explicitly address faults of high multiplicity. Another advantage of this method is that a
high degree of diagnosis of faults of large multiplicity is implicitly achieved using a testing strategy

aimed at fault detection.

Our proposed approach is based on minimizing the number of tester processors and relies on
software-implemented functional testing. We assume that all processors are identical and the links
connecting them are bidirectional. We also assume that the processors contain local memory and
use message-passing for communication. The testing is carried out using functional test patterns
x1,Z2,...,Tr that are obtained from a test generation program P residing in the local memories of
a small number of selected processors, called monitors. Techniques for generating such functional
test patterns have been developed in the past [6, 13, 20, 28, 29]. This approach is motivated by the
fact that a functional test for a processor may be very long, requiring excessive local memory for
storage. On the other hand, it may be possible to generate these patterns algorithmically using a
small program 7. This is especially the case if we use pseudorandom patterns for testing {3, 22, 23].
This allows us to trade-off testing time with the amount of local memory that has to be allocated

for testing.

We model a multiprocessor system as an (undirected) graph G = (V, E), where V is the set
of processors and E is the set of links in the system. Testing is carried out in an off-line mode by
exploiting the fact that a subgraph ' of G may be idle during computations, and G’ can perform
self-testing during such idle periods. Every monitor tests itelf and all its neighboring processors.
We address the problem of selecting monitors such that by using “balls” of radius one centered on

the monitors, we can detect and diagnose processor and link faults in the system.

Our design objective is to minimize the number of monitor units in any given multiprocessor
system. The test program P has to reside on the local memory of every monitor processor. The
amount of memory required to store P consitutes the main overhead of our system-level testing
scheme, therefore we reduce this overhead by minimizing the number of copies of P. By minimiz-
g the number of monitors, we also minimize the hardware/software required to determine the

correctness of the test responses. Traditional system-level diagnosis approaches do not guarantee

a minimum number of monitors.

We solve the monitor-placement problem for three different faults types:

1. Processor faults, where we assume that kp processors in the system are faulty.

2. Link faults, in which k7, communication links in the system are assumed to be faulty.

3. Hybrid faults, where kp processors and kr, links in the system are faulty.

The solution to the monitor-placement problem is different for processor and link faults. Detect-
ing and diagnosing link faults typically requires more monitors. However, we show later that if we
place monitors for the detection and diagnosis of link faults, then we are guaranteed the detection
of all processor and hybrid faults. In addition, we achieve complete diagnosis of all single processor

faults as well as high diagnosability of processor and hybrid faults of arbitrary multiplicity.

We derive several topology-independent bounds on the number of monitors for these problems.
We also develop construction methods for the placement of monitors for a number of multiprocessor
topologies, including trees, meshes, and hypercubes. Many of these bounds and monitor-placement
methods are based on results from graph theory and error-correcting codes. The organization of
the paper is as follows. In Section 2, we describe our testing procedure. In Sections 3, we solve the
monitor-placement probiem for processor faults and analyze the diagnosability of multiple processor
faulis. Section 4 addresses monitor placement for link faulés. In Section 5, we show that monitor
placement for link faults provides complete processor fault detection and high degree of processor
and hybrid fault diagnosis. Finally, in Section 5, we examine issues related to testing time and

outline ongoing research.

2 Testing procedure

In this section, we describe our procedure for testing and diagnosis of processor, link, and hybrid

faults. We assume that the multiprocessor system is homogeneous, i.e., the processors in the system

are identical.
Testing procedure:

1. The monitors, selected using methods describe in Sections 3 and 4, execute the test program

P and generate test patterns X = x,,z9,...,27, where T is the length of the test set.

2. Bvery monitor executes a self-test routine using X. As part of the self-test routine, it executes

a function f{X) using the test patterns. The function f is implemented in software and stored

in the local memory of every processor.

3. Every monitor regenerates X (the test set is not stored because it may be too long) and

broadcasts the tests to its neighboring processors.
4. Every idle processor executes a self-test routine by computing f(X).

0. The monitors collect the test responses f{X) from their neighboring processors and compare
them one by one to their own copy of f(X). They then forward the result of the comparisons

to a host computer.

We assume that the test set is sufficiently long and effective such that a fault in the system
leads to an observable error. We also assume that the errors are not masked (aliased) either in the

processors or on the (faulty) links.

Using this festing procedure, we can detect all processor, link, and hybrid faults. This is useful
in & number of multiprocessor systems, for example Tandem’s fault-tolerant computers, which
employ built-in hardware redundancy [25]. Such systems typically contain replicated processors
which are reconfigured for normal operation on as soon as a fault is detected. An effective low-cost
fault detection strategy is especially desirable in these applications. In addition to fault detection,
we can diagnose all link faults and all single processor faults with our testing procedure. A small
number of processor and link hybrid faults are not diagnosable, but we show later this number is

extremely small.

3 Processor faults

In this section, we show that we can detect and diagnose processor faults using a small number of
monitors. Monitor placement for processor faults also detects a considerable number of link faults.

(However, additional monitors are required to detect and locate all link faults; this is discussed in
section 4.)

The monitor-placement problem for processor faults is stated as follows: find the minimum
number of monitor processors and their location in the multiprocessor system such that every
processor is contained in at least one of the balls of radius one around the monitor. Let Tp be the
number of monitors required to detect processor faults in the system. The diameter D of a graph
G is the length of the maximum of the shortest paths between any pair of vertices in G [9]. A
graph & is d-regular if every vertex in G has degree d.

Theorem 1 The following lower bounds on Tp can be easily derived:
1) Tp > D/3, where D is the diameter of the graph G.

2) Tp > K such that 31 (d; + 1) > N, where N and d; are the number of nodes and the degree
{number of neighbors) of node v; in G, respectively, and dy > dy > --- > dy.

$) For a d-regular graph, Tp > N/(d + 1).

Proof: We first prove 1). Let the diameter of G correspond to the shortest path p between vertices
u and v and let Tp = m < D/3. If all these monitors lie on the path p then they cannot cover all
the processors In the system. On the other hand, if at least one of these monitors does not lie on
p then there exists a path between « and v of length less than . This is a contradiction because
1) 1s the length of the shortest path between u and v.

The proof of 2) follows from the fact that the greedy method of placing monitors first on nodes
of higher degrees provides a covering of all the processors in the system only when the balls of
radius one do not overlap. The bound 3) is derived from 2) since each ball now includes d + 1

Processors. O

The bound N/(d + 1) corresponds to a perfect node cover (perfect processor testing), and

18 achieved when every processor is covered by exactly one monitor in the system. A necessary
condition for a perfect cover is that the minimum distance between any two monitors is three. We

show later that this lower bound is achieved for a number of topologies.

We next consider the monitor-placement problem for processor faults in various specific topologies.

3.1 Trees

A number of hierarchical computing systems such as dictionaries and search machines can be
modeled as a tree [4, 26]. Many parallel algorithms can be mapped on to p-ary tree, and the
architecture of a general-purpose multiprocessor can often be modeled by a tree structure [18].
Another application of a tree structure is the data network of the Thinking Machines CM-5 12, 171.

We consider a p-ary tree with I levels. Let Tp(l) be the number of monitors required for
processor testing. The following recurrence relation, illustrated in Figure 1, provides a method to

compute the number of monitors required for processor testing.

Tp(t} = (p—1Tp(i-1)+p*Tp(l -3} +1 (1)

The base cases of (1) are Tp(1) = Tp(2) = 1, Tp(3) = p, and Tr(4) = p* + 1. We do not yet have

a closed-form solution for {1). An alternative recurrence relation for Wi (I) is given below:

Te(l) = 1+ p*Tp(l—2) (2)

The recurrence relation (2) can be easily solved to obtain the following closed-form expression:

1—3__1
£ 1p? |iflis odd;
Tp={ ¥ 1
P = !
p—1 £
- , if I is even.

A lower bound on the number of monitors, assuming a perfect cover with no root or leaf node
!
p -1

p-1)p+2)

1t i3 possible to approach this lower bound asymptotically, i.e., for large values of p. In such cases,

. If the number of levels is a multiple of three, then

as a monitor is given by Tp >

we place monitors on levels I — 1 (the leaves are at level [and the root is at level 1), 1 —4, ..., 2.

The number of monitors is given by

-1

T, = p'+p

+...p

(b)

Figure 1: Recurrence relation formulations for determining the number of monitors for processor
testing of trees: {a) recurrence (1) and recurrence (2).

Number of No. of Total no. of

pl levels! monitors T, | processors N | T'p/N

2 5 10 31 0.32
6 18 63 0.29
7 40 127 0.31
8 81 295 0.32

3 5 28 121 0.23
6 84 364 0.23
e 253 1093 0.23
8 &20 3280 0.25

Table 1; Number of monitors required for processor testing of trees.

_ plpt-1)

=

_ p—1

T G-Dp+1+1/) 3)

L .
It follows from (3) above that T}, is very close to the lower bound @ pl) (pl-f- 2) and approaches it

a3 p increases.

Table 1 shows the number of monitors required for processor faults in a tree topology, These

results demonstrate that processor faults can be detected and diagnosed in trees using a small

number of monitors.

A star is a rooted tree with two levels. It can be casily seen that a star can be tested for all
processor faults with the root node as the only monitor. Processor faults of arbitrary multiplicity

are detected and faults involving the leaf nodes are diagnosed.

3.2 Hypercubes

A hypercube or binary d-cube computer is a multiprocessor system with N = 22 processors in-
terconnected as a d-dimensional binary cube. Each processor P; constitutes a node of the cube
and is a self-contained computer with its own CPU and local memory. Each P; also has direct
communication paths to d other neighbor processors through the edges of the cube. An example of
a commercial hypercube computer is the NCUBE/ten, which is a 10-dimensional system developed
by NCUBE Corporation [10, 14].

Since every processor of a d-dimensional hypercube can be assigned a d-bit vector, the monitor-
placement problem for third topolegy can be solved by finding a Hamming code with covering radius
one that covers all d-bit vectors. It follows from coding theory that for the binary d-dimensional
hypercube, perfect processor testing is achieved with Tp = 2%/(n+1) = 2™ monitors if and only
if n = 2™ —1, Le., a perfect Hamming code exists. Figure 2(a) shows monitors (shaded) for the
3-dimensional hypercube, where the monitors are the processors labeled 000 and 111. If n % 2m~1
the best solution to the monitor-placement problem is obtained using tables of the best (minimal)
error-correcting codes with a covering radius of one [7]. Table 2 shows the number of monitors Tp

(size of the minimal Hamming code) required for processor faults in hypercubes.

We next give an example of the monitor selection procedure for the 7-dimensional hypercube.

Lower bound Tp
d | N=24 on I'p (best known)
3 8 2 2
4 16 4 4
5 32 7 7
) 64 12 12
7 128 16 16
8 256 32 32
9 512 55 62
10 1024 105 120
11 2048 177 192
12 { 4096 342 380
15 | 32768 2047 2047

Table 2: The number of monitors Tp for hypercubes.

Since 7 = 2% — 1, it is possible to find a perfect Hamming code with 7 bits, and hence a set of
monitors that provide perfect processor testing. We generate a perfect (7,4) Hamming code as

follows. The generator matrix & for this code is

/{1 0001 1 1)
[0 100011
0010110
\0 00110 1)

The 16 codewords (monitors) are generated by performing the operation z - G over GF(2)
using all 16 4-bit vectors z. With =z € {0000,0001,...,1110,1111}, we obtain the following
labels for the 16 monitors in the system: 0000000,0001101,0010110,0011011,0100011, 1001010
11000, 1000111, 1001010, 1010001, 1011100, 1100100, 1101001, 1110010, 1111111.

3.3 Meshes

A mesh is a multiprocessor topology that finds extensive applications in parallel processing. A
p-ary n-dimensional mesh has p™ processors and each processor is connected to its 2n neighbors.
(every processor has two neighbors in each dimension.) Practical mesh architectures include 2-
dimensional rectangular meshes such Intel’s Paragon architecture [11], 3-dimensional meshes such

as the MIT-Intel J-machine 8], and hexagonal meshes [24].

10

Theorem 2 (g) For a p-ary (p prime) n-dimensional mesh, perfect processor testing can be achieved
if and only if n = (™ — 1)/2, where m is an wnteger greater than zero. (In this case, Tp =
p*/(2n + 1) = p"™™); (b) Perfect processor testing can be achieved for a hezagonal mesh (d = 3)

using Tp = N/4 monitors; (c) Perfect processor testing can be achieved for a triangular mesh using
Tp = N/T7 monitors.

Proof: We first prove (a). Perfect processor testing for a p-ary n-dimensional mesh is achieved
only £ Tp = N/(2n+1) =p*/(2n+1). Ifpis prime, then 2n + 1 must equal ™ where m > 0.
(If m = 0 then every processor is a monitor.} This proves necessity of (a). To prove sufficiency, we
use a p-ary single-error correcting (SEC} Hamming code with check matrix H having m rows and
n columns. The codewords of this Hamming code correspond to the monitors in the n-dimensional
p-ary mesh, and because it is an SEC code, no noncodeword (monmonitor) is covered by {at
distance one from) more than one codeword (monitor), i.e., the balls of radius one around the
monitors are nonoverlapping, The number of codewords, and hence monitors, is p"~™. These
p"~™ monitors cover a total p"~™(2n + 1) = p" processors, and since the balls around the monitor

are nonoverlapping, every processor in the system is covered.

The proofs for (b) and (c) follow from the monitor-placement shown in Figure 2. O

In Figure 2(b}, we show monitor placement for perfect processor testing of hexagonal meshes.

Figure 2{d) shows perfect processor testing of a triangular mesh.

The theorem implies that for a 2-dimensional mesh such as Intel's Paragon, perfect processor
testing can only be achieved if p = 5. This is shown in Figure 2(c) for a mesh with 25 PTOCESSOLS.
(We assume, as is generally the case, a toroidal mesh, i.e., the ends of the mesh wrap around.)
Figure 2{a) shows perfect processor testing for the ring toplogy. In general, if we represent the

processors m a p-ary n-dimensional mesh by coordinates (x1,%5,...,z,), where 0 < 2; < p, then

the location of the monitors can be obtained by solving the equation 3%, z; =0 (mod p).

Another topology for which perfect processor testing is achieved is the ring; see Figure 2(b). A

ring with N processors requires [/N/3] monitors.

11

& Monitor

(b)

Sats L0L0
o000
@ ()

(d) (e)

Figure 2: Perfect processor testing for {a) 3-dimensional cube, {b) ring, (c¢) hexagonal mesh, (d)
2-dimensional mesh with 25 processors, (e} triangular mesh.

12

3.4 Diagnosis of multiple processor faults

We next determine the fraction of processor faults of multiplicity kp > 1 that are diagnosed by our
testing procedure. A processor fault involving kp processors is not diagnosable if and only it includes

at least one monitor and a neighboring nonmonitor processor. Hence the number of nondiagnosable

: N -2
faults is Tpd(kp — 2

not diagnosable is given by

). Therefore, the fraction f of processor faults of multiplicity kp that are

If we achieve perfect processor {esting, then Tp = N/(d + 1), therefore

Nd (N -2)
_d+ 1\ kp-2

=1
N
()
I_Nkp(kp—l)
N{N -1)
. 1_ kelkp —1)
~ 1 ~ (4)

for large values of N and d.

For a 15-dimensional hypercube, Figure 3 shows the fraction of diagnosable processor faults.
The coverage drops with an increase in kp, nevertheless a coverage of over 95% is achieved for upto

30 processor faults.

4 Link faults

In this section, we examine the problem of detecting and diagnosing link faults. If monitors are
placed in the multiprocessor system targetting only processor faults, then the number of links

covered by the monitors is at most Tpd. Assuming perfect processor testing, this implies that the

N 1 2
fraction of links covered by the monitors is only dﬁg /;-) ot For large d, this is a significantly

small fraction, hence to guarantee high coverage of link faults, we need to solve the monitor-

placement problem explicitly for links.

13

0.93 I-
0.96 -
0.94 |-
f 0.92 |- _

(.88 - -
0.86 - -

5 10 15 20 256 30 35 40 45 50
Number of faulty processors, kp.

Figure 3: Fraction of processor faults of multiplicity kp that are diagnosable for a 15-dimensional
hypercube.

The monitor-placement problem for link faults is stated as follows: find the minimum number of
monitor processors and their location in the multiprocessor system such that every link is contained
in at least one of the balls of radius one around the monitors. Let 77 be the number of monitors
required for link faults in the multiprocessor system. In a d-regular graph, a ball of radius one
around a monitor covers d links. Therefore, for a multiprocessor system with F links, perfect link
testing is achieved with E/d monitors for a d-regular graph if every link is tested by exactly one
monitor. This implies that Ty, > E/d.

Theorem 3 Perfect edge testing requires N/2 monitors.

Proof: The number of edges F in a d-regular graph with N vertices is Nd/2. Therefore perfect
link testing requires E/d = (Nd/2)/d = N/2 monitors. In other words, T, > N/2. -

‘The monitor placement problem for link testing is related to the problem of determining the
point covering number of the graph . A vertex and an edge in G cover each other if they are
incident, and the smallest set of vertices that covers all the edges in & is called the point covering
number a{G) [9]). Clearly, Tt = a(G) and the processors in the smallest cover are selected as

monitors.

14

A set of vertices in G is independent if no two of them are adjacent, and the number of
vertices in the largest independent set is called the line mdependence number 3(G). The maximum

independent set for G = (V, E) can be constructed using the following procedure:

begin
Si= ¢
5=V
while §' is not empty do
begin
Pick an element u of S
S'i= 8§ — {u);
if (u,v) € E for all v € § then
S = §U{u};

end

The following theorem shows the relationship between o(G) and B{G). It can be used to
determine a((), and therefore T, from B(G).

Theorem 4 [9] For any nonirivial connected graph G with N vertices, o(G) + B(G) = N.

Figure 4 shows monitor placement for link faults in various multiprocessor topologies. Perfect
link testing is achieved for hypercubes, rings, and hexagonal meshes. For a p-ary n-dimensional
mesh and the n-dimensional binary cube, the perfect monitor placement for link faults corresponds
to a ““checkerboard” pattern and Ty = N/2. For a p-ary tree with n levels, an optimal moni-
tor placement for link testing is achieved by selecting processors on alternate levels as monitors
(Figure 4(a).

Theorem & The opiimal number of monitors for link fauits in a p-ary tree with [levels is given

by i i—=1
PP —1) i odd:

, if { 18 even.

Table 3 shows the number of monitors required for link testing of p-ary trees.

For a triangular mesh, it is not possible to achieve perfect link testing. Consider a subgraph

of G with vertices vy, v2.v3 such that (v1,ve), (ve,v3), (v1,v3) € E. In order to cover all these three

15

*I

|

J
N |

Number of No. of Total no. of

p| levelsi | monitors T, | processors N | Tp/N

2 5 10 31 0.32
6 21 63 0.33
7 42 127 .33
8 85 255 0.33

3 i 30 121 0.25
6 a1 364 0.25
7 273 1093 0.25
8 820 3280 0.25

‘Table 3: Number of monitors required for link faults in trees.

edges, we must select two of the vertices in the subgraph as monitors. This imphies that at least
one of the edges is covered by two monitors, hence perfect link testing is not achieved. This can be
generalized to the following statement: perfect link testing is not possible in graphs that contain
triangles.

An optimal monitor placement for link faults in a triangular mesh is shown in Figure 4(f).
This placement, which requires 3N/4 monitors can be proven to be optimal in the following way.
Consider any two row of vertices in Figure 4(f) where alternate processors are monitors. This is
the minimum number of monitors required for that row to cover all the links. It can now be easily
seen that all processors on the adjacent rows must be monitors, otherwise, not all links between

these rows are covered.

We next address the problem of placing monitors to detect and diagnose both processor and
link fauits.

5 Hybrid faults

A hybrid fault {kp,k;} includes kp faulty processors and k;z faulty links. Before investigating
hybrid faults, we examine the detection and diagnosis of processor faults using monitors placed for
link faults.

Theorem 6 A set of monitors that covers every link provides complete detection of all single

processor faults and diagnosis of all single processor faulis.

16

& Monitor

(c) (d)

(e) (f)

Figure 4: Monitor placement for link testing in a (a) tree, (b) binary 3-dimensional cube, (c) ring,
(d) hexagonal mesh, {e) 2-dimensional rectangular mesh, and (f) triangular mesh.

17

Proof: Since the monitors all the processors in the system, it follows immediately that all processor

faults are detected and all single processor faults are diagnosed. O

Monitor placement for link faults does not however provide diagnosis of all multiple processor
and hybrid faults. For processor faults of multiplicity kp > 1, we determine the fraction of diag-
nosable faults in Section 2. We next address hybrid faults. Let € (kp, kL) be the fraction of faults
involving kp processors and &z, links that are diagnosable. We first note that C (0, k1) = 1 because

all link faults are diagnosable, and C(kp,0) = 1~ kp(k;_ . for large values of N and d. We next

address the problem of determining C(1,%z), which is a measure of the diagnosability of hybrid

taults involving one processor and K7, links. The analysis is motivated by the fact that in many

cases, link faults are more likely than processor faults {25].

To determine C(1, k1), we first count the number of hybrid faults {1, k. } involving one processor
and &z, links that are diagnosable. A hybrid fault {1, %} is diagnosable if no faulty link is incident

on the faulty processor. Hence for regular graphs {d; = d for any ¢), there are N (Lk:d) faults
that are not diagnosable. The total number of {1, %z} faults is N (é) Therefore, the fraction

of these faults that are diagnosable is given by

C(1, k) N(Léd)

i
o~
?rt:w
e~
=9
e

()

If k7, = 0, we get C(1,0) = 1, which also follows from the fact that all single processor faults
are diagnosable. For k; = 2, we have C(1,1) = 1 —-d/L = 1 - 2/N since L = Ndf2. For a
10-dimensional hypercube, €(1, 1) > (.99, which implies that over 99% of faults involving a single
processor and a single link are diagnosable. If ky << I, then we simplify (5) as follows:

Cll k) = (%)

= (1- E)k‘r‘
= (-2 (6
N

=t TSI T gTrTT AT T T T WSO TR T O T.- W "MT TR IFY TErLLa .o

0.995

C(l,kz) 0.99

0.985

0.98 | ! | | ! I ! !
1 2 3 4] 6 7 8 9 10

Number of faulty links &y,

Figure 5: Diagnosability C(1, %) of hybrid faults involving one processor and kj, links for a 10-
dimensional hypercube.

Figure 5 shows the variation of C(1, ;) with kf, for a 10-dimensional hypercube machine such
as the NCUBE/ten. Over 98% of faults involving one processor and as many as ten links are
diagnosable. The range of ky, (kr < 10) in the graph has been chosen has to satisfy the condition
kr << L. Note that the graph appears to be a straight line because 1 — 2/N is very close to one
for this system.

6 Discussion

Finally, we estimate the time ¢ required to detect and diagnose faults using the monitor placement
strategy. First we assume a perfect cover, i.e., nonoverlapping balls of radius one. This corresponds
to minimum testing time because of maximum parallelism in the test process. We assume that (i)
T’ 18 the test length, (ii) it takes one cycle to generate each test pattern, (iii) the generation of the
tth test pattern is done in parallel with the broadcast of the (i — 1)th pattern, and (iv) it takes
time L to compute f(X)}. The generation of X at the monitors takes time T and the self-test of
the monitors takes time L. Next, the execution of 7 on the monitors and the broadcast of the
tests to the nonmonitor processors can be done in 7'+ 1 cycles. The number of cycles required to

compute f(X) and send back the result to the monitor is L + 1. For a d-regular graph, it takes

19

T TR TIPS E S TTHS P O . e Lot P AUTT T TE M TT eSS T TR T T Sl o r -y

an additional d cycles to compare the test responses at the monitors. Therefore, the total testing
time 18 ¢y =T+ L4+ T+ L+2+d=2(T+ L).

An upper bound on the testing time t,., is (T'd + Ld) + d = 2(T'd + Ld) because when the
balls around the monitor overlap, a nonmonitor processor can receive test data X and compute
f(X} from only one monitor at a time. Therefore, 2(T + L) < ¢ < 2(Td + Ld). The testing time in
this system-level approach therefore depends only on the length of the test set and is independent
of the number of processors in the multiprocessor system. Moreover, if a perfect cover is achieved

and d 1s small, then the testing time is also independent of the number of links in the system.

We have described a technique to test multiprocessor systems for processor and link faults
using a small number of tester (monitor) processors. We have presented optimal solutions to the
monitor-placement problem for a number of practical multiprocessor toplogies. The monitors pro-
vide detection and diagnosis of single and multiple processor, link, and hybrid faults. In order to
evaluate the coverage of low-level faults obtained with our approach, we are investigating the use
of sottware tools for fault injection and coverage measurement. We are also examining distributed
diagnosis algorithms and methods to determine the diagnosability of hybrid faults involving an
arbitrary number of processors and links. One promising and practical decentralized diagnosis
approach for dynamic reconfiguration is to use N/2 monitors in a “checkerboard” pattern as dis-
cussed in Section 4, and adopt a policy where the monitors disconnect links from which they do
not receive correct test responses. Faulty processors are therefore effectively disconnected from
the system. This approach allows correct system operation in the presence of processor, link, and

hybrid faults of arbitrary multiplicity.

References

[1] D. R. Avresky et al. An approach to fault diagnosis of multimicrocomputer systems: algorithm and
simulation. In Proc. 1987 Int. Symp. Feult- Tolerant Computing, pp. 305-310, 1987.

[2] D. R. Avresky and D. K. Pradhan (eds.) Fault-Tolerant Parallel and Distributed Systems, Computer
Society Press, 1995.

3] P. H. Bardell, W. H. McAnney, and J. Savir. Built-in Test for VLSI: Pseudorandom Technigues. John
Wiley, New York, 1987.

(4] J. Bentley and H. T. Kung. A tree machine for searching problems. In Proc. 1979 Int. Conf. Parallel
processing, pp. 257-266, 1979,

5] R. Bianchini, K. Goodwin and D. S. Nydick. Practical application and implementation of system-level
diagnosis theory. In Proc. 1990 Int. Symp. Fault-Tolerant Computing, pp. 332-339, 1990.

20

[6] D. Brahme and J. A. Abraham. Functional testing of microprocessors. IEEE Transactions on Com-
puters, vol. 33, pp 475485, June 1984.

[7] G. D. Cohen et al. Covering radius 1985-1994. Tech. report, Department Informatique, Ecole
Nationale Superieure des Telecommunications, France, 1994,

(8] W. J. Dally et al. The message-driven processor: a multicomputer processing node with efficient
mechanisms. IEEE Micro, vol. 12, pp. 23-39, April 1992.

[9] F. Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1960.

[10] J. P. Hayes et al. A microprocessor-based hypercube supercomputer. IEEFE Micro, vol. 6, pp. 6-17,
October 1986.

(11] R. M. Hord. Parallel Supercompuling in MIMD Architectures. CRC Press, Boca Raton, FL, 1993.

[12] W. D. Hillis and L. W. Tucker. The CM-5 connection machine: a scalable supercomputer. Commu-
nications of the ACM, vol. 36, pp. 31-40, 1993.

[13] M. G. Karpovsky and R. G. Van Meter. A practical approach to testing microprocessors. In Proc.
1984 Design Automation Conference, pp. 186-202, 1984,

[14] D. Jurasek, W. Richardson and D. Wilde. A multiprocessor design in custom VLSI. VLSI Systems
Design, pp. 2630, June 1986.

[15] C. R. Kime. System diagnosis. In Fault-Tolerant Computing: Theory and Technigues, vol. 2, D. K.
Pradhan (ed.), Prentice-Hall, New Jersey, 1986.

(16] J. Kuhl and 8. M. Reddy. Distributed fault tolerance for large multiprocessor systems. In Proc. 1980
Int. Symp. Computer Architecture, pp. 23-30, 1980,

[17] C. E. Leiserson. Fat trees: universal networks for hardware-efficient supercomputing. IEEE Transac-
tions on Computers, vol. 34, pp 892-901, 1985.

(18] C. A. Mead and L. A. Conway. Introduction to VLSI Systems. Addison-Wesley, Reading, Mass., 1980.

(19] S. F. Nugent. The iPSC/2 direct-connect communications topology. In Proc. 1988 Conf. Hypercube
Concurrent Computers and Applications, pp. 51-60, 1988.

[20] R. Parthasarathy, S. M. Reddy and J. G. Kuhl. A testable design of general purpose microprocessors.
In Proc. 1982 Int. Symp. Fault-Tolerant Computing, pp. 117-124 , 1982.

[21] F. P. Preparata, G. Metze and R. T. Chien. On the connection assignment problem of diagnosable
systems. IEEE Transactions on Electronic Computers, vol. EC-16, pp. 848-854, December 1967.

122] J. Savir and P. H. Bardell. On random pattern test length. IEEE Transactions on Computers, vol.
C-33, pp. 467474, June 1984.

(23] J. Savir, G. 8. Ditlow, and P. H. Bardell. Random pattern testability. IEEE Transactions on Com-
puters, vol. C-33, pp. 79-80, Jamuary 1984.

[24] K. G. Shin. HARTS: A distributed real-time architecture. JEEE Computer, pp. 25-35, May 1991.

[25] D. P. Siewiorek and R. S. Swarz. Reliable Computer Systems—Design and Fvaluation, 2nd ed. Digital
Press, Bedford, Mass., 1992.

[26] A. K. Somani and V. K. Agarwal. An efficient unsorted VLSI dictionary machine. IEEE Transactions
on Computers, vol. 34, pp. 841-852, September 1985,

21

[27] A. K. Somani, D. Avis and V. K. Agarwal. A generalized theory for system-level diagnosis. JTEEE
Transactions on Computers, vol. 36, pp. 538-546, May 1987,

(28] T. Sridhar and J. P. Hayes. A functional approach to testing bit-sliced microprocessors. IEEE
Transactions on Computers, vol. 30, pp 563-571, August 1981.

[29] S. M. Thatte and J. A. Abraham. Test generation for microprocessors. IEEE Transactions on
Computers, vol. 29, pp 429441, June 1980.

22

(oS ' |
= SrERIITE T TR EEEC. . I R BT, - kT T CE TR LRI S TSR N S CTLATES R L m W T =

