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of an aliasing probability can be obtained for manufacturing testing by monitoring
the output of a concurrent checker and a reduction of a probability of not detecting
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present a technique for optimal selection of error-detecting codes for combined on-line
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abilities of not detecting an error for the approach based on integrating CC and BIST.
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1. Introduction

Off-line testing techniques such as Built-In Self-Test (BIST) and boundary scan have
been the focus of VISI test engineers concerned with product quality. BIST tech-
niques have been widely used for manufacturing testing and repair. The block diagram

for a BIST design is given by Fig. 1.

— For the block diagram of Fig. 1 space compression (SC) may be useful for overhead

reduction only for the case of a large number of outputs of the device-under-test.
It was shown in [1], [2] that optimal space compressors (SCs) are linear networks
computing syndromes of linear error detecting codes. If a (n,s,d) code Vsc is used
for space compression, then the corresponding SC can be constructed from XOR gates
only, the SC has m = n — s outputs {m K n, see Fig. 1), and any error which distorts
signals at most d — 1 output lines for the device-under-test {D) at any given moment
cannot be masked in the SC. Moreover, any error which 1s detected by Vs¢ cannot
be masked in the corresponding SC.

The most popular technique for time compression (TC) of test responses 1s based

on usage of mulitiple input linear feedback shift registers {(MISRs). The structure of

~ MISR feedback taps is defined by the corresponding binary generating polynomial

P(z) [3]. For a m-bit MISR the degree of P(z) is equal to m, and to decrease a
probability of masking an error in the TC (time aliasing) in many cases P(z) should
be primitive {3].

Any m-bit MISR can be described as a network computing svndrores for the cor-

responding linear nonbinary (7,7 —1, 9} Reed-Solomon code [11}, Vrc, over GF(2™)
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where the length, T, of the code is equal to the number of test patterns apphed 4], If
! > 1 MISRs are used for self-testing or self-diagnosis {multisignature analysis {3], [6]),
then the corresponding TC is the network computing syndromes for the (7, T—1,1+1)
Reed-Solomon code, Vg, over GF(2™).

Analysis of space and time aliasing probabilities in terms of weight distributions
of the corresponding codes V¢ and V¢ for different error models is presented i [4].
Generalization of these results for a board or system level testing was given in [6].

Since system availability is becoming a key feature of computer systems, on-line
error detecting techniques based on concurrent checking (CC) are extremely impor-
tant for design of fault-tolerant systems. The block diagram for on-line error detection
is presented at Fig. 2.

For the block diagram of Fig. 2, the parity prediction network, R(D), is built
in such a way that for any input if there are no errors in the original device, D,
and R(D), then an extended output (y1,-- ., Yk+1, ..., Yn) 18 a codeword of the
binary (n, k,d) systematic code Vpe. All errors resulting in distortions of at most
d—1 bits in (¥1,-- .Yk Ykt+1:---,Yn) Will be detected on-line by the C'C. Used as

Vgg are, for example pa,rlty predlctmn (k + 1, k) codes, duplmatmn (Qk k) codes,

(k + rlogz(k + 1}], k) nonlinear Berger codes and ,n — [log,(n + l)]) Hamming

codes for computer memories {7].

Concurrent checkers {CC's) are networks computing syndromes for the correspond-
ing codes Vee and verifying that these syndromes are not equal to zero. Techniques
for design of self-checking C'C's can be found, e.g., in [7]-{10].

Example 1. To illustrate the relations between off-line space-time compression
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of test responses, on-line CC and the corresponding codes Vs, Vre and Vg let us
consider the case when the original device, D, is the control ROM for MC68020.

In this case the number of outputs for the original device k¥ = 116 and for con-
current checking one can select a (123,116,3) Hamming code as Vg [11]. This will
result in 7 = 7 redundant outputs for R(D) and on-line detection of all single and
double errors in n = 123 outputs of the expanded ROM. In addition to this, all er-
rors distorting three or more output bits will not be detected with probability 277
(assuming all these errors being equiprobable).

For space compression of responses from the expanded ROM a {123,95,9) BCH
code [11] can be used. In this case the SC will have m = 28 outputs, all errors
resulting in a distortion of at most 8 out of 123 output bits for the expanded ROM
will not be masked in the SC and the probability of masking (space aliasing) for errors
distorting more than 8 bits is 27,

For time compression of output sequences from the SC in this case one can use
" 2 Reed-Solomon code with distance 2 over GF(2%) {11). Then the corresponding
TC can be implemented by the MISR with primitive generating polynornial P(z) =
2@ 22 @1 and the probability of time aliasing is 27*°. The total overhead in terms of

equivalent two-input gates for on-line and off-line error detection based on the above

codes is about 153%. O

Thus, a strong relationship exits between concurrent checking and BIST since
both are based on computing syndromes of corresponding error detecting codes Vi,
and Vsc, Vro. This provides a natural framework to integrate both approaches.
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We note that current design approaches have major drawbacks since mechanisms
for on-line and off-line error detection are chosen separately, without consideration
of any potential interactions. These approaches are not tailored to the most efficient
combined utilization of the available silicon area. Also, in treating on-line and off-line
techniques separately, performance gains are lost. For example, in the design of an
off-line fault detection/diagnosis hardware, the fact that the circuit may also include
support logic for on-line error-detection is not considered.

Although there is a significant overlap between on-line and off-line error detection
techniques, only a few papers have been published exploring the potential for combin-
ing these approaches. The idea of merging on-line and off-line BIST was suggested in
[22], [23], where partitioning of the logic, placement and design of test circuitry was
discussed. In [12], [13], a concurrent BIST (CBIST) approach has been proposed.
The off-line testing resources are modified for this approach such that during sys-
tem operation, they can observe normal inputs and outputs. When a normal input
matches a test patiern, the circuit output is compressed into a developing signature.
Another approach (UBIST) was proposed in [14]. For this approach, test vector

generators are used for off-line testing of concurrent checkers, ensuring that all test

patterns are applied. It may, though, be difficult to implement UBIST for devices

with many input lines. A combination of UBIST with boundary scan was suggested
in [24]. Applications of linear cellular automata for concurrent checking, signature
analysis and boundary scan have been studied in [25]. Modifications of conventional
BIST designs to improve fault coverages for stuck-at faults by monitoring output of

a parity predictor during manufacturing testing were proposed in [24}. Applications
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of this approach for ISCAS benchmarks and ROMs are also presented in [26]. Imple-
mentations of built-in testable error detection and error correction circuits have been
presented in [13]. The prcr.blem of parity calculation for parity checking with BIST
and pseudorandom testing was considered in [16].

In this paper we wil! investigate the general framework presented in Fig. 3 where
off-line builé-in self-test mechanisms of Fig. 1 are coupled with on-line error detection
mechanisms of Fig. 2. In the proposed scheme, the original device, I} augmented

with parity {code) predictor, B{D)), is not required to be fault-secure.

In Section IT we will discuss how much improvement one can achieve by monttoring
an output of a concurrent checker during off-line manufacturing testing. We will also
show that on-line concurrent checking only may not be suflicient for detection of stuck-
at faults and a short periodic off-line BIST can drastically increase a probability of
detection for these faults. Section III will be devoted to optimal selection of codes
Vee, Veo, Ve, for concurrent checking, space compression and time compression. In
Section IV we present analysis of probabilities of error detection for the combined
BIST and concurrent checking scheme. Design issues related to on-line concurrent

checking of space and time compressors of test responses will be discussed in Section




II. Manufacturing and Field Testing by Combining

BIST and Concurrent Checking (CC)

First, let us show that monitoring the output of the concurrent checker (CC) during
off-line manufacturing BIST results in a drastic decrease of the aliasing probability.
To estimate aliasing we have to choose a model describing a distribution of errors at
outputs ¥, ..., ¥k, Yesls---» ¥n (7 =k + 1) of the device.

There are two important components of any error model — temporal and spatial.
The first, temporal, models the correlation between the errors caused by different
input vectors. For combinational circuits and combinational faults, errors can be
assumed to be independent in time [17]-[21]. In this case if input vectors are random,
then there is no time correlation between errors due to any two input vectors.

Let e(2) = y(¢) @ g(t), where y(t) and §(#) are fault-free and distorted outputs at
the moment ¢. Then the space distribution of errors at the output of the device is given
by probabilities po, p1,. .., pen-1 (p; = Pr{e(t) = ¢ for any ¢}, po+p1++-- -.+p2n_1 = 1).
Methods of statistical determination of parameters for the above models and their
applicability can be found in [17]. These models have been widely used in estimations
of off line aliasing (sée &.g 4], [17], {18}, [19], 21y~~~ o -

In the case when space compression (SC) is used before time compression for
reduction of an overhead required for BIST (Fig. 3) to estimate a probability of
aliasing in a time compressor, distributions pg,p1....,pan_1 of errors in the device
should be replaced by distributions go, g1, - - - , gam_y1 of distortions Az(¢) at the output

of the SC, where ¢; = Pr{Az(t) = i}. I the space compression is based on the
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(n,n — m) code, Vs¢, with check matrix Hsc, then

z(t) = Hecy(2); 2(£) ® Az(t) = Hee(y(t) @ elt)); and Az(f) = Hsce(t). (1)

Thus,

g; = Z Pie (2)

Jui=Hged __
For example, for 2*-ary symmetrical errors at the output of the device {17], we have

symmetrical 2™-ary errors Az(t) at the output of the SC with

1—p+ (2™ - 1)p(2* - 1), fori=0;

G (3)

2rmp(2" — 1)1, for ¢ # 0;
where p = Pr{e(t) # 0 for any t}.

Example 2. Suppose that the original device have £ = 4 output lines and the
(5,4, 2) single error detecting code, Vg, is used for concurrent checking (CC). Then

there are 15 nonzero 53-bit error patterns with even weights (numbers of ones) which

are not detectable by CC. _ _
00011

" Ifthe (5,2,3) Hamming code with check matrix Hs¢ = | 1100 | is used for space

101601

compression (n = 5, m = 3, see Fig. 1), then by (3) we have 2°-ary s?gmmetrical erTors

at the outputs of the SC with ¢; = Pr{Az(¢) # 0 for any ¢} = &p, (: = 1,2,...,7),
where p = Pr{e(t) # 0 for any ¢} and only one error, (01111), out of 31 nonzero

errors is not detected by the CC and masked by the SC.
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.. escape detection by CC, ... . .

If the 3-bit MISR based on primitive polynomial P(z) = z° @ = & 1 is used for
time compression and T = 7 test patterns are applied, then e = (e(0),...,e(6)) is

not detected by both concurrent checking and signature analysis iff a number of ones

in e(t) is even (¢t =0,1,2,...,6) and
E}:E(HSCE(G)) D EIS(HSGIE[I)) &G---P EE(HS{:E(E))) & HSGE(G) =0,

where « is primitive in GF(2%) and Pla) = ®* @ o @1 = 0 (&8 # &, 1 # 7,
i, =0,1,...,6). For p = Pr{e(t) # 0 for any t} = 0.1 we have for a probability,
Pon, of not detecting e # 0 by concurrent checking Poy = 0.211. Similarly for a
probability, Porr, of not detecting e = (e(0),...,e(6)) # 0 by the off-line signature
analysis using results from [4] for the aliasing probability for symmetrical errors we
have Popp = 0.076 and, finally, for a probability, Pox orF, of not detecting e by both
CC and and the MISR we have Poyorr = 0.037. (Exact formulas for Pon, Forr
and Ponorr will be presented in Section IV.) O

Off-line and on-line error detection techniques can be designed to complement
each other. A periodic BIST can be aimed at precisely those stuck-at faults that

To justify this approach, we note first that CCs, in most cases, provide for a poor
fault-coverage with respect to stuck-at faults at primary input lines; these faults,
though, form an important class of permanent faults, since in many cases inter-
connections between components are less reliable then components themselves. For

example, parity prediction CCs for adders or multipliers [7], based on comparing
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O

parities of input operands, internal carries and outputs, cannot detect many input
stuck-at faults.

In addition to this, since an overhead for CCs grows rapidly with an increase
in the error detecting capability of the corresponding (n, %) code, V¢¢, only codes
with a very limited error detecting capability (like (k + 1, k) parity, Berger codes or
Hamming codes for memories) have been used. This may result in a low fault coverage
for internal stuck-at faults. The following three examples illustrate this situation.

Finally, there is a problem of detection of stuck-at faults in the CC itself. This
problem can be solved by using self-checking checkers. However, self-checking checkers
require considerable additional overheads [7}-{10].

Example 3. Consider a class of networks H,,, (m =1,2,...) with 2™ mputs and
m + 1 outputs defined recursively by Fig. 4. {H,, (m = 1,2,...) have been used for
decoding of extended Hamming codes.)

The parity predictor, R(Hy), and the CC for H, based on the (6, 5,2) parity code

are presented in Fig. 5. ;From Fig. 5 one can see that out of 86 single stuck-at faults

(SSFs) in Hy, 30 cannot be detected by the CC.

-ﬁ When m is growing, the fault coverage for SSF's detectable by the parity prediction

&

in H,, is converging to 50%. (One can improve this fault coverage by using CCs based

on codes with distances more than 2, but already for (n,m + 1,3) Hamming codes
with r = n — (m + 1) > [logy(n + 1)], the corresponding parity predictors require
about 2™ [log,(n + 1)]| two-input gates.) We note, however, that a fault coverage
close to 1 — 2-("+1) can be obtained for SSF's in this case by off-line testing using a
(m + 1)-bit MISR. O
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The previous example demonstrates that for linear devices and CCs based on
linear codes, fault coverages for SSFs may be very low. We will show now that this
may be true also for nonlinear devices and CCs based on more powerful and not
necessarily linear codes {e.g. Berger codes).

Example 4. Let us consider a class @, of devices with m inputs and 2™~7
outputs, defined recursively by Fig. 6 (m = 2,3,4,...). For Q4 only 7 out of 25 S5Fs
cannot be detected by the CC, based on the parity prediction (9, 8) code, or by a
nonlinear {12, 8) Berger code. As m g'mws, the fraction of these undetectable SSFs
in (Q,, is converges to 1/3. O

Example 5. Let us consider a (N x &) ROM with concurrent parity checking. In
this case, stuck-at faults in the address decoder that result in a selection of a wrong
cell, as well as multiple faults within a cell, will not be detected. These stuck-at faults
can be detected with a probability 1 — 2+ by off-line testing, using a (k + 1)-bit
MISR at the output of the ROM. O

The previous examples indicate that CC only may result in a low fault coverage
for SSFs and a short periodic BIST detects in most cases a very large percentages

of SSFs. Techniques for optimal selection of error-detecting codes for CC and BIST

which complement each other are presented in the next section.




ITI. Optimal Selection of Error-Detecting Codes for
Concurrent Checking (CC) and Space-Time Com-

pression (STC) of Test Responses

The space compressor (SC) is a combinational network with n inputs y(¢) = {31(t), ..., yn(?))

and m outputs z(t) = (21(f),.. ., 2m(?)) such that m < n and for a given class £ of
errors, the SC has the following error prnpa.gatiﬁg property. Let §(f) = y(f) & e(t),
e{t) € F and outputs of the SC for y(t) and y"'(f). are z(1) and %(¢). Then the SC is
error propagating iff for any e(f) € E, z(t) # Z(2).

A SC is self-testing iff the fault-free response of the device is a test detecting all
single stuck-at faults in the SC. Design methods for sell-testing error propagating
optimal SCs (STEP SCs), that minimize a number of observation points for a given
class of errors E, have been developed [1], [2]. (The major difference between STEP
SCs and totally self-checking (TSC) checkers is that the inputs and outputs of STEP
SCs are not necessarily codewords of a concurrent code Ve, This implies that a
STEP SC could have a single output; a TSC checker, however, must have at least

two outputs [T]).

It was shown in [1], [2] that STEP SCs can be designed as networks computing
syndromes for linear codes. If a (n, s, d) code, Vgc, was chosen for space compression,
then m = n — s and F is a set of all errors with a multiplicity, at most, d — 1.

In the case when CC and space compression are integrated (Fig 3), there is a
problem of optimal selection of the corresponding (n, k) codes, Vpoe, for concurrent
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checking and (n,s) codes Vg¢ for space compression. For example, if Voo = Vsc,
then any error missed by the CC will also be missed by the SC. This is a bad choice
for Voo, Vse)-

Below, we will describe our approach for solution of this problem minimizing a
fraction, 5, of errors which are undetectable by the CC and masked in the space

COINPression process; 1.e.,

n = |Veoe N Vgglg_k, 27" <n<]l, m=n-—s. (4}

If Voo is the parity (n,n — 1,2) code, then Vs¢ should have an odd distance to
minimize 7. In this case, [Voo NVsc| =2 ™! and n = 27™.

For the general case, to minimize 7, one can use as Vgc and Vso shortened BCH
or shortened cyclic Hamming codes [11] such that sets of roots of their generating
p;:nlynnmials do not intersect.

This can be implemented in the following way. Let 2°7' —1 < n < 2* —1. Then

check matrices Hoe and Hge for Voo and Vso can be selected as

-1 2 n—1
1 o af --- of 1 o1 Oy Y
2 n—1 P n—1
1 ay a3 --- og 1 Qyyz Qo 0 Qi
Heoeo = , Hse = , (3)
- 2 -1
1 a af --- o! I Gppew O, °° Ofiy

where a; (3 = 1,...,v + w) are different primitive elements in GF(2%) (af # al;

p#q;p,q{ 2% — ].). Thenk:n—au:mzﬂw andn:?"“‘”:ﬁ‘m_
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In the case when the CC is implemented by duplicating the original device, V¢¢
is the (2k, k,2) duplication code and any shortened BCH or Hamming code Vs with

check matrix

1 of ... o1
1 o o - aZF-1

HSU = : (6)
1 o of -+ o

(where o; (i = 1,...,[) are different primitive elements in GF(2°) and 2°7" — 1 <
2k < 2°~1) is optimal for space compression. In this case Vsc is the (2k, 2k—la,214+1)
code, m = la, log, |Vee NVsc| =k —=laand p = 27™ = 27",

If Voo is a ¢ out of n nonlinear nonsystematic code {7] (all codewords of Vo have
weight #, ¢ < n), then any code Vgo with a distance d such that [$] > ¢ is optimal;
if [£] < t, then d should be odd.

Example 6. Let n =T (a = 3). We will construct two (7,4, 3} Hamming codes
Vse and Voo such that (Vee fa Vscl = 2 and = 27™ = 27°. (Representation of
G F(2%) based on the primitive polynomial 2 @z @1 is given in Table 1).

Selecting oy = @ and a3 = @ we have from (35)

0010114 0011101

Hee = [hmzasa“as&ﬂ] 0101110 » Hsc = [le*efa’a’ac?| = | p100111 |

1001014 1119100

and Voo N Vse = {0000000,1111111}. O

Example 7. Let us apply the above approach to the design of a CC and a 5C
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for the control ROM for MC68020 with £ = 116 outputs from Example 1.

We assume that a shortened (123,116,3) Hamming code V¢ detecting single and
double errors is used for on-line error detection, and a shortered 8 error-detecting
(123,95,9) BCH code V¢ is used for space compression (see Example 1).

Then the best pair (Vog, Vse) minimizing 5 is defined by the iollowing check

3 5 7

matrices (0 = a, @ = o, a3 = @°, @y = o, a5 = o, a is a primitive in GF{27),

a1 = o = 1.)

1 &3 {lﬁ 268
1 &5 &10 .. &ﬁln
3
Hr_';g = [ICI{IEEI’ . -{1’122] . HSC — . (7)
| {IT &14 a0l
1 ﬁﬁ alt® ... amgs

In this.ca.se, the SC has r = 4 x 7 = 28 outputs and the fraction of errors not
detectable by the CC and masked in the SC is y = 275, O

Let us consider now the pm.blem of optimal selection of time compressors (TCs}
for a redundant device with a given CC code Vg¢.

We assume that Voo is a binary linear (n,k) code {n < 2k}, the TC is a m-
bit MISR and there is no space compression (m = n). Then the TC is a network
computing syndrome for the (T, T — 1,2) Reed Solomon code, Vrc, over GF(2"),
where T is a number of test patterns applied.

Let us denote the check matrix for this code as

HTC - [hﬂw hh n ey hT—l]& (8)




where h; € GF(2").
Then e(t) = (eo(t), .- ., ena(t)) (eit) € {0,1},¢ =0,1,...,T — 1) is not detected

iff e(t) € Voo for any t and e = (e(0),...,e(T — 1)) € V¢ or from (8)
hoe(0) @ hre(1) @ --- B hr_1e(T — 1) = 0. (9)

If Hre = (1,1,...,1) (which corresponds to case when the MISR is a collection
of disconnected T-flipflops), one can select e(1}),...,e(T — 1) arbitrarily such that
e(3) € Voo (1=1,...,T — 1) and find from (9) in a unique way ¢(0) € Voo. Thus,

the fraction of errors which are not detected by off-line BIST and CC in this case 1s

equal to (26T-1 — 1)(2T — 1]’ 275,

If a primitive MISR is used as a TC, then Hre = (o7 1 a¥%, .. .,a,1) (ais a
primitive in G F(2"); o # o 4,7 =0,1,...,2" — 2), and from (9) e is not detected

r 4T

by CC and BIST for T' < 2™ — 1 iff e(#) E Veoe for any £ and

e(0)a’ 1 pe(l)a™ 2 - Ge(T-2ade(T-1)=0. (10)

Now let us fix e(0) € Vee, . ..,e(T —3) € Ve¢. Then we have the following equations

for e(T —2) and e(T — 1)
E(T— 1) € VGG:‘E(T R 2) C VCC &ﬂd,
e(T — 1) & ce(T —2) = B, (11)
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where B = e(0)a? 1 @ --- @ (T — 3)o .
For the (n,k) code, Voo, we can always assume that its check matrix Hee is

represented in the following form
Heo = [P|LL], (12)

where I, is the (r x r) identity matrix (r = n — k) and P is the (r x k} matrix with
nonzero rows and k > r [11].

Denote B = (Bo,...,Bp—1), Y = (e(T —1),e(T — 2)) = (eofT = 1}),...,ena(T -
1), e0(T —2),...,a1(T — 2)) (Bi,e&(T — 1}, ei(T — 2) € {0,1}).

If the TC is a primitive MISR with external XORs and generating polynomial
P() = 2" ® ppaz™ 1 B - & prz @ 1 (3], then (11) can be represented over GF(2)
as a system of n + 2r linear equations with 2n unknowns eo(T — 1),...,e,1(T —

1}, e0(T — 2),...,eq-1{T —2) € {0,1} in the following matrix form

2r

et e,
MY =(8,....0,Bo,..., Ba_t)", (13)
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where

_ : L -
j {
___J_P! I"! __,__.0 _____
l |
0 | Pl I
i 1
‘ g 0 .0l 1
| =
M = 21
I P
In—l
Prn—1

I

1+ 2r, (14)

Since for any primitive P(z) = 2" @ pr—12™ 1B+ & prz B 1 we have pp_o B --- @

7 B 1 # 0, and there are no all zero rows in P, it is easy to show that rank oi M

over GF(2) is n 4+ 2r and there are 22*~{"+%) = 28" solutions ¥ for (13) for any B.

Thus, in this case the fraction of errors which are not detectable by off-line BIST

and CC is equal to (2FT-29k-r _ 1)(2¥T — 1)1 ~ 27%7 and the transition from a

nonprimitive MISR to a primitive one results in a reduction of probability of masking

by the factor of 277 = 2-{"=%),

Example. 8 For the original device, D, with ¥ = 2 output lines, concurrent

checking based on the (3,2,2) code with Hee = [111] and time compression by the
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primitive MISR with P(z) = z° @ = @ 1 we have

111 000

000 111
M=1| 100 001 |

010 101

001 010

rank M = 5. In this case (13) has 28(T-2n—rank M _ | — 9:T-2)9 _ ] = 9#-3 _]
nonzero solutions and the fraction of errors which are not detected by Voo and the
MISR is equal to (2273 —1)(2¥ 1)1~ 273, D

In the case when both space and time compression are used for compression of
test responses e = (€(0),...,e(T — 1)) {e(t) = (eo(t),...,en1(t)), €il(?) € {0,1}) 1s
not detected b}; monitoring the output of the CC for every t (t =0,1,...,T ~1) and

by verifying a space-time signature iff

hn(HggE(ﬂ)) & hI(HSE:E(l)) $ - B hT_l(HS{jE(T —- 1)) = ’U, (15)

+ and e(t) € Voo for any t= 0,1, ;T 2 Lo wom —mmes cmonieee

If for an (n,k) code Vo and an (n,n — m) code Vse we have k > m (see e.g.
Example 1) and 5 = 2°™ (see (4)), then {z|z = Hscy,y € Voc} = GF(2™) and for
any (not necessarily primitive) MISR the fraction of errors which satisfy (15) is equal
to 27™.

Thus, for the case of a BIST without space compression the fraction of errors
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which are not detected by CC and BIST is equal to 27" for primitive MISRs and can
go up to 2% for nonprimitive ones. For the case of a BIST with space compression

this fraction is equal to 27 (k < m) for any (not necessarily primitive) MISR.

IV. Analysis of Probabilities of Error Detection for

Combined BIST and Concurrent Checking.

We will estimate now probabilities of not detecting e = (e(0),...,e(T' — 1)) # 0 by
CC only, by the signature analysis based on space-time compression of test responses
and by CC combined with the signature analysis. We assume that the output of the
concurrent checker is monitored for every t = 0,1,...,7 — 1. As in [4], [18], [19]
and [22] we assume that errors are independent in time and we will use the 2"-ary
symmetrical error model for the space distribution of errors:

' ' 1—1p, for ¢+ = 0;
Prie(t) =i} = (16)

p(2" — 1)1, for i # 0;

Then we have for the joint probability, Pon, that e 1s not detected by CC and

- 7&[} e e e e e e e e e

(17)
= (1-p+p@ -1 -1)7) — (-5
For small p we have from (17)
Pon = exp(—pT'(1 —277)) — exp(—pT), (18)

o e !
a5 0o
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where r = n — k.

For the probability, Psc, that Hsce(t) = 0 we have from (16)
Pse=1—-p+p(2*™ -1)(2" -1 ~1—-p(1-277). (19)

Then we have for the joint probability, Porr, that e 1s not detected by space-time

signa.turé analysis and e % 0

PGFF = Pl‘{(HS(:E(G), “re g HSQE(T — 1)) e VT.{;} — PI‘{E - U} (20)
Denote
Pro(l) = Pr{v € Vel |l[ =1}, (21)
where ||v|| is the number of nonzero components in v = {v(0},...,v{T4)), v(i) €
GF{(2™).

~ Then we have from (20) and (21)

T
T _
Porr =), ( )(1 — psc)'psc pre( — (L - p)". (22)
[t was shown in [4] that for any m-bit MISR

Pro(l) = 27™(1 + (=1)(2™ — 1)~ (23)

?
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From (19), (22) and (23) we have for Porr

Porr =27 4+(1-2"")T1, (T)((l — pse)(=1)(2" — 1) Ypis' — (1 — p)T
=27 4 (1 —-2")psc — (1 = psc)(2™ =)™ )" = (1 = p)*

=2+ (1271 -p(1- (@ - 1)) - (1-p)".
(24)

We note that for the case when there 1s no space compression we have m = n

and from (24) we have the following well known result (see e.g. [4]) for the aliasing

probability, Py, of a n-bit MISR
Pap = Porr =271 = 2"(1—p)7 + (2 = 1)(L - p(1 - (2* = 1)7"))").  (25)

For small p we have from (24)
Porp ~ 2™ + (1 — 27™) exp(—pT(1 — (2" - 1)7')) — exp(—pT). (26)

Let us estimate now the joint probability, Pon orF, that e is not detected by CC,

not detected by the signature analysis and e # 0.

 As in the previous section we assume that £ > m and

n= |V5g M Vgclz_k =277, (27)

T
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Then we have for Foxorr

PQN‘{}FF = Pl‘{ﬂ(t) & VCC for all 1= U,, 1., ‘e ,T — 1; HSQE = VT{;} — PI‘{E = U}.

where Hsce = (Hsce(0),. .., Hsce(T — 1)).

Denote

a = Pr{e(t) € Voo, Hsce(t) = 0},
b= Pr{e(t) € Voo, Hsce(t) # 0}

Then in a view of (27) we have

¢=1-p+p(2" —1)(2" - 1)7,

b= pl2t —2m) (2 — 1),

and

T (T
Ponorr =) (I)bfﬂT“*prc(f) - (1-p),

=0
where Prc(l) is defined by (21} and (23).

Finally, from (31), (23) and (30) we have

=27"(1—p(1 - (2 - 1)(2* = )™)Y + (1 - 27)(1 — p(1 — (2* = 1)7})")

~(1 —p)".

!
el a0 b oog
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(28)

(29)

(30)

(31)

o Ponorr -=2"a+bT+ {1 -2 Wa=b2" - 1)) =(1=p)F o

(32)




We note that (32) generalizes both (17) and (25) and we have from (32)

Ponorr = Poy form=0,and
(33)

Ponorr = Popr fork=m.

For small p one can use the following approximation for Fon.oFF

Ponorr = exp(=pT(1 —277)) + (1 — 27™)exp(~pT(1 — (2" — 1)7')) — exp(—pT).
(34)
Probabilities of not detecting an error as functions of test length 7" for concurrent
checking, signature analysis and combined concurrent checking and signature analysis

are presented in Fig. Tforn =m =32, r =1 and p =107

-—-";?
@ Example 9. Let us consider the control ROM from Example 1 with n = 123,

k=116, r = 7T and m = 28. For p = 107° and T = 2" we have from (18}, (26)
and (34), Pony = 1.89 X 10_3, Porr = 1.04 X 10~° and PﬂNiﬂFF = 6.88 x 10712,
Probabilities of not detecting an error as functions of test leﬁgth T for concurrent

checking, signature analysis and combined concurrent checking and signature analysis

for this ROM are presented in Fig. 8 for p = 107¢. O

V. Concurrent Checking of Space and Time Com-

pressors in the Off-line Testing Mode

Let us consider now the problem of concurrent checking of SCs and TCs to detect

permanent and intermittent errors in the process of off-line testing.

Je ST o ) 924
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A self-testing error propagating SC is a set of m XOR trees with input y(f) =

(y2(1), ..., yn()) and output z(2) = (z1{t),..., 2a(t)) (m < n), where

2(t) = y(t)Hp, (35)

and HY, is the transposed check matrix of a linear (n,n -~ m) code Vsc selected for

the space compression [1], [2]. A TC (MISR with internal XORs, MISR with external
XORs, cellular automaton) with input z(t) and internal state D(?) can be described

by the following characteristic equation
D(t+1)= DA @ =(t +1), (36)

where D(t), z(t) are m-bit binary vectors corresponding to internal states and inputs
of TC and A is a (m X m) non-singular over GF(2) binary transition matrix.
Suppose a linear (M, m) code, Vsrc, has been chosen for concurrent checking of
the SC and TC (Fig. 3). The generating matrix of this code can be represented as
G = {I. | Q], where I is the (m x m) identity matrix, and @ is the (m x (M —m))

parity matrix. Then (v1,...,%m, Um+1,...,00M) € Vorc iff

R(v) = (Vmt1,-- -2 OM) = (V15- .+, U )@ (37)

;From (35) and (37), we have for the parity prediction part, R{(SC), of the SC

R(z(t)) = (zms1(t), -, 2m(t)) = y(t)HEQ = y(t)H', where H' = HgoQ,  (38)

|
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H' is a (m x (M — m)) binary matrix, and all the computations are mod 2.

For the parity prediction part R(TC) of the TC, we have from (15) and (16)
R(D(1+1)) = D()AQ@z(t+1)Q = D)A'®2(t+1)Q = D)4’ y(t+ 1) H', (39)

where A’ is a (m x (M — m)) binary matrix, A" = AQ).

For the case M — m = 1, Vsze is the (m + 1,m, 2} parity code, (J 1s the column

of all ones, H' is the column which is equal to the sum mod 2 of all columns of Hg,

and A’ is the column which is equal to the sum of all mluxﬁns of A.

Let us consider the case of time compression by a m-bit MISR with external

XORs. In this case [3],

ppn 100 -0
ps 0 1 0 --- 0
A== r oo o, sy pe{0,1}e=1,...,m—1), (40)
Pmy 1 0 0 -0 1

1 000 ---0

m

and for CC by parity prediction (m + 1,m,2) code we have @ = (11...1)", A’ =

AQ = (P1, P2y .+ -y Pm—1,1) (P is negation of p;) and
R(D(t+1)) = Duga(t+1) = Dy(O}p1®Da()p2- - Dns(Dprmms Bz (£+1) (41)

The general block diagram of a space-time compressor with the parity prediction is
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represented in Fig. 9.

e

Example 10. Let us consider CC for space-time compression of test responses

for a device with n = 7 outputs. Suppose that the (7,4) Hamming code with check

matTix

e -

0001111

Hse = A= 1 p110011 | >

1010161

is selected for space compression and the 3-bit MISR with external XORs and prim-
itive polynomial z° & x @ 1 is selected for time compression. In this case H' =
(1101001)* and the corresponding space-time compressor with parity checking, based

on the (4,3,2), code Vsre is given in Fig. 10. U

w /’Qj Example 11. Let us consider a concurrent checker for the SC and the TC for the
\

case of off-line testing the control ROM for MC68020 from Example 1. In this case,
k = 116, n = 123; space compression can be implemented by the (123,95,9) code
(m = 28) and time compression by the MISR with primitive generating polynomial
283 23@1. Then the CC for the SC and the TC can be implemented by the (29, 28, 2}

parity code. Additional overhead required for this CC (in terms of equivalent two-

. input gates).is less than.5%. 0O

VI. Conclusions

In this paper we proposed an approach for combining an on-line concurent checking

and off-line BIST based on space-time compression of test responses to maximize

1 N
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probabilities of error detection for both manufacturing and field testing. An approach
for optimal selection of error-detecting codes for concurrent checking and space-time
compression of test data have been developed, and probabilities of error detection
for combined on-line and off-line techniques have been estimated. An approach for
concurrent checking of space and time compressors for test responses was proposed.

The presented techniques can be used for design of fault-tolerant devices with BIST.

Acknowledgment

The author thanks Dr. L. B. Levitin, Mr. S. M. Chaudhry and Mr. M. J. Ryniejski
from the Research Laboratory on Design and Testing of Computer Hardware, Boston

University, for many useful discussions related to the subject of this paper.

References

[1] Suluja, K. K. and M. G. Karpovsky, “Testing Computer Hardware Through

Data Compression in Space and Time,” Proc. International Test Conf., 1983,

pp. 1194-1198.

2] Reddy S. M., K. K. Suluja and M. G. Karpovsky, “A Data Compression for

Built-In Self Test,” IEEE Trans. on Computers, Sept 1988, pp. 1151-1156.

(3] Bardell, P. H., McAnney, W. H. and Savir, “Built-In Test for VLSL: Pseudoran-

dom Techniques,” John Wiley & Sons, 1987.

VL—.SE }f:m'l) 98

-




[4] D.K. Pradhan, S.K. Gupta and M.G. Karpovsky “Aliasing Probability for Mult-

ple Input Signature Analyzer and A New Compression Technique,” IEEE Trans.

on Computer, April, 1990.

5] M. G. Karpovsky, S. Chaudhry, “A Design of Self-Diagnostic Boards by Multiple

Signature Analysis,” IEEE Trans. on Computer, to appear, 1992.

6] M. G. Karpovsky, S. Chaudhry, L. B. Levitin “Multiple Signature Analysis:
A Framework for Built-In Self-Diagnostic,” Proc. Fault-Tolerant Computing

Symp., 1992.

[7] D. K. Pradhan (ed.), “Fault Tolerant Computing: Theory and Techniques,”

Prentice Hall, NJ, 1986.

(8] N. K. Jha, “A Totally Self-Checking Checker For Borden’s Code,” IEEE Trans.

on CAD, July 1989, pp. 731-736.

9] N. K. Jha and J. A. Abraham, “The Design of Totally Self-Checking Embeded

Checkers,” Proc. FTCS, June 1984, pp. 265-270.

[10] S. M. Reddy, “A Note On Self-Checking Checkers,”IEEE Trans. on Cﬂmputers,

- Vol. C-19, No. 11, November 1970, pp. 1035-1038.

[11] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,

New York: North-Holland, 1977.

(12] K. K. Saluja, R. Sharme, C. K. Kime, “A Concurrent Testing Technique for

Digital Circuits,” IEEE Trans. on CAD, Vol. 7, No. 12, December 1988.

Vies iwz) 99

1

"o ul = FFTEOET T 1 T

r L} T - . 1
P L T S T I l:...a..h.'-:I.i.ﬂ-.-i;-:n.:'_-l..u...d...Jl. T ST




[13}

[14]

[15]

[16]

[17]

18]

[19]

[20]

R. Sharme, K. K. Saluja, “An Implementation and Analysis of a Concurrent
BIST Technigue,” Int. Symp. on Fault Tolerant Computing, June 988, pp. 164-

169.

Nicolaidis, “Self-Exercising Checkers for Unified Built-In Self-Test (UBIST),”

IEEE Trans. on CAD, March 1989, pp. 203-218.

M. Katoozi, A. Nordsieck, “Low Overhead Built-In Testable Error Detection
and Correction With Excellent Fault Coverage,” Proc. Int. Test Conf., 1981, pp.

916-924.

S. Park, S. Akers, “Parity Bit Calculation and Test Signal Compaction for BIST

Application,” Proc. Int. Test Conf., 1981, pp. 1016-1023.

Karpovsky, M. G., D. K. Pradhan, and S. K. Gupta, “Aliasing and Diagnosis
Probability in MISRs and STUMPS Using a General Error Model,” Proc. Int.

Test Conf., 1991, pp. 828-540.

Gupta, S. K. and D. K. Pradhan, “A New Framework for Designing and Ana-

lyzing BIST Techniques: Computation of Aliasing Probability,” Proc. Int. Test

Conf., 1988.

Williams, T. W., W. Dachn, M. Gruetzner, C. W. Starke, “Bounds and Analysis

of Aliasing Errors in LFSRs,” IEEE Trans. CAD/ICAS Vol. 7, No. 1, January

1988, pp. 75-83.

Iwasaki, K and N. Yameguchi, “Design of Signature Circuits Based on Weight
Distributions of Error Correcting Codes,” Proc. ITC 1990, pp. 779-785.

k
Viess }mg_J 30




(21] Pradhan D. K., S. K. Gupta, “A Framework for Designing and Analyzing New
BIST Techniques and Zero Aliasing Compression,” IEEE Trans. on Computers,

Vol. 40, No. 6, June 1991, pp. 743-763.

[22] Sedmak, R. M., “Design for Self-Verification: An Approach for Dealing with

Testability Problems in VLSI-Design,” Proc. Ini. Test Conf., 1979, pp. 112-124.

23] Sedmak, R. M., “Implementation Techniques for Self-Verification,” Proc, Int.

Test Conf., 1980, pp. 267-278.

[24] Lubaszewski, M., B. Courtois, “On the Design of Self-Checking Boundary Scan-

able Boards,” Proc. Int. Test Conf., 1992, pp. 372-381.

[25] Sun, X., M. Serra, “Merging Concurrent Checking and Off-Line BIST,” Proc.

Int. Test Conf., 1992, pp. 958-968.

[26] Gupta, S. and D. K. Pradhan, “Can Concurrent Checkers Help BIST?,” Proc.

Int. Test Conf., 1992, pp. 140-150.

Vess faes ! o3

v reme T -—Hﬁ—-ﬁ
- . . o . B



Figure 1: Block Diagram for Built-In Self-Test
Figure 2: Block Diagram for On-line Error Detection

Figure 3: Block Diagram for Combined On-Line and Off-Line Error Detection Mech-

anisms

Figure 4: Recursive Construction for H,, Networks (m = 2,3...)
Figure 5: Implementation for H, With Concurrent Checking
Figure 6: Recursive Construction for @, Networks (m = 2,3...}

Figure 7: Probabilities Of Not Detecting An Error As Functions Of Test Lengths T
for Concurrent Checking Popn, Signature Analysis Porr And Combined Concurrent
Checking And Signature Analysis Poyorr Forn=m =32, r=1,p= 10—

Figure 8: Probabilities Of Not Detecting An Error As Fanctions Of Test Lengths T

for Concurrent Checking Pon, Signature Analysis Forr And Combined Concurrent
Checking And Signature Analysis Ponorr For The Control ROM From Example 1
(n =123, k = 116, m = 28} For p = 10~*

Figure 9: Space-Time Compressor with Concurrent Checking by Parity Prediction

Figure 10: Self-Error-Detecting Space-Time Compressor with the (7,4,3) Hamming

_Code for Space Compression P(z).= 18z ® 2> for Time Compression and the (4,3,2) .

Parity Code for Concurrent Checking of Space and Time Compressors

Table 1: Representation of GF(2%) with P(z) =225 1, Pla) =0
1la]a?[a®[at]a’®|a®
o(110(0 |1 [0]|1(1
o(oj1|o0|1(1;1]0
010101110 1]1]1
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