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The relationship between the 2-Dimensional multiple-valued (complex-valued) Haar
transform and the 2-Dimensional real valued Zhang-Watari transform of patterns is
stndied and a methed is disclosed to compute the Haar- (more properly, Watari)- Spec-
trum of a pattern by using only real arithmetic. 1t is shown that to extend the straight
forward 1-D results to the 2-D case, a special permutation operation has to be introduc-
ed. This result is closely related to that known for 2-D) Chrestenson and Zhang-Hartley
transforms, except that a different choice of pattern partition and permutation is required.
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1. INTRODUCTION

Zhang Gongli [1] disclosed at the Intermational Symposium on
Multiple-Valued Logic in Winnipeg, Canada, two new discrete, real-
valued orthogonal transforms closely related to the Chrestenson [2]
and the Watari [3] transforms, in a similar way as the Hartley [4] 1s

*Part of this work was done under support of the NATO Grant SA. 5-2-05 (CRG
9104 11).
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246 C. MORAGA et al.

related to the Fourier fransform [5]. Real-valued transforms are appealing,
since they have a lower computational complexity as compared with com-
plex-valued transforms. The first of these new real-valued transforms
was later called Zhang-Hartley [6] and some of its properties have
been studied [7,8]. The present paper analyzes properties of the
second of the above mentioned transforms. The Watan transform, as
a canonic extension of the Haar transform [9] to the multiple-valued
case seems to have inherited the rather restricted attention paid to the
Haar transform. Except for their completeness, orthogonality, and
some applications to pattern recognition and logic design [10], as well
as some recent applications to the study of genetic algorithms [11]
and picture processing [[2] the missing properties of the Haar and
Watari functions are best known: they are not closed under product,
and therefore they do net have a convolution-product theorem, their
Kernels do not build a group, they do have fast algorithms [13, 14],
but they have no Kronecker recursive structure and they exhibit no
symmetry between indices and arguments [15,16]. The aim of this
paper 1s to disclose some positive properties of the multiple-valued real
Haar transform, which we call hereafter “Zhang-Watari” transform.
The main result concerns the relationship between the 2-Dimensional
Watan and Zhang-Watari transforms of patterns by introducing a
special permutation. The result 1s similar to that disclosed in [8] for
the Chrestenson and Zhang-Hartley transforms, however, a quite dif-
ferent kind of partition and permutation is needed, as will be shown in
a later section.

In section 2 the required notation and basic definitions will be
stated, The main result is disclosed in section 3. The fourth section is
devoted to the analysis of further properties.

2. NOTATION AND BASIC CONCEPTS

2.1. Main Definitions

DEFINITION 1 Let G,={0,1,...,p—1}. A multiple-valued function
1s a mapping ()" —» &,. The elements x € (G )" will be interpreted as
m-tuples (x__,,....X,,x,) with x; ¢ (r,, as well as natural numbers
from {0,1,...,p"— 1} according to x = Z;x, p'. Since there is a bijection
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between both interpretations, they will be used freely without danger
of confusion.

DEFINITION 2 Let €@ denote the modulo p addition. It follows that
(G,, @) 18 a cyclic group of order p. By allowing the same symbol to
express a componentwise modulo p addition, the extension group
(G,)",®) i1s obtained. This group is abelian. The additive inverse of
x €(G,)" will be wnitten x". It follows that x@ x = 0.

DEFINITION 3 The primitive p-th roots of unity are defined in the
following way:

u, = e’*™? = cos(2n/p) + j sin(2n/p);

where j: =,/ —1

The powers of the primitive roots build a multiplicative cyclic
group of order p. Let this group be denoted by U, It follows:

— g __ 1 2 —1
Uy,={u,=lLu,=u,u;,...  ub"'}

Finally let the symbel “*” denote complex conjugation. It is simple
to prove that

Xk X
{up} _up

holds.

DEFINITION 4 The discrete Watari functions for x e (G, )" are de-
fined as follows [3]:
W, k() = Wip(x)
(/P i xe {(pk+Dpnh, L
(pk+1+1)pm "1 =1}
I=0,...,p—1
0 otherwise

\

where i=0,1,....m—L k=0,1,...,p— 1, r=0,1,....p—1. However if
¥ =0 then k 15 allowed to take only the value 0. In this way the index 0
of wy(x) is uniquely defined. Even though the exponent i (in rp’ + k)
could have in this case an arbitrary value, it is also defined as 0. As
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will be seen below, i represents the degree of the function. It makes
sense fo assign a zero degree to the constant function wyix) = 1.

DEFINITEON 5 The Watari Kernel is a p™ by p™ matrix, whose row-
entries are taken from the Watari functions after increasing degree (i),
permutation type of non-zero elements (r} and order (k).

W (m): = (Wi (X},
x=0,..p"—1
The Watari Kernel is a regular matrix. Its inverse i1s given by:
W, (m)~ " =p~ "W (m)*

since the Watari functions are orthogonal.
The complex conjugate of the Kernel 1s stmply

Wi(m): = [Why ()],

x=0,..,p"—1

DEFINITION 6 The discrete Zhang-Watan functions [ 1} are given by:

ZWyr x) = 2w, )

r\/E (cos {‘1‘—: {r} + sin (% Ny
xepk+1)pmi-t,

= { (pk+1+Dp" "1 -1}
{=0,....p—1
O otherwise

\

where i=0,1,....m—1:k=0,1,....p— 1L r=0,1,...,p—1. (See Defini-
tion 4 for the speclal case i=k=r=20)

[t becomes apparent that the Zhang-Watari functions are actually
the sum of the real and imaginary parts of the corresponding general-
ized Haar {i.e. Watari) functions. As such they are real valued. Finally,
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it has been shown, that the Zhang-Waiari functions are compliete and
orthogonal [1,16,17].

DEFINITION 7 The p™ by p™ matnx
ZW (my. = [ZW}7 ()]s,

represents the Zhang-Watari Kernel. It becomes apparent that the
Kernel is regular and orthogonal, but non-symmetric,

ZW () ZW T(m) = p"I(m),
where I(m) is the p™ by p™ identity matrix;

ZW ! (m) = L ZW(m).

R

Moreover, ZW ,(m)= Re {W (m}] + Im[W (m)].
In what follows, whenever p i1s known the Kernel may simply be
expressed as ZWim). Similarly for W(m).

DEFINITION 8 A pattern is considered to be representable as an
array of pixels. Pixels are atoms of a picture and exhibit a single color.
The size of a pixel is determined by the desired geometric and chro-
matic resolution. By defining an injective mapping from the set of
colors into the non-negative integers (reals) it is possible to give an
equivalent representation to patterns as a matnx with integer (real)
entries. Operations among patterns will be expressed as operations
among the corresponding matrices. A matrix M of dimension p™ by p”
will be written as M

(a1}’

DEFINITION 9 The spectrum -{or more precisely the two-sided
Watari spectrum)- of a pattern A, ,, 15 given by:

i

m+n

S,= W (m) A Wk{n)'

1
= W (m) AW, *(n).




230 C. MORAGA er al

and the recovery of a pattern from its spectrum may be obtained as
follows:

A=WHm)TS, W (n)

DEFINITION 10 The two-sided Zhang-Watan spectrum of a pattern
A .. 1s given by:

{mt . 1)

1

m+n

RS, =

> ZW (m) A ZW (n)T

L ZW (m) A ZW *(n).

14

and the recovery of a pattern from its spectrum may be obtained as
follows:

A=ZW (m)7 RS, ZW (n)

DEFINITION 11 Let Pimy=P (m):=[p, | O<ppo<p”—1 with p, =1
and forall re{1,...,p—1},ie{0,...,m—1} and ke {0,...,p'— 1}

]

1 if g=rp'+k and

o= v=(p—r)p'+k
0 otherwise

It becomes apparent, that for every (r, i, k} there exists a unique pair
(g1, v), hence P is a permutation matrix. Moreover P can be defined

recursively as shown below:

P(O): =1
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and for all ¥ = 1:

(10 - 0) ® Pk—1)]
(0 0D ® IHk—1)
Pk):=| (0 010 ®& Ik—-1)
©10~ 0O & Ik—1)_
DEFINITION 12
Afm‘ﬂ]: = P (m) Ay P (1)

2.2. Auxiliary Lemmata

To alleviate the reading of the paper the formal proof of every lemma
is given 1n the Appendix.

LEMMA 1

P_(m) W (m) = W*(m)

COROLLARY 1.1

P (m)=p™" W, (m)W, (m)

COROLLARY 1.2

P (m} P {m)= I(m)

COROLLARY 1.3

P (m)="P,(m)

LEMMA 2
P (m) ReW (m)= ReW (m)

P ,(m) InW {m) = —ImW (m)

T
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LEMMA 3 For every A, ,, there is a unique decomposition into o and
B invariants as shown below:

Ay = %Ay ) + (A 3)
with
'I(A[m.n]} = [Al[m.n] + A?m,n})}rlz Hﬂd

ﬁ(‘q{m,n]} = {A{m,lﬂ - A[#m,n}}fz

3. RELATIONSHIP BETWEEN THE 2D-WATARF AND THE
2D-ZHANG-WATARI SPECTRUM OF A PATTERN

In the 1-dimensional case there exists a simple relationship between
the Watar and the Zhang-Watari spectrum [16], which allows com-
puting the Watari spectrum without using complex arithmetic:

S,=a(RS)}+jp(RS), m=z=0, n=0

In what follows 1t will be shown, that it 1s possible to establish a direct
relationship between the 2D-Watari and 2D-Zhang-Watari spectra, in
a way similar to the case of the Chrestenson and Zhang-Hartley
spectra [8], except that instead of the even and odd decomposition of
patterns, the & and £ mvanants defined earlier as well as a different
permutation matrix are needed.

LEMMA 4 For every pattern A, . holds the following:

{m.n)

RS,=ReS, +ImS P(n)

COROLLARY 4.1

RS,=ReS,— Pm)Im$,

e AL AR IR AT IR A EpU

N M
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LEMMA 5 The 2D complex-valued Watari spectrum of a paitern A,
can be obtained from the 2D real-valued Zhang-Watari spectrum in the
following way:

S4=0a(RS ) +jB(RS ) Pn)

COROLLARY 5.1
S4=u(RS,)—jP(m)B(RS )
S 4= [(RS 4+ P(m)(RS ) P(m))
— J{P(m{RS ) — (RS ) P(n)))/2

Lemma 5 and its Corollary 5.1 show that the  invanant and a
properly permuted § invanant of the Zhang-Watan spectrum are
equivalent to the real and imaginary parts of the Watari spectrum
respectively. It becomes apparent, that if » =0 the well known results
of the 1D case are obtained {16], since P(0)=1.

COROLLARY 5.2 If for a given pattern A, ,

P(RS,) = p{RS,)- P(n)

holds, then S, = a(RS )+ jB(RS ) as in the ID-case.

LEMMA ©

P(RS,) =B(RS,)- Pln)

iff ReWim) - A, .-ImW(n)'=0

L)

4. PROPERTIES OF THE 2D WATARI AND
ZHANG-WATARI SPECTRA OF PATTERNS
For a given p let A, .o Bummy Conwy Jimm 304 K oy be real-valued

patterns. Moreover let J,, .. =(K,, ,,)” ' and n,0e R




254 C. MORAGA er al
P1: Linearity
Stua+opy =S, + Sy
RS 1+.5=uRS,+ RSy

This property follows directly from the definitions of the respective
spectra.
P2: Preservation of the Product

Sic=D"548¢
RS . =p"RS RS,
P3: Preservation of Inversion
S;= P_lm(sx}h !
RS, =p~ *™RSg)™!

P4. Roots

If m=n=1 the Watari Kernel reduces to the Chrestenson Kernel,
and the Zhang-Watari Kernel to the Zhang-Hartley one. It becomes
apparent, that the same property holds for the 2D spectra of patterns
of size p by p. (See Definiiion 4. If m=1 then i=0 and consequently
k=0. It follows that p'=p™"""1 =1 and xe{0,...,p—1}. All entries
are powers of u,, which characterizes the Chrestenson Kernel )

P5: About Examples

The smallest representative example is of dimension p? by p? (Cf. P4).
The simplest matrix W (2) is obtained for p =4, since this matrix has
only real and imaginary elements {and no elements with both real and
Imaginary non-zero parts).

A numerical example to illustrate the main result would require 13
matnces of dimension 16 by 16. (4 of them to compute and express the
Watan spectrum of a pattern and two additional to separate the real and
imaginary parts of this Spectrum. Another 4 would be required to com-
pute and display the Zhang-Watari spectrum; one more to compute the
#-operation on this spectrum and finally 2 matrices to represent the o

I
ikhE 3
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and § invariants!). The decision of giving in this paper informations
on the meaning and implications of the Lemmata instead of an
example was taken, since a numerical example would only express in
form of (possibly difficult to remember) explicit matrices, what the
main Lemma expresses by using symbolic matrices.

5. FUTURE WORK

The next task to be undertaken is the evaluation of these transforms
with respect to real world applications. Preliminary results [ 16] show
that the Watari power spectrum of patterns with high regularity may
be used for error detection and location. This suggests further work in,
for instance, error detection and location in layouts of VLSI memories
as well as in testing multiprocessor systems consisting of an array of
processors. Furthermore a generalization of the work of S. Khuri
[11], who used the Walsh and Haar transforms to investigate the
petformance of binary coded GAs, could be considered to study the
GA-hardness of problems, when the coding of individuals 15 chosen to
be non-binary.
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APPENDIX

LEMMA 1

Po(m) W (m) =W im)

Proof Recall that ¥V x e (G )"

W 00) = WH ()

\/E uy ifxe{(pk+Hp" 7.,
(pk+14+1D)p* 1711}
{i=0,...,p—1

0 otherwise

P A e s mammms o omdem o= oae =l T ad s g dhllirrias =l BT IEI ™
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Smeer=1,...,p—1,
L} * -
[\/E ui:') =ﬁ (u;‘:}#

— i iy dtp—r)
- pup—\/EHP

This means that the compiex conjugate of a Watari function is an-
other Watari function of the same degree and order. The result of the
operation may be summarized with the following expression:

(5 0 = (200"
= W':";P_ﬂ{:{) = W{p_,-m* + k{x]

An analysis of Definition 11 shows that pre-multiplying a Watan
Kernel with P{m)} exchanges the rows in positions rp'+k and
(p—r)p' + k. As seen above, this is the same result obtained by com-
plex conjugation. ok

LEMMA 2
P p{m} Rewplfm) = ReW F{m}

P (m)ImW (m) = — ImW ,{m)

Proof From Lemma 1, pre-multiplying a Watari Kernel with P(m) is
equivalent to taking the complex conjugate of the Kernel. This means
that the real part of the Kernel will be preserved and the imaginary
part of the kernel will be scaled by (—1). | ek

LEMMA 4 For every pattern A, ., holds the following:

RS, =ReS,+1ImS, Pn)
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Proof To simplify the syntax of the proof, the following notation will

be introduced:
R = ReW(q);

3 =ImW(g);

A=A

{m,n];

={in +r)

d=p

where g = m or g = n depending on whether the Kernel is at the left or
the right band side of A respectively.
Definitions 9 and 10 may then be written as shown below:

S,=d[R+j3INA[R—-;3]T
=d[R+jIJA[R" —j3"]
= d[{ﬁAERT + JIATT) +J(TART — RAIT)]
RS, =d[R+ITA[R+3]*

=d[R+3IJ4A[R" + T3]

=d[(RAR" + J4AT) +(TART + RA3T)]
From Lemma 2 it is known that

Plg)3=—3
(P@3)'= -3

Since P(m) 1s symmetric, transposition leads to

STP(g)= — 3

B L T Sy Sy R PR Y TS Ll SN SR L R B L bl s e ) I l l
: 0
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In a similar way it may be shown that R7P(g) = R'. Moreover,
ImS, Pn)=d(IART — RAIT)P(n)
— d(IARTP(n) — RASTP(n))
=d(JART + RATY

The assertion follows directly. A

LEMMA 5 The2D cump!ex-mfﬁed Watari spectrum of a pattern A,
can be obtained from the 2D real-valued Zhang-Watari spectrum in the
following way:

Sa=oRS )+ jB(RS ) Pn)

Proof
(1) (S)* =d[W(m) A(W*n)' ]*
=d[W(m) A[P(n)W(n)]" 1*
= d{W*(m) A*(W*(n))" P(n)]
= d[W¥m) A(WXn)) P(n)]
(since A is real)
= d[P(m)W(m) A (W *(n))" 1P(n)
= P(m)[dW{m) A(W*(n))" ]P(n)
= P(m)S,P(n) = (S )*
(11) (RS )* = P(m)RS, P(n)
= P(m)[Re S, + Im S, P(n)1P(n)
" (Lemma 4)

—(ReS,)* + Pm)ImS,




2610 C. MORAGA et al

From (1'} tollows that (Re S,)* =Re S, since Re S, is real.

(iii) Pim)Im S, = dPim)[FART —RAT"]
=dP(m)[IART]— Pm)[HAI"]
=d[Pm)ITART — [Pm)R]A3T
=d[ -TART —RAT"]
= —Im S P(n) (Lemma 2)

Then (RS)* =ReS,—ImS, P(n)
But RS,=ReS,+ImS, P(n)
(Lemma 4) |

It follows:

ReS, =[RS, +{(RS)*172=oRS,)
Im §, P(n}=[RS; —(RS,)*1/2 = B(RS,)
ImS, = p(RS,)P(n

The assertion follows. ¥ ok

LEMMA 6

B(RS,) = B(RS ;) P(m)

iff ReW(m)-A_ - ImW(rY =0

(r.n)

Proof From the proof of Lemma 4 it is known that

RS, =d[RART + 3AZT + JART + RAT"]
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It follows:

P(m) RS,* P(n)

—dPm)[RART + IATT + TART + RAIT]P(n)

—d[RART + AT —FART —RAT"]

From where
1
ﬁ{RSA] - E{RSA — P {m}RSAP td)

=d{TART + RAT]
and

B(RS ) P(n) = d[SART + RATIT]- Pn)

=d[IART —RAT"]
This leads to

B(RS, ) = B(RS,)  P(n)

RASFT = —RAJT
1.,

ReW (m)-A,, .- ImW¥n) =0

(.10}
Property 2 Preservation of the Product
Sic=r Sad¢

RSAI: - p" RSA RSE

261
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Proof Only the Watari Spectrum will be considered. For the Zhang-
Watar spectrum the proof has the same structure.

Sic=p "TIWIm AC(WH1))'

=p~ "TIW(m) A(WHn)) p~ "Wm)C(W()'

=p "W AW () )W) C(W*())' ) p™*

=S, p"p " W C(WHD)T)

=p"S, S{.' %k
Property 3 Preservation of Inversion

Only the Watari Spectrum will be considered. For the Zhang-

Watari spectrum the proof has the same structuore.

S;= P_Zm{Sx]-l

RS, =p ™"(RS)!

Proof
S, = p™ A WOm) J(WHm)T
= p™ (W m)T) K (W)~
— p™ A (W) K(WH(m))”)
— P p™ W) K(WHm) )~

=p™"(5) !
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