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Abstract: In this work we investigate the problem of detection and location of single and
unlinked multiple k out of n pattern sensitive faults (PS(n, k) fault model) in n x 1 random-
access memories (RAMs). This fault model covers all crosstalks between any k cells in n x 1
RAMS. The problem of memory testing has been reduced to the problem of the generation
of (n, k — 1)-exhaustive backgrounds. We have obtained practical test lengths , for a memory
size around 1M, for detecting up to 6-couplings by exhaustive tests and up to 9-couplings by
near-exhaustive tests. The best known test algorithms up to now provide for the detection
of 5-couplings only in a 1M memory, using exhaustive tests. Beyond these parameters, test
lengths were impractical. Furthermore, our method for generation of (n, ¥ — 1)- exhaustive
backgrounds yields short test lengths giving rise to considerably shorter testing times than
the present most efficient tests for large n and k greater than 3. The systematic nature
of both our tests enables us to use a buslt-in self-test (BIST) scheme, for RAMs, with low

hardware overhead.

Key words: Memory testing, pattern sensitive faults, built-in self-test,
exhaustive codes, near-exhaustive codes.

Symbols and notations

The following notations are used in this text to denote faults :
e 1 denotes a write 1 operation to a cell containing a (
e | denotes a write 0 operation to a cell containing a 1;

¢ | denotes a write Z operation to a cell containning a x, x € (0, 1);

1This work was supported by the NSF under Grant MIP 9630096 and the NATO under Grant 910411




e < I/F > denotes a fault in a single cell, I desribes the condition for sensitizing the

fault and F describes the value of the faulty cell.

1 Introduction

In this work we describe a new method for Random Access Memory (RAM) testing based on
the PS(n,k) fault model. This model includes most classical fault models for SRAMs (Static
RAMs) and DRAMs (Dynamic RAMs).

The problem of memory testing for PS5¢n,k} faults has been reduced to the problem of
the generation of (n, kK — 1}-exhaustive backgrounds, where n is the size of the memory under
consideration and k& — 1 is a parameter from the fault model of the memory. A background
is defined as a memory state that 1s loaded into the memory.

A new method for constructing the background matrix B(n, k—1) with lesser mumber
of rows ( as compared to existing constructions ) for n of the order of a million, i.e. the
size of commonly used RAM chips, is described. . We also propose a construction for the
near-exhaustive background matrix B(n, k — 1, ¢) which can be applied for detection of all

PS{n, k) faults with a probability of at least 1 — .

1.1 Memory modeling and Functional Faults

A functional model of a RAM, typically used for functional testing, is the 3-block model.
The blocks are : address decoder, memory cell array and the read-write logic.

This fault model gives rise to the following classes of faults: [i]

1. Faults in which a single cell is involved: These are the stuck-at faults (SFs} and
transition faults (TFs). Transition faults cannot occur in DRAMs because the cells

are not implemented as bi-stable elements.
2. Faults in which two cells are involved: These are the coupling faults.

3. Faults involving % cells: These are considered typical for DRAM.




(a) Neighborhood Pattern Sensitive Faults (NPSFs)|1|: The k& cells are clus-
tered together in a physical neighborhood. There are three types of NPSFs:
Active, Passive and Static (ANPSFs, PNPSFs and SNPSFs).

(b) k-coupling fault : The k cells are allowed to be located anywhere in memory.
The k-coupling fault model is a generalization of the coupling fault mentioned
earlier. A set of k cells is said to be k-coupled when a write operation to one cell
(1 or 1) produces a change in the contents of a second cell, subject to a particular

data pattern in the remaining &-2 cells, which may be anywhere in the memory.

k-coupling faults cover ANPSFs and SNPSFs {neighborhood is not fixed).

1.2 Testing Strategies for RAMs

Due to miniaturization of RAMs, the types of faults have become more complex and the
emphasis now is on the detection of pattern sensitive faults {(PSFs). PSFs were first studied
by Hayes [2] and he observed that to obtain test sequences of practical length, we must
greatly restrict the set of PSFs under consideration. Though it is practically justified to
restrict the error behaviour associated with a particular cell to a well-defined neighborhood
of the cell, it is not easy to specify the neighborhood, since the scrambling table may not
be available to the designer. (The scrambling table describes the relationships between the
logical addresses and physical addresses of the memory cells.)

Thus, there is the need for efficient tests to detect NPSFs regardless of the address
mapping. The first step in this direction was the formulation of the k-coupling fault model by
Nair et al |3]. The 5-coupling fault model covers active NPSFs with a Type I neighborhood
[4] and the 9-coupling fault covers active NPSFs with Type II neighborhood [4]. Tests for
h/9-couplings cover active NPSFs and have to be used when the scrambling table is not
known. The latest results in deterministic tests for the detection of single k-coupling faults
in RAMs are by Cockburn and can be found in [5]. All the above tests were for bit-oriented
memories. Extension to word-oriented memory has been done in {6].

Probabilistic tests for detecting k-coupling faults were proposed by Cockburn [8]. He

suggested that effective probabilistic tests can be obtained by using random n X m matrices,




where m > 1. Savir et al. [7] have proposed two test strategies to detect coupled cells in
a n word by 1 bit RAM. In both strategies the data-in line is randomly driven. One of the
strategies uses random selection of both the address lines and the read/write control. The
other strategy sequentially cycles through the address space with deterministic setting of the

read/write control. Probabilistic tests for coupling faults have also been described in [16]

17].

1.3 Proposed Fault Model and Main Results

The fault model considered in this work is the &k out of n pattern sensitive fault model
PS{n, k), where n is the size of the memory under test. The PS(n, k) fault model is one
of the most general fault models which encompasses all the functional faults mentioned.
According to this model, the contents or the ability to change the contents of any memory
cell in a n-bit memory is influenced by the contents or change in the contents of any other
k — 1 cells of the memory.

A hierarchy of the functional faults covered by the PS(n, k) fault model is shown in

Figure 1.
PS(n,k)
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Figure 1: Hierarchy of Functional Faults Covered by PS(n k) Fault Model

bFor k < n and any &k , we have the k-coupling faults which cover all active NPSFs
(value of k¥ depends on the size of neighborhood ). TFs and SFs are covered by this model
for k=1. We note that the PS(n, k) fault model is slightly more general than the k-coupling
model, since it includes the case when the memory consists of (possibly overlapping) blocks
of size n (in this case n is smaller than the total size of the RAM) and crosstalks can occur
only between k& cells within the same block. This case was considered in [9]. In this paper
we do not impose any limitations on the locations of the cells involved in crosstalks and n is
equal to the total number of cells in the RAM.

This model covers all active and passive NPSFs (k=5 will cover Type I neighbor-
hood and £==9 will cover Type II neighborhood). We construct both exhaustive and near-
exhaustive tests for the detection of single k-coupling faults, using (n,k — 1)-exhaustive
backgrounds [5]. We have obtained practical test lengths, for a memory size around 1M,
for detecting up to 6-couplings by exhaustive tests and 9-couplings by near-exhaustive tests.
The best known results till date ( by Cockburn [8] ) is the detection of 5-couplings in a 1M
memory, using exhaustive tests. Cockburn’s algorithm is applicable for memories of any size.
However, beyond these parameters, the test lengths may not be practical.

Furthermore, our method for the generation of (n, k)-exhaustive backgrounds yields
much shorter tests than the tests generated by Tang and Chen [11] and used by Cockburn
[5]. As an example, our test length based on (1M, 4)-exhaustive backgrounds is 50% shorter
than the test used in [5].

We have also obtained practical test lengths, for a memory size around 1M to cover
up to 9-couplings using near-exhaustive tests. These tests have a fault coverage very close

{O one.




2 Exhaustive Tests

For the k-coupling fault model, each cell can be affected by a crosstalk with at most & — 1
other cells located anywhere in the memory. It will be shown in this chapter that the
problem of testing such memories can be reduced to the generation of (n,k — 1) exhaustive
backgrounds, where 7 is the size of the memory and % is the size of the neighborhood . The k
cells which form the neighborhood can be anywhere in the memory. A background is defined
as a memory state that is loaded into the memory.

Definition 2.2.1 We define an T}, x X n matrix B(n, k) over the set {0,1}. Let B; be any
Tnp X k submatrix of B(n, k). B(n, k) has the property that all B; submatrices contain all
the possible 2% binary row vectors. Th i 18 the smallest number of rows required to achieve
this property.

The rows of B(n, k) form (n,k)-exhaustive backgrounds.

Definition 2.2.3 We also define a matrix B'(n, k) such that:

ith row of B*(n, k) = ith row of B(n, k) & (i - 1)th row of B(n,k) i € (1,2,...,Tpz — 1)
The Oth row of B'(n, k) = 0th row of B{n, k).

Ezample 8.2.1 Consider n=3 and k=3. The corresponding (n, k — 1)-exhaustive backgrounds
is the matrix B(3,2). B(3,2) ans B'(3,2) are shown below:

B(3,2)

]
o = O O
= e

0
1
0
1
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[ s B e

- el D
L

Consider the following testing algorithm.

e The test backgrounds used are the rows of a B(n, & — 1) matrix which form (n, & — 1)-

exhaustive backgrounds.

e lor each background, perform the MARCH test. MARCH test is defined as a sequence

of operations to be performed on each cell. In our test, the sequence of operations is




Read, J, Read, . Let the addressing of the cells be in increasing order.

e The ith background is loaded as the modulo-two sum of the present background after
the MARCH test and the ith row of Bl(n,k—1),1 € (1,2, ..... , Tux—1). The all zero
background is the 0th row of B'(n, k —1). (This is equivalent to writing the ith row of
B(n, k—1) if there is no distortion of data in the memory after the MARCH elements).

o After the MARCH sequence on the last background, each cell is read.

Example 2.2.1 contd. For the matrices B(3,2) ans B'(3,2) the operations constituting
the test are :
Load the first background : 000 MARCH test for first background
Load the second background : 0009011  MARCH test for second background
Load the third background : 0115110 MARCH test for third background
Load the fourth background : 101011 MARCH test for fourth background
Final Read Sequence for all bits.

Backgrounds
MARCH elements || 000 | 011 | 101 | 110
r(ag) 000 | 011 | 101 | 110
w(&o} 100 | 111 | 0061 | 010
(@) 100 | 111 | 001 | Q10
w(&o) Qo0 | 011 | 101 | 110
r(a1) 000 | 011 { 101 | 110
w(ds) 010 | 001 | 111 | 100
r(a1) 010 | 001 | 111 | 1G0
w{a;) 000 | 011 | 101 [ 110
r{as) 000 | 011 ( 101 | 110
w{as) 001|010 | 100 | 111
r{ds) 001 | 010 | 100 | 111
w () 000 | 011 | 101 | 110

[ -
) .
1= s == comirctr wom W oeed st o A= T e, T TR DT W OO TR T W MY T B VAT ST LTI T RO PO T = 'i = . E : " e O L :‘E
1 i o . - S o




Table 1: Exhaustive Memory Testing Using B(3,2) And B!(3,2)

ag, a1 and a- are the cells of the memory

(The cells which are written or read at every step are underlined)

Proposition 2.2.1 All NPSFs { Active, Passive and Static) with the size of the neighborhood
equal to k and all £-couplings will be detected by the test algorithm defined.
Proof : Consider the following k-tuple of cells:

We define cells 7 and § to be the cells affected by crosstalk. Cell ¢ is the cell which
evokes the fault and cell 7 is the base cell which gets affected, if there is a fault. We also
define the contents of the remaining (k — 2) cells of the neighborhood, which is necessary to
evoke the fault, as the binary pattern P.

k-couplings : Since the test backgrounds are the rows of a B(n, k£ — 1) matrix, there
will be at least one background in which the & — 2 cells under consideration will contain
P, and the cell j contains either 0 { to evoke a T fault ) or 1 ( to evoke a | fault }. When
we perform Write operations on cell ¢, we are at background which evokes the crosstalk, so
either the 1 transition or the | transition will distort the contents of cell j.

Two cases can occur: If operations on cell 7 are done after cell ¢, the fault will be
detected during the MARCH element of the same background when cell 7 is read. On the
other hand, if operations on cell i come later, the fault will not be detected during that
MARCH test. However, the method of loading the next background will propogate the error
to the next background and it will be detected during the next MARCH test.

The proof is similar for ANPSFs since k-couplings cover ANPSFs. We note that
for the detection of inversion ANPSF, it is sufficient to use a B(n,k — 2) matrix. Write
operations to cell ¢ will erroneously invert the contents of cell j, irrespective of its contents,
when the remaining k-2 cells contain P.

PNPSFs: Either of the two [ operations of the MARCH element will provoke the
fault. Detection of the fault is similar to &-couplings.

Tests for ANPSFs and PNPSFs cover all SNPSFs [1]. Thus the proof is complete for
all NPS5Fs,

g S T T L § gy rr r—— e —— - -




We define “test length” to be the minimum number of Read/Write operations per-

formed in a test.
Proposition 2.2.2 There exists a test, detecting all single and unlinked multiple PS(n, k)
faults in a n bit memory, with the test length = n(57, ,—; + 1 ). For large memories, the
number of backgrounds (7}, x_1) > 1. Hence, the minimum test length ~ ondy, p—1.

Proof: For the test constituitng of MARCH tests for each row of (n, k — 1)-exhaustive
backgrounds, we have:

The number of operations during the MARCH test is equal to 4 per cell per background.

'The number of operations for loading a background is equal to 1 per cell per background.

The number of operations for the final Read is equal to 1 per cell.

The total number of operations is equal to 4nT,, ;1 + nTy 51 + 1.

In the matrix B'(n,k — 1), a matrix element of “1” denotes that the cell changes
state during the loading of the background whereas “0” denotes that the cell remains in the
same state. It follows from the results presented in [13] that if T'(n,k — 1) > logen, the
backgrounds can be arranged In such a way that the number of changes in data from one
background to another {ie the number of 1s in a row) is upper bounded by [n/2] . The
number of operations for loading a background will be reduced from nT, ;_; to [n/2]T, z—1
if we perform the Write operation only for those cells which change states. Thus, the test
length can be reduced to 9[n/2|T, x_1, if during the loading of a background, only those

cells which change states are written.

2.1 Construction of (n, k)-Exhaustive Backgrounds

In this section, we will introduce a construction for (n, k)-exhaustive background matrices,
that has fewer rows than published constructions, for large values of n. Several constructions
for (n, k)-exhaustive backgrounds and estimations on the number of rows, T, &, can be found
in [20], [21], [22] where these matrices are refered to as k-surjective arrays or k-independent

sets.




We will first construct a matrix M whose property is defined in Lemmae 2.1.1. Lemma
2.1.2 deals with the construction of (n, k}-exhaustive background matrices using M.
Definition 2.1.1 Let Py, Py, ..., Pr—; be different prime numbers with P, < P, < ... <
Pr_1. We defire an R x n matrix M = (my;), such that m;; = j (mod P;). P, is the prime
number associated with row 2.

We define M; to be any R x k (k < n) submatrix of M.
Definition 2.1.2: Consider any % columns of M : ji, 4, ..., .
0<n<jh...<nn-1
We define: Ay, ..., Jk) = [Ipsq(Jp — Jg) where p, g = (1,2,..., k)
Definition 2.1.3: A(n, k) = maz;,,. ;. & (G, .., 5k)
Remark 2.1.1: C(Consider an ordered set of { primes:
P= (PGJPIJ---:H—I)
Let X, denote the ordered set of residues of a number “m” evaluated on P.
X = (%o, %1,-..,%;—1) 1.e. z; = m mod P,.
By the Chinese Remainder Theorem, X, will be unique for any m € {0,...,L — 1} if
(M= P > L).
Example 2.1.1: Consider L = 5. P = (2,3) satisfies ([[; F; > L) then X, ..., X, should
be distinct. This is illustrated below.
Xo ¢ (0,0) X; & (1,1) Xz & (0,2) X3 < (1,0) Xy & (0,1)
Lemma 2.1.1: All submatrices M; of M will have at least one row in which all the matrix
elements are distinct if [[=;' P, > A(n, k).
Proof by contradiction: Let us assume that there exists a submatrix M, with & columns in
which there is no row where all the matrix elements are distinct. Let the columns in this
matrix be 71, ja,..., J%. For any row ¢ of M, there will be a repetition of matrix elements
in at least one pair of columns. The difference between these pair of columns must be a
multiple of F; by the definition of M. Therefore, the residue of A(4, 52, .. ., Jx) evaluated on
F; will be zero. This result holds for all <.
= Xatijege) = (0,0,...,0).

However, X, is also equal to (0,0,...,0).
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By Remark 2.1.1, since ([1;5' P, > A(n, k)), all numbers from 0 to (A(n, k) -1 should have
had unique X,,s. Hence, there is a contradiction.

We note that the inequality [[7' P > A(n, k) may be strengthened to [[Z' B >
C(k) - A{n, k) ; where C(k) = Cy(k)Cs(k) ... Cp{k) ; p is the largest prime number lesser
than F, and C; is a proper fraction resulting from the absence of the prime number F; in
the product of the primes. As an example when the prime number 2 is not present in the
product of the primes, the factors in A(n, k) cannot be 2 or a multiple of 2. The analytical

solutions for Cy(k) and C3(k) are given below :

—kik—2
27 1 for k even
Cg(k) — VTS 5
{ 2775 for k odd,
Cs(k) = 37%-3), 6

Remark 2.1.2 We have the following approximations for A{n, k) for k=3,4,5. The approx-

tmations tend to equality for n of the order of thousands.

e k=3 = A(n,3) ~ 1”’—_412
o k=4 = A(n,4) = 0.018(n — 1)°
o k=5 = A(n,5) ~ 3.3x1074(n — 1)1°

These values have been obtained by maximization using partial differentiation. These values
hold for ns of the order of thousands and are thus applicable here.

Example 2.3.1: Consider n=10 and k=3.

= A(10,3) = £=10 = 182.25

C(k) = Cy(k) =271

=15 P> 271 x 18225, P, =3

= R=3,Pr1 =7
-012012012{]—
M=|0123401234

0 1 2 3 4356 01 2
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The following Lemma gives the construction of B(n, k) matrix from M.
Lemma 2.3.2 If every matrix element m,; of M is replaced by the jth column of a (F;, k)-
exhaustive matrix B(P;, k), then the resulting matrix is a (n, k)-exhaustive matrix, B(n, k)
. The number of rows of B(n, k), Tpy is equal to Xy Tp. 1, where Tp, ; is the number of
rows in B(F;, k).

We will call matrices B(F;, k) (i = 0,..., R — 1} as seed matrices for B(n, k), where
M5 P > Ck) A (n, k).

2.2 Estimation of testing times

The test times for the tests corresponding to memories of size 64K, 256K, 1M, 4M and
16M are computed assuming a 10 MHz test vector application rate. In order to compare
the test times with Cockburn [5], we compute the test times for tests which detect active
faults only. For the active faults, the second Read operation in the MARCH element 1s not
necessary. Number of operations during the MARCH element is thus reduced to 3 per cell
per background. The resulting test length is 7[ 217, ;.

The following tables give the test lengths for different memory sizes, n and different
values of k. Time, are the test times given by Cockburn [5] and are given for comparison.
Time, for k=3 corresponds to the test times of the SACTEST and Time, for k=4 corre-
sponds to the test times of the S5CTEST {5].

n (c¢(3AMn3) | R | Pr_1|Ths Time Time, | Time—limey

» Time

64k | 3.27x10% [12| 41 1219 | 4.9secs - -

256k | 2.1x10% | 13| 43 | 246 | 22.05secs | 22.9secs 3.9
IM | 1.25x10Y |14 | 47 | 277 | 1.62mins | 1.9mins 17.3
4M | 8x10® |15 53 | 308 | 7.17mins | 8.34mins 16.3
16M | 512x10%° |16 | 59 | 340 | 31.68mins | 33.36mins 5.3

Table 2: Testing Times for 4-couplings
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n |cd) A(n,4) | R | Pg1| Thu Time Time, | ‘HRe_limeeQ
64k | 1.03x10% |19 73 | 1594 | 35.7secs - -
256k | 4.22 x10%° (20 79 |[1704 | 2.54mins | 3.28mins 29.0
IM | 1.5x10% | 22| 89 | 1924 | 11.23mins | 19.24mins 71.3
4M | 6.14 x10% | 24| 101 | 2144 | 50.02mins | 1.28hrs 53.5
16M | 2.52x 10" |26 | 107 | 2364 | 3.67hrs | 5.13hrs 40.0

Table 3: Testing Times for 5-couplings

n | COYAmD) | R|Pry| Tos | Time
64k | 2.64x10% [27| 109 | 11875 | 5mins
256k | 2.77 x 10*2 | 30| 131 | 14038 | 23.9mins
IM | 23x10% |[32| 139 | 15494 | 1.6hrs
AM | 2.4x10% |35 157 | 17678 | 7.85hrs
16M | 252 x 109 |38 173 | 20486 -

‘Table 4: Testing Times for 6-couplings

As one can see from Tables 2 and 3, for a 1M RAM our approach results in a 17.3%
savings in testing times for detection of 4-couplings and 71.3% for 5-couplings. Detections
of 6-couplings in a IM RAM with our approach requires 1.6 hours. In Tables 2,3 and 4, we
have assumed the access time for Read and Write operations to be 100 nsecs. Only these
two operations have been counted in the evaluation of test times.

The Tables 2 and 3 show that the saving in time peaks around 1M. The peak results
from the non-linear nature of our algorithm. Even beyond 16M, the benefits of our algorithm

will not fall off.
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3 Near-Exhaustive Probabilistic Tests

3.1 Survey of Probabilistic Tests

It has been shown in Section 2 that the problem of testing of memories, of size n and
each cell being affected by crosstalks with at most & — 1 other cells of the memory, can be
reduced to the generation of (n,k — 1)-exhaustive backgrounds. In this section we consider
c-exhaustive tests. e-Exhaustive tests are those tests which will detect all PS(n, k) faults
with a probability > (1 —e€). For e-exhaustive tests, we will construct (n, k — 1, €)-exhaustive
backgrounds instead of (n, k)-exhaustive backgrounds.

(n, k — 1, €)-exhaustive backgrounds is the matrix B(n,k—1,¢). B(n,k —1,¢€) has the
property that the fraction of (k — 1)-tuple of columus, not containing all the possible 25!
binary row vectors, does not exceed e. Thus B(n,k — 1,0) = B(n,k — 1). Let us define
Bj1 to be any submatrix of B(n, k — 1, ¢) having the same number of rows as B{n,k — 1, €)
and number of columns equal to (k — 1). Henceforth, we shall refer to a submatrix By
containing all possible 2°~! binary row vectors as a “good” Bj_;. All other By_; submatrices
will be refered to as a “bad” By_;.

It will be show below that the number of test backgrounds can be reduced substantially
if we allow a small fraction ¢ of all the possible combinations of k columns not to be tested
exhaustively. This effect holds even if ¢ approaches zero with the increase in n [14].

Chandra et al. considered the effectiveness of probabilistic methods for finding (n, k)-
exhaustive codes for k > 3 {15]. Cockburn [8] suggested that effective probabilistic tests for

detecting k-coupling feults can be obtained by basing the tests on random n x m matrices,

where m > 1. Other publications dealing with probabilistic tests for coupling faults are [16]
[17] .

3.2 Construction of e-Exhaustive tests

Let H(2%) be a matrix formed by the code words of a (2%, s}-simplex code as the rows, where
s > k [18]. This is the Hadamard matrix over {0,1}. The columns of the matrix H(2°) form

a s-dimensional linear space, with the vector of all zeroes deleted.
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Proposition 3.1 For any s > k and any e < n, there exists an e-exhaustive test with T}, ;.

backgrounds where n = a2°, Ty ;. = 2°%! (1 -€) = (1 - ¢,)(1 - €5), €, = 1 — (25 [T2(2° —

et w1 () (2 )
k k

The proof is given in [14].

One can use the following construction for the background matrix B(n, k, ) :

B{n,k,e) = | H(s) H(s)
o HE |
where, H(s) = 7(s) and H (s} is the negation of H(s).
Hs

Fractions of good submatrices Bysi.e (1 - ¢) for B(n, k, €), constructed by Proposition

3.1, are given in Table 5.

ks | 11 12 13 14
4 | 0.997 { 0.999 | 0.999 | 1.000
5 10.993 1 0.997 | 0.998 | 0.999
6 | 0.985 | 0.992 | 0.996 | 0.998
7 | 0.970 | 0.985 { 0.993 | 0.996
3 | 0.939 | 0.969 | 0.985 [ 0.992
9 | 0.881 | 0.931 | 0.969 [ 0.985

Table 5: {1 —¢) for n = 2!8 to n = 2%

The number of rows of B{n, k — 1,¢) is = T, x_1. = 257! and similar to (1), the test
length is 9|n/2|T,, t—1-

Test lengths and testing times for detection of PS{n, k) faults by MARCH Tests on
(n, k — 1, e)-exhaustive backgrounds for n = 2'® to n = 2%, for k-couplings with £ = 5,...,9

and a probability of detection of at least 99% are given in Tables 6 and 7. We also present in
H{s)

_ 1s replaced
H{s)

Tables 6 and 7 test lengths and testing times for the case when H (s) =

12




. H(s)
by Hp(s) = . (( )) where Hg(s) is obtained from H{s) by a random permutation of its
RS

columns. This approach results in the decrease of testing times but is rather difficult to imple-

ment for built-in self-testing of RAMS. In Tables 6 and 7, we assume an access time of 100ns.

k D i 7 8 9
Test Lengths 2.4x10° [ 4.8 x 10° | 9.6 x 10° | 1.9 x 10 | 3.8 x 101°
Test Lengths(random) || 1.2 x 10° | 2.4 x 10° | 4.8 x 10° | 4.8 x 10° | 9.6 x 1(*
Test Times 4mins 8mins 16mins 32mins 1.06hrs
Test Times(random) 2mins 4mins 8mins 8mins 16mins

Table 6: Testing Times for Detection of PS{n,k) Faults with ¢ = 0.01 and n = 215,

Test Lengths are calculated from Table 5. Test Lenghts(random) are the lengths obtained
using Hg(s).

k 5 6 7 8 9
Test Lengths 9.6 x 10° [ 1.9 x 10'% | 3.8 x 101° | 7.6 x 10*? | 1.5 x 10'!
Test Lengths(random) [ 4.8 x 10° | 9.6 x 10° | 1.9 x 10% | 1.9 x 10%° | 3.8 x 10"
Test, Times 16mins 32mins 1.06hrs 2.11hrs 4.17hrs
Test Times(random) 8mins 16mins 32mins 32mins 1.06hrs

Table 7: Testing Times for Detection of PS(n k) Faults with € = 0.01 and n = 2.

Test Lengths are calculated from Table 5. Test Lenghts{random) are the lengths obtained
using Hg(s).
One can see from Tables 6 and 7 that all PS(n,k) faults can be detected in a reasonable
time for n < 22° and k£ < 9 with a probability of at least 99%.
How bad is a bad By (k-tuple of columns of B(n,k,€))? A bad By does not have all the

2% binary row vectors, however it does have some of the k-bit binary row vectors and thus

16




will contribute to the fault coverage. The results of the study on the vertical concatenation
of two Hadamard matrices using negation (see Proposition 3.1) are shown below :

For two 2'% x 21° Hadamard matrices (s=13) and (k=6) we have:
Number of B submatrices = 900,000,  Number of good By = 893,128,
Number of bad Bg = 6,872.
216 of the bad Bg have 16 out of the 64 possible combinations. 6,656 of the bad Bg have 32
out of the 64 possible combinations.

Therefore, 1 — ¢, = 0.992 + u’ﬂzi + D‘TE’* = {1.996

For two 21° x 213 Hadamard matrices (s=13) and (k=8) we have:
Number of Bg submatrices = 900,000, Number of good Bg = 886,257,
Number of bad By = 13,743.
357 of the bad Bgs have 32 out of the 256 possible combinations. 4308 of the bad Bgs have
64 out of the 256 possible combinations. 9078 of the bad Bgs have 128 out of the 256 possible

combinations.

Therefore, 1 — e, = 0.985 + ”'31 + ”"fﬁ + D'ﬂgm = (0.991

For the simulation for k=6 and 8, random submatrices B; are chosen since the total

number of possible submatrices is too big. The results show that if the contribution of the

bad Bjs is included in the calculation of (1 — ¢,), as -umber of cambzigla,tiﬂns in bad B, ,
number of bad B,

~umber of total B, then the fraction 1 — ¢, increases considerably.
k

4 Design of BISTed RAMs

RAMs are often embedded in large integrated circuits which makes it difficult to access the
RAM inputs and outputs for testing purposes. The solution is to use a built-in-self-test
(BIST) scheme. BIST also has other advantages like the reduction of expensive external
test equipment and the possibilities of at-speed testing {19] [1]. In this section, we will discuss

BIST implementation for the exhaustive tests described in Section 2 and the near-exhaustive

17




tests described in Section 3.

4.1 System Architecture for BIST implementation of Exhaustive
Tests

The architecture of the proposed BIST RAM scheme is given in Figure 2. The n X 1 random
access memory to be tested is the block labeled - Memory Under Test. Multiplexers are used
to isolate the RAM from the external environment during the execution of the seli-test. The

internal details of the test generator are shown in Figure §.

Error

RIST_START

Figure 2: BIST Architecture for Exhaustive Testing

The location of the cell (or cells) which is faulfy is given by the address generated by
the Address Counter, for the RAM under test, at the time when the Error signal 1s set to
one. Each time the Error signal is set to one, the address of the faulty cell can be stored
and thus a black list of faulty cells generated. Once the faulty cells are located, the RAM

can be reconfigured to eliminate the faulty cells.
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Figure 3: Test Generator for Exhaustive Testing

The BIST controller controls the sequence of the operations involved in the BIST
using the internal status signals. This design has been done for ANPSFs and SNPSFs only.
To cover PNPSFs as well, the only modification needed is an extra state between S3 and Sy
which will correspond to the second Read operation in the MARCH element. The controller

behaviour is illustrated in detall in Figure 4.

Figure 4: Controller State Diagram for Exhaustive Testing
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4.2 System Arcitecture for BIST Implementation of Near-Exhaustive

Tests

The BIST scheme using the Hadamard matriz is much simpler than the previous scheme.
The sub-systems ROM and Address Generator for the ROM are not needed as there is no
storage of seeds. Instead, there has to be a sub-system to generate the Hadamard matrix on
the fly. One simple approach for the generation of the Hadamard matrix is based on the fact
that each entry in the Hadamard matrix is the scalar product of the binary representations
of its row and column numbers.

Hii(s) =<4, >=10Jo D 1uh1 D ... P is—17s-1,
where ¢ and § are s-bit binary numbers; ¢ stands for EXOR,;

1= (iﬂrilz . -:is—l):j = (jﬂ1j1: .- '*.rjs—l)-

T est {n)
? BIST _START
Address + Data + RW ‘ J‘ —
[F Wk
RwW!
LK
ROW AR
BIST 9
Control
Unit ROW _CLK
Test oL LR I
BIST_OVER Generator
Ermor
- —

I CLOCK_RAM
: ] -
T | |

Figure 5: BIST Architecture for e-Exhaustive Testing
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Figure 6: Test Generator for e-Exhaustive Testing

BST START=1
® BExckground Loading State BST_STARF-0 o o

@ March Test State

Add_Anm=1 and BIST_OVER-O

Dy O

Figure 7: Controller State Diagram for e-Exhaustive Testing

4.3 BIST Area Overheads

The BIST unit transistor counts and area estimations have been made by using View-
logic’s Powerview Toolkit to compile VHDL descriptions into standard cells designs. The
TimberWolfSC standard cell placement and global routing tool have been used to generate

the final physical design using a gates library.
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For the exhaustive testing approach we have chosen & = 5. The transistor overhead for
the BIST unit was 7,500 transistors in the control unit and 25,500 transistors in the ROM
which stores the seeds for the backgrounds. Assuming that an SRAM has 7 transistors per
cell, the hardware overhead in terms of transistors comes out to 0.47%. Even for a DRAM
with one transistor per cell and ignoring the overhead for refresh logic, the overhead is only
3.3%. In terms of area, the overhead is leass than 1% for an SRAM and 6.8% for DRAM.
Most of the overhead results from the ROM.

For the near-exhaustive testing approach we have chosen & = 9 and ¢ = 0.01. The
hardware overhead in terms of transistors was 2,600. This comes out to be 0.04% for an
SRAM and 1.5% for a DRAM. In terms of area, the overhead is less than 0.2% for an SRAM
and 1.5% for DRAM. The overheads are lower in the case of near-exhaustive tests as there
1s no necessity for the storage of seed matrices.

Most of the BIST circuit is independent of the size of the RAM. Thus, the larger the
RAM, the lower the BIST overhead as a percentage of the whole circuit.

5 Conclusion

In this work we considered the problem of detection and location of single and unlinked
multiple NPSFs { Active, Passive and Static) and couplings, with the size of the neighbor-
hood equal &, in n x 1 RAMs, for £=4.5.6,7,8.9 and n of the order 10° or 107. A fault model,
the PS(n, k) fault model, covering these faults was proposed. Then the problem was reduced
to the generation of exhaustive tests (k=4,5,6) and e~ezhaustive fests (k=7,8,9). In Table 12
we summarize test times for our construction and for the best previously known construc-
tions [5]. Our tests are labelled £-EXH or k-¢EXH depending on whether it is a exhaustive
or e-exhaustive test respectively. A 10 MHz test vector application rate is assumed and our

test times are computed for ANPSEs only to permit comparison with Cockburn’s tests [5].
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Author/Test 256K 1M iM 16M
Nair et al. 15.1s lmins 7.2 4mins 55.7s | 2lmins 30.2s
Papachristou & 11.4s 50.45 3mins 41.9s 16mins 8.0s
Sahgal

Suk & Reddy 2.6s 10.4s 41.7s 2mins 46.9s
Franklin & Saluja || 36mins 14.3s | 4hrs 28.5mins | 17hrs 54.2mins | 5d 2.2hrs
S2CTEST 0.3s 1.0s 4.2s 16.8s
S3CTEST 2.4s 10.3s 44.5s 3mins 11.3s
S3CTEST?2 2.6s 11.4s 49 1s 3mins 29.7s
S4CTEST 22.9s Imin 54.2¢ 8mins 20.4s | 33mins 21.4s
SSCTEST 3mins 16.7s | 19mins 14.3s | lhrs 17.0mins | Shrs 7.8mins
4-EXH 22.05s 1min 37.2s 7mins 10.2s | 31mins 40.8s
5-BEXH 2mins 32.4s | llmins 13.8s 50mins 1.2s | 3hrs 40mins
6-EXH 23mins 54s | 1lhrs 36mins 7Thrs 51mins

It can be seen from the comparison of test times that our test times are considerably

shorter than Cockburns (S4CTEST and S5CTEST). Furthermore, we have extended the tests
to 6-EXH which detects 6-couplings. 5-EXH like the SSCTEST has the convenient property

to roughly 10.

Table 8 Comparison of Test Times
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of being able to detect all NPSFs of Type I neighborhood regardless of the mapping from
logical cell addresses to physical cell locations. The table illustrates the penalty in increased
time that is paid for this. SCS5TEST takes roughly 111 times longer to test a 1 Mbit RAM
than Suk and Reddy’s near-optimal test which requires the knowledge of the mapping from
the logical cell addresses to physical cell locations. Our 5-EXH on the other hand takes
roughly 65 times longer to test a IM RAM than Suk and Reddy’s near optimal test. If each
cell can be assumed to have three rather than four nearest neighbors, then 4-EXH can be

used instead of 5-EXH. The test length penalty is then reduced, for a 1Mbit RAM, from 65




Test | Test lengths | Test {imes
7-<EXH | 3.8 x 10%° 1.06hrs
8-eEXH | 7.6 x 10 2.11hrs
9-¢eEXH [ 1.5 x 10! 4.17hrs

Table 9: Test Times for n = 2%% and ¢ < .01

Test times for detection of 7,8 and 9-couplings by near-exhaustive tests with a prob-
ability > 99% for a 1M RAM are given in Table 14. The fraction of undetected faults for
7—eEXH, 8—e¢EXH and 9—cEXH, ¢ is actually smaller than indicated if we take Into account
the contribution of the bad B submatrices. Test times and/or € can be further reduced by

performing another vertical concatenation using an independent random permutation of the

Hadamard matrix.

Finally, we have described a BIST scheme for our proposed test and have evaluated the
hardware area overhead. For a 1 Mbit memory, the BIST area overhead for the detection of
5-couplings is less than 1% for SRAM and 6.8% for a DRAM. For the detection of 9-couplings
with a probability > 99%, the BIST area overhead is less than 0.2% for SRAM and 1.5% for

DRAM.

6 Appendix

Seed Matrices used for the construction of exhaustive backgrounds :

o k=3

All the seed matrices are taken from the construction by Sloane [201.

e k=4

B(5, 4} : Optimal solution is obtained using the method of constant weight vectors [21].
B(7,4} and B(11,4) : Obtained using a heuristic-guided computer program [5]. The

B(11,4) seed is used for B(7,4} also.
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B(13,4) upto B(37,4) : Constructed using the deterministic algorithm given by Chan-
dra et al [15].
B(41, 4) upto B(107,4) : Constructed using the method based on MDS codes [22] with

the base matrix as B(11,4) matrix.

T Tn,-i T2 Tﬂﬂ Tt Tn},; i Tﬂﬁ Tl Tnﬁ n Tn,4 T Tn,4
>t 16 | 7 22 |11 ] 22 13 | 50 || 17 | 56 || 19| 56 [ 23| 76
29| 99 || 31| 103 | 37 (104 || 41 | 110 43 | 110 || 47 | 110 |[ 53 | 110
09 { 110 | 61 | 110 || 67 [ 110 || 71 | 110 f{ 73 | 110 | 79 | 110 || 83 | 110
83 | 110 f{ 97 | 110 § 101 | 110 | 103 [ 110 | 207 | 110
Table 10: Number of Rows 7, 4 in the Seed Matrices for k—4
k=5

B(5,5) and B(7,5): Optimal solution is obtained using the method of constant weight

vectors [21].

B(11,5) and B(13,5) : Obtained using a heuristic-guided computer program.
B(17,5) upto B(47,5) : Constructed using the iterative procedure given by Tang and

Chen [11].

B(53,5) upto B(61,5) : Constructed using the method based on MDS codes [22] with

the base matrix as B(8, 5) matrix.

B(67,5) upto B(113,5) : Constructed using the method based on MDS codes [22] with
the base matrix as B(11,5) matrix.

B(127,5) upto B(167,5) : Constructed using the method based on MDS codes [22]

with the base matrix as B(13,5) matrix.
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Ti Tnﬁ T Tnjﬁ Tt Tn,ﬁ i1 Tnﬁ T Tnﬁ TL Tnﬁ Th Tﬂ_:5
O |32 1 7 | 42 |11 | 101 || 13 [ 104 | 17 | 294 || 19 | 294 | 23 | 204
29 | 294 || 31 1294 | 37 | 294 || 41 | 294 || 43 | 204 || 47 | 204 || 53 | 399
09 [ 392 | 61 [392 | 67 | 707 | 71 {707 (| 73 | 707 || 79 | 707 || 83 | 707
89 | 707 || 97 | 707 || 101 | 707 || 103 | 707 || 107 | 707 {| 109 | 707 || 113 | 707
127 [ 728 | 131 | 728 | 137 | 728 ([ 139 | 728 || 149 | 728 || 151 | 728 || 157 | 728
163 | 728 || 167 | 728
Table 11: Number of Rows T, 5 in the Seed Matrices for k=5
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