TN IR LT N S B et T

L0607 G 3

Transparent Random Access Memory lesting for
- Pattern Sensitive Faults™

M. G. KARPOVSKY, Fellow, IEEE and V.N.YARMOLIK
Research Laboratory of Design and Testing of Computer Hardware

Department of Electrical, Computer and Systems Engineering
Boston University, Boston, MA 02215

Abstract: This paper presents a new methodology for RAM testing based on the
PS(n,k) fault model (the &k out of n pattern sensitive fault model). According to this
model the contents of any memory cell which belongs to an n-bit memory block, or
the ability to change the contents, is influenced by the contents of any k — 1 cells
from this block. The proposed methodology is a transparent BIST technique, which
can be efficiently combined with on-line error detection. This approach preserves the
‘nitial contents of the memory after the test and provides for a high fault coverage for
traditional fault and error models, as well as for pattern sensitive faults. This paper
includes the investigation of testing approaches based on transparent pseudoexhaustive
testing and its approximations by Jeterministic and pseudorandom circular tests. The
proposed methodology can be used for periodic and manufacturing testing and require
lower hardware and time overheads than the standard approaches.

Key words: random access memory, memory testing, transparent memory testing,
built-in self-test, pseudoexhaustive memory testing, pattern sensitive faults, signature
analysis.

1 Introduction

The increasing sizes of memory chips resulted in dramatically increasing test costs for
RAMs {1, 2]. There are several approaches to decrease a test cost while maintaining the
required reliability. One of the most attractive solutions is based on memory testing
methods which are available both for a manufacturer (manufacturing testing) and for a
user (periodic field testing) [1]. Periodic testing is useful for critical applications such as
nuclear plants, aerospace equipment, military electronics hardware, etc. In these cases
it is important to recover the memory contents at the end of a test session. Transparent
off-line testing avoids these drawbacks. It does not destroy the memory contents during
a test session and provides high fault coverage [3}.

*This work was supported by the NSF under Grant MIP9208487 and NATO under Grant 910411.

-mﬁmhﬁmﬁbﬂﬂﬁaﬂ“‘hﬂ AL Ty R i wew mb - A ”

Cost reduction for manufacturing and periodic testing can be achieved by built-in
self-test (BIST) [4]. There are several advantages of BIST. These include possibilities of
at-speed testing and reduction of expensive external test equipment [5, 6]. For periodic
testing, standard BIST cannot preserve initial contents of the RAM.

As the first step in development of a test for off-line RAM testing, a fault model rep-
resenting physical defects is constructed (7, 8]. Typically, the test procedure is intended
to detect all faults for the selected model (target faults).

With increasing densities, certain types of faults, such as neighborhood pattern
sensitive faults (NPSFs), which are harder to detect, are becoming more important
[9, 10, 11]. Active NPSFs (ANPSFs), Passive NPSFs {(PNPSFs) and Static NPSFs
(SNPSF's) have been considered in [10}. The actual choice of a neighborhood depends
largely on the technical realization of the memory chip.

On-line testing is the main tool that ensures high reliability during the operational
life time of the memory by employing on-chip error-detecting/correcting circuits. At
the first step of developing an error-correction and/or error-detection built-in circuit,
an error model representing failures that occur during normal operation 1s selected.
Built-in hardware is required to detect and for correct these target errors.

It is obvious, that target faults for off_line testing have the corresponding description
as target errors used for on-line testing and vice versa {12]. But nevertheless, tradition-
ally BIST for target faults (off-line testing) and error-cotrection circuits (on-line testing)
have not been combined to minimize hardware and time overheads. On-line and off-line
error detection techniques have been treated in isolation in the context of a system
design.

We present in this paper a methodology for RAM testing which combines off-line
and on-line approaches and can be used for periodic and manufacturing testing. for
the case of manufacturing testing, our methodology allows us to generate tesis with
complexities from O(N) up to O(N?). For periodic testing, our approach ensures the
preservation of the initial contents of the memory after test sessions and provides high
fault coverage for target faults. For different initial states of the block-under-test at
every test session, we have different backgrounds that provide high fault coverage for
non-target faults.)

We propose in this paper a unified approach for transparent memory BIST based
on the following general fault model. According to this model the contents of any cell
which belongs to a n-bit memory block, or ability to change the contents, is influenced
by the contents of any & — 1 cells of the bjock. These contents consist of a pattern of 0s
and 1s or changes in the patterns. We denote these faults as PS(n,k} faults.

One of the goals of this paper is to develop a unified approach for detecting PS(n,k)
faults. We will show that the proposed testing techniques provide high fault coverage
for existing memory fault models.

Specifically, in this paper the following problems will be investigated: (a) analysis
of the efficiency of the selected PS(n,k) fault model, (b) design of pseudoexhaustive
transparent tests for detection of PS(n,k) faults, (c) design of deterministic and pseu-
dorandom transparent circular tests for detection of these faults, (d) BIST RAM im-
plementations of the proposed tests, (¢) analysis of performance (hardware and time

2

e A T S T L W el S S R T T

overheads, error/fault detection probabilities, fault coverage) of the proposed periodic
and manufacturing memory tests, and (f) off-line utilization of error detection/correc-

tion memory circuits.

2 Fault Model

A good survey of the commonly used fault models for RAMs can be found in {10]. Here,
we review only the background required for understanding the proposed general fault
model.

By a simple fault we mean any single fault, which is not a pattern sensitive fault.
The following simple faults are frequently considered [10]:

e Stuck-at faults (SAF): A permanent stuck-at U or stuck-at 1 fault that may occur
in any memory cell. A celi? of the memory may be stuck-at 0 or stuck-at 1.

e Transition faults (TF): A memory cell ¢ in the state a; € {0,1} fails to undergo
an q; to @; transition when @ is to be written in the cell; however, both states are

possible for the cell, for instance, at power-on.

o Coupling idempotent faults (C'Fyq): A coupling idempotent fault is present from a
cell i to a cell 7 if, when the cells contain a particular pair of binary values a; and
a;, and @; is written into cell ¢, then cell j, as well as cell 2, changes state. These
faults are denoted as (1,0}, (1,1}, (4,0} aud ({,1) where T and | denote 0 to 1
and 1 to 0 transitions correspondingly.

o Coupling inversion faults (CFy): A single coupling inversion fault is present from
a cell 4 to a second cell j if, when cells ¢, 7 has values a; and a;, and @; is written
into cell 4, then the state of cell j is complemented or “toggled” with respect to
its previous value. These faults are denoted as {1, 1), ({,1) where] denotes 0 to
1 or 1 to 0 transitions.

The above coupling faults, which involves two cells (2-couplings), are a special case
of more general k-coupling faults. A k-coupling foult uses the same two cells as the 2-
coupling fault ard, in addition, only allows the fault to occur when another k — 2 cells
are in a certain state {13]-

A pattern sensitive fault (PSF) is the-most general memory fault model defined as
follows: the contents of cells, or the ability to change the contents, are influenced by
the contents of all other cells in the memory. These contents consists of a pattern of Os
and 1s, or changes in the patterns [10]. PSFs can be considered as the general case of
k-coupling faults, for the case when k = N (N is the size of the memory).

The common restriction on the class of PSFs is the size n of the neighborhood, and
the number k of cells involved in the fault [10}. For k =2 and n = N, the cell can be
influenced by any other cell. This is a case of the coupling faults [13, 14, 15]. For &
restricted k-coupling not linked {i.e. disjoint) fault, with k = 3 the test complexity is
N +32-N-logy N [13) or 36- N +24- N -log, N [19] operations. A family of efficient

3

deterministic tests for detecting k-coupling feults for k < 5, were recently described by
Cockburn [16, 17]. Pseudorandom tests for k-coupling faults were proposed by Savir in
[29]. These tests are less efficient for detecting simple faults (such as SAFs), and for
faults for which deterministic tests are rather easy to construct.

In summary, current memory BIST approaches have the following major drawbacks:
a low efficiency for detection of non-target faults, large hardware and time overheads, a
destructive (not transparent) test procedure, and a fixed (not flexible} testing procedure,
which usually generate only one or two test algorithms. These approaches are not
tailored for the most efficient combined utilization of on-line and off-line test circuitry.

As a realistic and general fault model we propose the k out of n pattern sensitive
fault (PS(n,k)), where n < N is a block (region, row or column of memory array) for
memory with the size N. According to this model, the contents of any memory cell
which belongs to an n-bit memory block, or ability to change the contents, is influenced
by the contents of any k— 1 cells in the same block. These contents consists of a pattern
of 0s and 1s or changes in the contents.

This PS(n,k) fault model does not depend on the realization of the memory chip
and can be considered as an extension of the existing fault models. Depending on the
values of k and n, PS(nk) generalizes the following cases considered in the literature:

1. For k£ = n = N, PS(n,k) represents PSF {10}, when the contents of a cell, or the
ability to change the contents, is influenced by the contents of ail other cells In

the memory.

9. For k < nn and n = N we have the case of the general k-coupling faults, when the
base cell is infiuenced by a group of £ — 1 cells which can be placed anywhere in

the memory.

3. For k =n < N PS(n,k) is reduced to NPSFs, where the base cell is infiuenced by
the k — 1 cells from the neighbourhood. In this case PS(nk) includes ANPSFs,

PNPSFs and SNPSFs.

4 The case when k < n and nn < N or n <€ N is the more common and realistic one,
when the contents of any memory cell which belongs to an n-bit memory block,
or ability to change the contents, is influenced by the contents of any k — 1 cells
of the same block.

The major goal of this paper is to develop a unified approach for detection of P5(n,k}
faults.

In the following sections we propose a unified methodology for memory testing based
on the PS{n,k) model and a pseudoexhaustive transparent memory test (PXT) for
detection of PS(n,k) faults. This PXT approach provides 1007 fault coverage for PSFs
with the complexity C - N where C depends on n and k only.

To reduce the overhead, two approximations to PXT are proposed. These approxi-
mations are based on deterministic and pseudorandom circular test sequences, which can
be used for transparent periodic and manufacturing testing and require lower overhead.

T B T4-4tre B Sk kLT Ll 4

"= T ey Py T e e W il

3 Pseudoexhaustive transparent memory testing

Pscudoexhaustive tests (PXT) [20, 21, 22] for combinational devices have several at-
tractive features. In this case, the testing procedure and its fault coverage are basically
dependent neither on the fault model assumed nor on the specific circuit under test. This
approach guarantees 100% coverage for all combinational faults. The major disadvan-
tage of PXT is related to the fact that this approach is efficient only for combinational
devices with outputs depending on a small number of inputs.

Denote by E(n,s) a set of n-bit binary vectors such that all 2° vectors appear at
any s positions in F(n,s). For example, E(3,2) = {000,011,101,110}. Techniques
for construction of E(n, s) and estimations on minimal numbers f(n,s) =| E(n,s) | of
pseudoexhaustive test patterns can be found in {20, 21, 22].

Some examples of pseudoexhaustive £{n, s) test patterns are shown in Table 1.

Table 1: Pseudoexhaustive test patterns E(n, s)

— m————
el -

"E(3,2) [B(4,2) [E(4,3) | E(5,2) [E(5,3) | E(6,2) | E(5,3)
000 | 0000 | 0000 | 11111 | 10000 | 000000 | 011111
011 0111 { 0011 | 10000 | 01000 | 000011 | 101111
101 1011 { 0110 | 01000 | 00100 { 011100 { 110111
110 1101 | 0101 | 00100 | 00010 | 101101 | 111011

1110 | 1100 | 00010 | 00001 | 110110 | 111101
1111 | 00001 | 01111 | 111011 | 111110

1010 10111 100000

1001 11011 010000

11101 001000

11110 000100

000010

000001

We will show in this section that PXT combined with standard March tests may be

very efficient for transparent memory testing for detection of PS(n k) faults.
The problem of pseudoexhaustive transparent memeory testing can be formulated as

construction of a test procedure for memory testing such that [10]:

Property 3.1 Each memory cell within & out of n cells in the block must be read in
state 0 and in state 1, for all possible changes in remaining k& — 1 cells.

Property 3.2 Each memory cell within k out of n cells must be written and read 1n
state 0 and in state 1, for all 25~ contents of the remaining in k — 1 cells.

These properties should be satisfied for any k cells in any block of n cells to ensure
P(n,k) detectability.

- "
IRLLE AT D i, i - — mm o v == s = = *

To simplify the test procedure we use the standard transparent march rest MATS+ .z
[10], which ensures I out of n exhaustive tests F(n,1} such that in evers 1 memory
cell all 2! possible binary values 0 and 1 appear at least once. We apply MATSH for
different backgrounds A(n,k — 1) which represent modulo two sums of f(n.k ~ 1) =
| £(n, k~1}| patterns of a pseudeexhaustive test, E(n, k—1}, with an initial n-bit memory
block content A. Transparent memory test algorithm MATS+- (one-bit version) can be
represented as [3]

{# [rla:). wl@)); r [r(a:), w(@)i}- (1)

The proposed test procedure PXT consists of the following main stages:

1. A new background 4;_;(n, k—1) is generated as a modulo two sum of the previous
value of Aj(n,k — 1) = AS Ej(n,k — 1) and AF;y = Ej(n.k—-1) € E;(n.k - 1).
As the result we will get a modulo two sum of the next pattern E;.;(n,k — 1) with an
initial n-bit memory block content (4;.,(n, k- 1) = A9 E;1(n, k- 1)).

2. The transparent MATS+ memory test algorithm is applied.

3. The itemns 1 and 2 are repeated for all f(n, k — 1} backgrounds.

For example, if £(3,2) = {000.011,101,110}, then A(3,2) = {ascias, @@,
Gy 82, Goly02} and for £(3,2) = {11111, 10000,01000, 00100, 00010, 00001} we will get
A(3, 2) = {80@1828304, Gol102830y, Qg1 A2030s, GoQ102a304, Q0Q1G2830y , Al A2G3Ty 3

As in [16], the PXT procedure based on pseudoexhaustive E{n, k — 1) test patterns
generate all 2° k-bit test patterns in each k cells for any block of 7 cells and all cells
within a & bits implement { (0 to 1) and L {1 to 0) transitions for all combinations of
the remaining & — 1 cells. This satisies Properties 3.1 and 3.2 which allows detection -
of all PS{n.k) faults. For different initial states 4 of the block-under-tes: at everv test |
session we have different backgrounds A;{n.k — 1) = A & Ej(n. &k — 1) which provides
high fault coverage. _ .

Two memory arrays are required for BIST implementation of the pseudoexhaustive - |
transparent memory testing: array, S5, for storing an initial content of the n-bit memory l
block-under-test, and array, E, for storing f(n.k — 1) by n-bit pseudoexhaustive test
patterns. {Arrays S and E, may be a part of the original memory-under-test).

The following simple procedure can be used for BIST, based on pseudoexhaustive
transparent memory testing. |

Procedure PXT

Input: Memory block size n;
Starting address w:
Loopl: Fort=0ion—~1Do
Write: [ﬂmﬂ'] Lo 8. } Store initial contents
E£nd Loopl:
Loop2: For j =0t f(n,k—1)—1 Do
Loop3: Fori=0twn—-1Do
Read: [2wi] to Dy and Compare with [5;] YLoad next background
Write: * [Da] S [€]] 1o ays;
End Loop3:

Loop4: Fori=0ton—1Do .

Read: (@y2n-1-i] to Dy and Compare with (Sp-1-i] © [6;';_1_;];

Vrite; [Dg] &1 to Qyen-1-i:

End Loop4:

Loopa: Fori=0ton—1Do MATS +
Read: [aw=i] to Dy and Compare with [s;] © el &1

Write: [Dn] &S 1 o Qyaq and to s;;

End Loopa:

End Loop?2:

Loopb:; Fori=0ton—1Do

Read: law-i] to Dy, and Compare with {s;] B L

Write: Do) © [E{{n'k_”ml{ﬂ,k —1)] t0 Gus estoring 1nitial contents
End Loopb:

Here D, is an additional D-flip-flop; [a;] means the content of the ith memory celi;
AE;(n, k — 1) = elele] .. e, i€e{0,1,2,....f(n,k—1) — 1} is determined by the
patterns E;(n, &k~ 1) and Ej-,(n,k — 1) of the pseudaexhaustne test E(n.k—1), where
AEy(n, k— 1} = Ep(n,k —1). and AE(n.k -1} = E(n,k~ 1} 2 B 1(11 k—-1),ce
(1,2,3,..., f(n,k =1} =1},

Pseudﬂemaustlve transparent memory testing procedure for the case of PS(3,3),
where k¥ = 3, n = 5, A = 00000 and backgrounds generated by the test E(3,2) (see
Table 1) is shown: in Table 2. {The bit we Read or Write at a given step of the procedure
is printed in bold in Table 2.}

In this case, first we write in the block of five 1-bit cells pseudoexhaustive pattern
11111 € E(5,2), next read rightmost bit ay, and write 0 in this cell. then read 1 in the
next bit a; and write 0 in this cell. After zeros are written in all five cells we read the
leftmost bit ag and write 1 in this cell. We repeat the procedure for all five cells of the
block, and. after this, we repeat the procedure for the next pseudoexhaustive pattern
10000 € E(5,2). This procedure ensures detectability of P5({3,3) faults. The complexity
of the above test algorithm depends on the complexity of MATS+ algorithm and the
value of f(n,k—1). For the total amount of Write and Read operations we have:

: (2)

where f(n,k — 1) depends on & and n. Table 3 presents upper bounds for f(n,3) for
n = 2¢ < 2% {23]. Table 4 presents some known exact values of f(n. k) for n < 14 and
k < 8 (23, 26, 27, 28},

A hardware implementation of BIST based on PXT requires n memory cells for 5
array storing an initial data in the block-under-test, nf{n, £ —1) cells for E-array storing
pseudoexhaustive backgrounds E(n,k — 1), two counters with {log, n| and {log, f(n,
k—1)] flip-flops, a [log, NV]-bit register, a [log, Vi- bit adder, [log, N (2x1) 'V[DXS and

5 finite state machine with 5 fip-Bops. Thus for the hardware overhead {in transistors)
we have

TPXT{n,k)}}=6n- f(n,k—1)+3n,

LIPXT(n, k)] = O(log, N ~logyn +nf(n, k — 1)) (3)

-

’me

Table 2: Pseudoexhaustive memory testing

March element MATS+ for Different Backgrounds

11111 | 10000

51000 | 00100

00010

00001

N

I

§ [T(a‘i): w(ﬁi)]

r{as)

w(@4)

11111
11110
11110
11100
11100
11000
11000
10000
10000

10000
10001
10001
10011
10011
10111
10111
11111
11111
0111l

01000
01001
01001
01011
01011
(1111
0111l
00111
00111
10111

06100
(0101
00101
00111
00111
00011
00011
01011
01011
11011

00010
00011
00011
00001
00001
00101
00101
01101
01101
11101

00001
06000
00000
00010
00010
00110
00110
01110
01110
11310

11110

01111
11111
11111
10111
10111
10011
10011
10001
10001
10000

10111
00111
00111
01111
01111
01011
01011
01001
01001
01000

11011
01011
01011
00011
00011
00111
00111
00101
00101
00100

11101
01101
01101
00101
00101
00001
00001
00011
00011
00010

11110
01110
01110
00110
00110
00010
00010
(0000
(00400
00001

Table 3: The values of £(1,3)

2°

25|28

2_11]

212

214]

218

T
F.3)] 8

17

32191

60

84 | 101

108

129

132

3 nr
T T R R T T I TR i T T s

Table 4: The values of f(n, k)

n k

Jz 3141 56 | 7] 8
4 I5]18 |16

5 |6l10]16] 32

6 1eli2i21] 32| 64
71lel12124] 42 | 64 | 128

g le|i2l24] 56 | 85 | 128 256
g 1611224 72 {120]170 | 256
oheli12]24] 90 | 165|240 | 341
11711224101 1213 330 496
12 171161241101 | 261 | 440 | 715
13711638 104309 |572 | 1001
1all7116152]118 357|728 | 1365

(This overhead may be further decreased if the part of the original memory is used
for storing S and E-arrays.) Hardware overhead in terms of numbers of transistors

required for BISTed CMOS SRAMSs are shown in Table 2

Table 5: Hardware overheads (in percentages) for BISTed CMOS SRAMs

n=>64
k=4|k=5|k=6

n=32 {
F=5|k=6

n—=16 “
k=4|k=5|k=ﬁ|

k=4

0.274

I 0.071

0.018

0.729
0.185
0.047

1,709
0.432
0.109

[0.400
0.103
| 0.026

1.265
0.321
0.031

2.932

0.740 | 0.173

0.186

0.681

0.051

2.332
0.589
0.148

5.481
1.382
0.347

Since f(n,3) < 7.5logyn [23] (see also Table 3}, we have

T[PXT(n,4)) <6 n- f(n, 3} +3n < 45 n - logy n + 3n. (4)
As we can see from (4) for the case n = N and k = 4 our approach has about the
same complexity as the known algorithms [16, 17] and detects all PS(n,k) faults without
destructing initial data in the memory. The required time (see Table 6) to perform PXT
for a 220-bit RAM and memory cycle time 50ns is about 47.3sec.
Pseudoexhaustive tests based on E(n,k — 1) for n = N (PXT(N,k)) detect all
PS(N,k). The complexity TIPXT(N,k)}is O(N -logo N) since

2%*-21og, N < f(N, k- 1) £ 251k — 1)(log, e)~! log, IV, (5)

9

T R L R T e B e e e e e ————a s T TR

Table 6: The complexity T[PXT(n,4)| in seconds

Size n of a block inbits | 20 [2 J 2 J 216 J 2B [220 [2% | 2%
T[PXT(n,4)](sec.) 0.01 { 0.09 | 0.49 | 2.12 [10.2 | 42.0 | 208.1 [907.9

for k£ fixed and N large enough [25, 26, 27].

We note that upper bound in (5) is not constructive. Construction for E(n, k — 1)
with a complexity close to this bound for small k£ can be found in [23, 26, 27, 28] (see
alsc Table 3 and 4).

Comparing pseudoexhaustive tests (PXTs) with pseudorandom tests proposed in [29],
we note that PXTs guarantee that the escape probability (probability of missing an er-
ror) is equal to zero for PS{nk) faults whereas for pseudorandom tests £ > 0 and
complexities of pseudorandom tests are higher than complexities of PXTs. For exam-
ple, for pseudorandom tests {29, 10] complexity of detection of 2-couplings is 90N for
unbiased tests and 74N for best weighted tests with ¢ = 0.001 [10] and for PXT with
g = 0 we have by (2) T(PXT{(N,2)) = 15N only, since f(N,2) = 2 for any N. For
3-couplings unbiased and weighted pseaudorandom tests require 404N and 362V oper-
ations for £ = 0.001 and for pseudoexhaustive tests with ¢ = 0 we have by (2) for
N =10° T(PXT(10% 3)) == 147N.

We note that complexity T(PXT(N, k)) (see (2, (5)) can be considerably reduced if
we replace pseudoexhaustive (IV, k—1) arrays E(N, k—1) by “almost pseudoexhaustive”
(N,k — 1) arrays {24]. For these arrays we require that a fraction of k — 1 tuples of
positions where all 2*~! appear will be at least 1 — ¢ for some small £ > 0. For example,
using the techniques developed in [24] one can construct an almost pseudoexhaustive
array for N = 2%,k — 1 =5 and ¢ = 0.01 with only 2'? test patterns. If we use this
array as E(2%°,5) we will be able to detect at least 99% of all 6-couplings for one test
session which will take 1,238sec. for a RAM with N = 2% and access time 50ns. To
increase fault coverage one can repeat these test sessions for different initial states of
the memory-under-test.

Thus, PXT based on E(N, k — 1) provides for detection of all k-coupling faults, as
well as all memory faults covered by the PS{N,k) fault model and its complexity is oaly
O(N -log, N). For n = N the length of pseudoexhaustive test patterns equals NV, which
make this approach a viable alternative only for external testing.

In the following section we describe a modification of the PXT approach which
results in a drastic reduction of length for pseudoexhaustive test patterns and the test
complexity but still preserves fault coverage for PS{n,k) fauits very close to 100%.

4 Test Session Organization

To simplify the test generation procedure for PXT we partition the original memory
into M = M(N, ¢,n) blocks with size ¢ > n. In this case, every test session consists of

10

M(N,q,n) elementary PXT sessions, where ¢ represents the size of the memory block
for one test session and n is the number of overlapped memory bits In two consecutive l

test sessions {see Fig. 1) to ensure pseudoexhaustive testing within any n-bit block of
the memory array.

azrory Amay

0 g 2{g-0] g-1 29--! 3q-2n-" | N-1
,—-T——#—_" e — — e ——————————————————
block 0 ; f‘ 1 ‘;‘ ‘f‘ :
n! |
blocki ! L‘ , " | t !
[1 ‘L |) 1 1
block2 l L« L J .
i 1 ! | [{ 1
I i 1 ; i | |
block M2 : ;
biock M-1 & -1 L

Figure 1: Timing diagram for the modified test procedure PAT for a l-dim. memory
array

For the case of a 2-dim. memory, the number of sessions is determined as

N N
| =—, (6)
gz qy gy

M(N:ﬁ}':ﬂmn‘y) = |-

where ¢ = (g, +n; g, +ny) and n = n ny. For this case, four consecutive PX'T sesstons
are shown in Fig. 2.

Memocy aray (N Duts)

session 1 5855100 2 $e55I00n 3 session 4

Figure 2: Timing diagram for a 2-dim. memory array

Then, by (2) we have for complexity T' = T[PXT(N, g, k)] of the modified PXT

TfPXT(N, g, k)] = M(N, q,nz, 1) T[PXT({gz + nz)(gy + ny), K)} =

16 (0 + o) gy + 1) S1(ge + o)y 1), k= 14300 +ma)g)l (D)

11

T T I T T T L T A R T T T L e

The hardware overhead for storage of f{(¢z + nz)(gy + ny), k — 1] pseudoexhaustive
patterns of length ¢ = (gz +nz)}(gy -+ n,} and initial block contents can be estimated as

L= (g +n.)(gy +ny) [F((ge +72)(gy + 1), & — 1) +1]- (8)

Equations (7) and (8) illustrate the tradeoff between testing time and overhead
for detection of PS(nk) faults. For a given n = ng7ny, an increase in the block size
g = (qz +nz)(gy+7y) results in a decrease of the test time T {(determined by (7)) and in
an increase in the overhead L (determined by (8)). It is easy to show that to minimize
T L, optimal values for n; and n, are gz and g,.

In this case for linear 1-dim. arrays, n; =nand ¢ = ¢z + Tz = 2n, M(N,2n,n} =
N/n. Then

T[PXT(N,q, k)] = % T[PXT(2n,K)] = (12- f(2n,k— 1) +6)-N. (9

For the case of a VN x vN 1-bit RAM with crosstalk within rows or columns
only, one can take as blocks rows and columns. Since ¢ = VN, n is 0 or 1, since
any lines (rows or columns) either do not intersect or intersect in one cell only, and

M(N,V/N,n) = 9v/N we have L = VN f(n, k- 1) ++/N and
TPXT(N,VN,k)} = 2VN T[PXT(VN,k)] = 12N - f(VN,k—1)+6N. (10)

For example, if k = 4, then by (4) f(VN,3) < 7.5log VN =3.751og, N and

L <375VNlog, N+ VN, T[PXT(N,VN,4)] < 45Nlog, N +6N. (11)

For N = 2% and access time 50 ns we have L < 171,008 bits and T' < 208.8 sec and

this test detects all PS{n,4) faults.
To detect all PS(n,k) faults within any 2-dim. block with the size n = nyn, we have

q::=q!f=nr=ny=‘\/ﬁr q=4n: and
N
M(N,"iﬂ,‘\/ﬁ,\/-) — ;*

Test complexity T[PXT(N, g, k)] for a 2-dim. memory is

TIPXT(N,q,k)] = -ii _ T[PXT(;-in, k)= (24- f(4n,k-1)+12)-N. (12}

For example, for n = 16, k = 4 for detection of PS(16,4) faults, since f{64,3) = 32
(see Table 3), we have by (12) T[PXT(N,16,4)] = (24 - f{64,3) +12) - N =780- N.
The required time to perform PXT fora N = 922 bit RAM and cycle time 50ns in this

case is 163.6sec.
' The hardware overhead for the above mentioned example of BISTed AMb RAM con-

sists of an extra (32x 64) memory F for storing f(64,3) = 32 by 64 bit pseudoexhaustive
patterns and 64-bit memory S, which is about 0.016% of the original array.

12

5 Transparent Circular Testing

A considerable reduction in overhead can be achieved by replacing PXT by a test with
a short test cycle, which does not depend on the mnitial memory contents.

The method consists of simulation of a deterministic circular test pattern generator
ont a block of the memory-under-test and it has a simple hardware implementation.

Let us assume that a memory-under-test contains V bits. We partition the original
memory into M = M(N, g,n) blocks with size ¢ > n, where n represents the number of
overlapped memory bits in two consecutive blocks. For every block we will organize ¢
(g < N) neighboring cells in the testing mode as a circular test pattern generator.

The test session for this approach consists of M subsessions as described in Section
4. The implementation of a subsession requires the following three main stages.

1. Compute the signature for the block-under-test initial confents.

2. The block-under-test with the size g operates as the deterministic circular test
pattern generator.

3. Compute the signature of the new contents of the memory block after stage 2 and
compare it with the signature computed at stage 1.

The faults manifesting themselves during intermediate Read and Write operations
would be detectable by the observation of distortions in final memory contents for the
case when only one coupling may ccur in the block. Since the length of the cycle does
not depend on an initial content of a block-under-test coupling, we only need to verify

the resulting memory contents.
For RAM with a built-in error-detection/correction circuit, stages 1 and 3 can be

avoided. In this case, a nonzero output (syndrome) of the error-detection/correction
circuitry indicates the presence of a fault.

5.1 Deterministic Circular Test Patterns

In this section, we will use a twisted ring counter which creates well-defined periodic
patterns [30] as a circular test pattern generator. A twisted ring counter is a circular
shift register with the complemented output of the last flip-flop connected to the input
of the first fip-fiop.

It is easy to show that the twisted ring counter with g stages has cycles with the
constant length 2¢ for any initial state iff g = 2¢%, ¢ =0,1,2,... [31].

The following simple procedure can be used to simulate a twisted ring counter over
a g-bit block of the memory-under-test. Here Dy and [, are the first and second stages
of an additional two stage shift register, SH; ¢ = 2° is the memory-under-test block size;
|a;] means the initial contents of the éth memory cell.

13

AR AN e ek B o e e e == - - - - -

Procedure TRC

Input: Memory block size ¢;
Starting address w;

Read: [Gwig-1] to Do;

Shift: SH;

Loopl: For j =1 to 2¢ Do

Read: |ay| to De;

Write: {D)) @1 to ay;

Shift: SR;

Loop2: Fori=1teg—2Do

Read: [aw+i] to Dy;

Write: [Dh] 10 auw;

Shift: SR;

End: Loop?2;

Write: [Di] t0 Guiq-1;

tind: Loopl;

In the above procedure, the Write and Shift operations In Loopl and Loop2 can be
accomplished simultaneously and do not need more than cne control signal. It should

be mentioned that we can start this procedure from any address w € {0,1,2,...,N—1}.
There are direct and inverse TRC procedures with opposite directions of simulated shifts

of the twisted ring counter. Complexity T = T{I'RC] of TRC for a block with ¢ cells is
equal to

T(TRC) = 4¢° — 29+ 2. (13)

Procedure TRC can be easily extended to a case of the word-oriented memory with
the size N = W x m, with the same test complexity determined by (13).

For any initial state of a ¢-bit block-under-test and for any E<gqg=2%(c=
0,1,2,...) the twisted ring counter algorithm provides for at least 2k different binary
codes at any k positions [31]. '

When we use the direct and inverse TRC procedures for the same memory block, all
simple faults are detectable (31]. For this case, the TRC transparent procedure consists

of the following steps.
1. Compute the signature of the memory contents A = (apa1Gz. .. Gg1) (S — A).

9. Simulation of 2g shifts for the direct TRC procedure.

3. Compute the signature S* of resulting memory contents and compare it with the
signature S of initial contents (S = S*7). If S = S, then repeat the steps 2 and
3 for inverse TRC procedure.

Every subsession of TRC transparent testing consists of the twisted ring counter
simulation (direct and inverse) and three stages of signature calculation. The total
complexity T = T[T RC(q)] of TRC transparent testing is

14

T[TRC(q)) =2T[TRC]+3¢ =8¢ - ¢+ 4 (14)

This approach provides high fault coverages for pattern-sensitive faults due to a high
probability of generating a large portion of all possible test patterns of length k < ¢
within any & memory cells [31].

Thus, the deterministic circular test has good fault coverage for pattern sensitive
faults PS(n,k) for a small size k of the neighborhood and a nonzero but decreasing
coverage for growing k.

The fault coverage for simple faults is 100%. All TFs, CFs and single SFs are
detectable [31]. Every single stuck-at fault cannot be detected during one session of
TRC procedure (direct or invers) for only one initial state of ¢ cells. For every initial
state there is a set of undetectable multiple stuck-at fauits.

If an initial state is equal, for example, to 0000 and we use direct TRC procedure
there are one single (a3 = 0), three double {{ay = 0,a3 = 0), (¢; = 0,a3 = 0) and
(az = 0,a3 = 0)), three triple ((ag = 0,a; = 0,43 = 0), (g = 0,a2 = 0,a3 = 0) and
(a; = 0,a; = 0,a; = 0)) and one fault with multiplicity four (ap =0,a; = 0,02, = 0,a3 =
0) which are undetectable. At the same time, for 0101 the set of undetectable faults
contains only two faults i.e. (a; =1,a,=0,a3 =1) and (gp = 0,8, =1,a, = 0,a3 =1).

It should be mentioned that if we use both direct and inverse TRC procedures,
all stuck-at faults with the multiplicity less than ¢ are detectable. For example, for
(@paiaza3) = 0000 the only stuck-at fault which is not detected by both direct and
inverse TRC procedures is the fault (ay = 0,4, = 0,a; = 0, a3 = 0} with multiplicity
four.

Probabilities P(I) of detection of multiple SF's for different multiplicities {, are shown
in Fig. 3. {All experimental results in Fig. 3 and 4 have been obtained for 10° randomly
chosen initial states A of the block under test.)

It follows from Fig. 3 that already for ¢ = 32 we have all 2* test vectors at any & bits
within any block-under-test for k < 5, which allows detection of 6-coupling faults and in
addition to this all multiple stuck-at faults with a multiplicity at most 24 are detected.
In this case for a bit-oriented 2%°-bit RAM with a cycle time 50nsec. and ¢ = 2n = 128
the required testing time is 107.3sec. (see formula (18) below) for 1-dim. and 429.4sec.

for 2-dim. memory (see formula (19}).

5.2 Pseudorandom Circular Test Patterns

Transparent testing of RAMs based on simulation of twisted ring counters on blocks
of ¢ cells (section 6.1) has a simple implementation and a low test complexity, but the
number, f(k), of different, combinations which are generated at any & bits in a block for
this approach depends on the initial state of the cells in the block. In the worst case for
one test session this number is equal to 2k, which may be not sufficient for detection
of PS(n,k) faults. To overcome this difficulty we will outline in this section another
approach which can provide for any f(k), (f{k) < 2%}, by increasing test complexity.
This approach will be based on simulation of LFSRs {32, 33] generating pseudorandom
(PSR) test patterns on a block of size g.

15

£1)

M

""""l:"'“"'i-—-1--*---*--*—--1--—'-'—--'—-#-***-—-'—'"l‘-‘----'*"'-""ba.,_‘
' " ..
\1 \ \ \
b
) »
1
h ! L]
1 1
LS *
-]
q=4 Q=8 L g=16 " Q=32
- v Y Y }
L 1
1 1
L] K
1 1 1
] L
1 1
| 1]
1 1
1 [§ ¥
|] L 1
L ! L %
1 L]
- [[1
' 1 1 L}
1]
1 bl I L 1 1 I i | L t] L 1 1 b"
4 B 12 16 20 -t 30

Figure 3: Probability P(I) of detection of multiple SE's for deterministic tests based on
simulation of g-bif twisted ring counter on g-bit blocks-under-tes

A major advantage of the pseudorandom testing as an approximation of pseudoex-
haustive testing is in the simplicity of its implementation. LFSR properties are deter-
mined by the characteristic polynomial ¢(z) = 19 52' @ £ & ... @ 8,29, where
B; € {0,1} for: =1,2,...,q. LFSRs have been widely used for generation of PSR test
Patterns and for compression of test responses [33, 34].

We will describe in this section a procedure PSR for transparent testing of RAMs
based on simulation of Q shifts of two LFSRs with generating polynomials ¢(z) =1 @
z'®z%and ¥(z) = 1Oz B on a memory block with g cells. (Polynomials ¢(z) and
¥(x) may be replaced by any pair of reciprocal polynomials. Selecting o(z) = 1®z! @z7
results in only one two-input XOR gate required for simulation, minimizes switching of
addresses and allows usage of a standard counter for address generation. Polynomials
p(z) and (z) are primitive for g =2,3,4, 6,7, 13,22,60,63,127,...).

If we use the polynomial and its reciprocal sequentially in one algorithm we will have
the possibility to return back to the initial state at the end of a test session.

The pseudorandom transparent memory. testing procedure consists of the following
main steps.

1. Compute the signature of an initial memory contents A = (@0@102. .. Gy} (S —
A).

2. Simulation of @ shifts for the LFSR generated by ¢(z) = 1®z'®z? which generates

the following sequence of internal states of the block A, a4, 0?4, . .. ,a% A, where
1eada?=0. -

16

3. Simulation of @ shifts of the LFSR generated by ¢¥(z) = 1 ® 29! ® z? which
generates a sequence oA, 0% 14 ... a4, A.

4. Compute the signature S* of the resulting memory contents and compare it with
the signature S of the initial contents. If $ = S then go to the next step.

Negate data in the block (A « A4).

o

. Repeat steps 2 and 3.
Negate data in the block (A4 < A).

0 - o

. Compute the signature S* of the resulting memory contents and compare it with
the signature S of initial contents.

We note, that with increase in @), the number of simulated shifts, the number f(k)
of different k-bit patterns appearing at any & cells of the block grows monotonically.
This results in the monotonic increase in the probability of detection of PS(n,k) faults.

The following simple procedure PSR can be used to simulate the LFSR, described by
o(z) = 1 ®z' B2 over g-bit memory block. We use the same notation as for procedure
TRC (see section 5.1).

Procedure PSR

Input: Memory block size g;
Starting address w;
Number of shifts Q;

Read: [awig-1] to Dy;

ohift: SR;

Loopl: Forj=1toQ Do

Read: [ﬂw] to Dﬂ.;

Write: [D)] @ [Do] to ay;

Shift: SR;

Loop2;: Fori=1tog—2 Do

Read: [ay4;] to Dy;

Write: [Dy] to a4

Shift: SR; .

End: Loop2;

Write: [Dy] 10 Guyiq-1;
End: Loopl; '

The Write and Shift operations in Loopl and Loop2 can be accomplished simulta-
neously and the complexity, I' = T[PSR]), of the simulation is

T[PSR] = 2¢Q ~ Q + 2. (15)

17

The complexity T' = T{PSR(q, Q)] of pseudorandom transparent testing which in-
cludes all stages of simulation and signature calculation for a memory block with the
size ¢ 1S

T[PSR(q,Q)] =8¢Q — 4Q + 8+ T7q. (16)

Test session organizations with overlapping blocks of ¢ cells and performance analysis
for pseudorandom fests based on PSR{q,Q) can be performed the same way as for
deterministic patterns generated by simulation of twisted ring counters.

For example, for a VN x /N 1-bit RAM with crosstalk limited to rows and columns
only, we can use a BIST realization of the pseudorandom test for g = +/N. In this case
blocks are rows and columns. Then, taking into account that a number of elementary
sessions M = 2v/N we have for the test complexity

T[PSR(N,Q)} = 2VN T[PSR(VN, Q)] = 16NQ + 14N — 8VNQ +16V'N, (17)

For example, for N = 2?2 and @ = 32 and cycle time 50ns we have T’ = 109.1sec.

The efficiency of the pseudorandom fransparent memory testing depends on the
value of @}. For the case of) = ¢ it is easy to show that any single stuck-at fault within
a g-bit memory block is masked only for one out of 27 possible initial states [32].

The number of different combinations, f(k), which are generated at any k bits within
a memory block does not depend on initial states of the cells. We can get a good
approximation to pseudoexhaustive testing by increasing the value of, ¢}, which provides
for any f(k),k <q.

As in the case of deterministic tests {see Section 5.1}, faults manifesting themselves
during intermediate Read and Write operations are detected by observation of distor-
tions in final states of the block-under-test.

Thus, pseudorandom circular tests have good fault coverage for pattern sensitive
faults for a small size neighborhood, k, and a nonzero but decreasing coverage for
growing k.

Aliasing probabilities P,; (probabilities of missing a fault) for C'Fy4 (T, 0), {1, 1), {,0)
and (},1) (see Section 2) are shown in Fig. 4. As we can see all CF's are detectable
with probability very close to 1 for §} > 8.

Fault coverage for single and multiple stuck-at faults for pseudorandom tests is the
same as for deterministic tests described in the previous subsection [32].

As it was shown in [32] by selecting ¢ = 32 and Q = 16 we have all 2¥ test vectors
for any k bits {k < 4) within the block-under-test and, in addition to this, the fault
coverage for 2-coupling faults is very close to 100%. For a bit-oriented 2%-bit RAM with
g = 2n = 2% Q = 32 and cycle time = 50 nsec. the required testing time is 107.2sec.
for a 1-dim. array (see formula (20) below) and 214.8sec. for 2 2-dim. array (see
formula (21)).

In general, TRC and PSR procedures have simple hardware implementations, low
test complexities and hlgh fault coverages for simple and pattern sensitive faults. ‘The

TRC procedure is very efficient for a BIST implementation with a constant testing time,

18

———*

which is equal to 4¢° — 2¢ + 2. The PSR procedure may be u_sed to obtain high fault
coverage by increasing test complexity {testing time).

o3
T
C=4
¢G5t -
:
| L
04 . C=3
[. o
Ny]
‘1.,:_;
- o
LT
q=32
0.2 “n .
e - -
-,
LT
r 1 hh:::::"::--""ﬁ-t--‘!
- - — -"-l_‘.__:‘_-.
i & = & 5 6 7 5 O+

Figure 4: Aliasing probability P,y for CFy, (1,0, (,1), {l,0) and (1,1} for pseudoran-
dom tests based on simulation of LFSRs on a g-bit block-under-test

6 Hardware Implementations

In this section we describe hardware implementations for procedure TRC based on
simulation of the twisted ring counter, over a g-bit{word) block of the memory-under-
test. Similar implementations can be used for procedure PSR based on simulation of a
g-bit LESR over a g¢-bit {(word) memory block.

The block diagram for the hardware implementation for a bit-oriented RAM with
transparent testing is shown in Fig. 3.

‘The hardware implementation of the circular tests (both for TRC and PSR proce-
dures) requires two(2m) flip-flops and one(m) XOR gates for the test pattern gener-
ator (TPG), one(m) multiplexer (MUX) for the mode control and one signature an-
alyzer (SA) per memory unit (m is the number of bits in a word). Counter modulo
[log; ¢], counter modulo {log, N], the adder and the multiplexer in the control unit
generate the address within a block-under-test. The finite state mashine (FSM) gen-
erates control signals corresponding to TRC or PSR. TRC generates test patterns for
one ¢-bit block-under-test. For a small ¢ and m = 1, the signature analvzer may be
replaced by a g¢-bit shift register and, for the general case, it consists of r-bit signature
analyzer, r-bit register and a comparator. In many cases one can take r = m.

The hardware implementation of the test controller for deterministic and pseudo-
random transparent testing depends on the size N of memory, as well as on the number
of cells ¢ within the memory block. As in the case of pseudoexhaustive testing (see

Section 3, formula (3) and Table 5) the complexity of a test controller can be estimated
as O(log, N} + O(log, q).

19

The RAM may operate in the normal computing mode and in the transparent self-
testing mode. Transparent periodic testing of the RAM is divided into M(N,q,n)

o1 Counter
IDEEN

Control Unit

Figure 5: Block diagram for transparent self-testing for a bit-oriented RAM

subsessions (see Section 4), where ¢ < N is the size of a block used for one subsession.
BEvery subsession consists of the following steps the sequences of which are determined
by the TRC or PSR transparent testing procedures.

}. Compute a signature for the initial state of the block of g cells. For small ¢ (sav,
g < 32) cell contents are written into a shift register (SA) (see Fig. 3) and for larger g,
SA is replaced by a primitive r-bit LFSR r < g. This stage requires ¢ memorv cvcles.

2. The block of ¢ memory cells operate as the twisted ring counter {direct or inverse)
or as the LFSR described by the polynomial o(z) =10z &z%or p{z) = 1619 527,
The T PG generates test patterns by simulation of TRC or PSR procedures:

3. Compute a signature of the new state of the block and compare it with the one
computed at step 1. For the RAM shown in Fig. 5 this step requires comparison of
contents of the memory block with contents of SA. This step requires ¢ ¢ycles.

For the complexity T[T RC(N, g, n)| of one test session we have in view of {14) for a
I-dim. memory and optimal value of g =2n

TITRC(N, 2n,n)] = M(N, 2n, n)T[TRC(2n,n)] = (320 — 2 + E]N, (18)

and for a 2-dim. memory with ¢ = 4n we have

T[TRC(N,4n, n..)] = M(N, 4n, n)T[TRC(én, n)] =(128n — 4 + %)N, (19)

20

For the complexity, T[PSR{N, g, n}], of one test session we have in view of (16) for
a 1-dim. memory

g8 4Q

T[PSR(N, 2n,n)] = M(N,2n,n)T[PSR(2n,Q)] = (16Q + p + 14)N, (20)
and for a 2-dim. memory
T{PSR(N, 4n,n)] = M(N, 4n,n)T[PSR(4n, Q)] = (32Q + -81; — %,Q' +28)N, (21)

where T[TRC(2n,n)], T[PSR(2n,Q)}], T[T RC(4n,n)} and T|PSR{4n, Q)] are the
complexities of TRC and PSR. The complexity, T{[TRC(N,¢,n)], is O(N) forn < N
and O(N?) for ¢ = N and M =1, (n = 0} as follows from (18). There is a possibility
of generating the test with the complexity O(N?), for the case when ¢ = N and using
TRC or PSR for all addresses w € {0,1,2,...,N -~ 1}, withn =¢— 1.

The hardware implementation of a transparent self-testing memory for a more com-
mon structure of a W word by m bit RAM requires m stages of the test pattern generator
T PG, an m-bit signature analyzer (M ISR), an m-bit register (R}, and a comparator.
In this case, ¢ words with m cells in a word are tested simultaneously in time due to
operating as m parallel deterministic or pseudorandom circular test pattern generators
(For word-oriented memories we assume as i [35] that couplings may appear only be-
tween bits in different words). As in the previous case, the self-testing procedure requires

M(N, g, n) subsessions and test complexities T[T RC(N, g, n)] and T[PSR(N, g, n)| are

determined by (18) and (20). The only difference is that during steps 1 and 2 the
compaction of the contents of ¢ memory words is implemented by a MISR.

An important feature of our approach is the ability to combine off-lire and on-line
testing. For the PSR procedure, we can use on-line circuitry for the response evaluation
and fault observation. In this case, we do not need to calculate and compare the
signatures [32, 35].

If for any codeword X, which belongs to the code used for on-line error detection,
the negation of the word X also belongs to the same code then there is the possibility of
using the on-line testing circuits (syndrome evaluators) for off-line testing with circular
test patterns, based on TRC, since for TRC, if X is an internal state of a g-bit block-
under-test, than X is also generated by TRC.

For the case of 1-dim. parity check codes and even m (X and X belongs to parity
check codes iff m is even) our approach (both TRC and PSR) has a simple hardware
implementation. During the off-line test mode, this hardware implements a transfor-
mation of the memory word contents within the parity code codewords. For a faulty
RAM, a memory word will be changed to a noncode word. A manifestation of any fault
through the cyclic test pattern application can be detected in the Read mode by the
on-line parity check circuit. |

Thas, if the RAM has an on-line test circuit, it can be used for the off-line transparent
self-testing procedure and allow us to reduce hardware and time overheads for BIST. For

21

.

the case of parity check codes, there is one extra column for the parity and an additional
circuit for on-line testing. To implement the transparent off-line circular test pattern,
we have to generate, in parallel, the circular test patterns for all columns of the RAM.
The circular test patterns are generated for information columns only. Check bits will
be generated by the Encoder and the output response will be analyzed by the Decoder
of the corresponding code. For a RAM with the on-line testing capability we do not
need an m-bit MISRE or m-bit register and comparator, which simplifies the hardware

implementation.

7 Conclusions

In this paper we have presented unified approach for memory testing based on PS(n,k}
fault model and pseudoexhaustive transparent memory testing and and deterministic
pseudorandom circular tests. It was shown that proposed test procedures have high
fault coverages for simple faults, as well as for pattern sensitive faults.
Pseudoexhaustive testing provides for a high fault coverage compared with a circular
testing. At the same time, it requires more hardware for storage of pseudoexhaustive
patterns. Circular memory testing, (TRC and PSR}, require low hardware overheads for
BIST implementations and provides relatively high fauit coverage. For pseudorandom
circular testing, fault coverage grows with an increase in testing time. It was shown also
that BIST implementations of circular memory testing have some attractive features,
such as combined utilization of on-line and off-line circuitry, low hardware and time

overheads and non-destructive off-line testing.

Acknowledgment

The authors wish to thank Prof. Lev B. Levitin and Ms. D.Das of the Boston University,
Boston, the reviewers and the editor for the valuable comments.

References

[1] T.Yamada, A.Fujiwara, and M.Inoue “COM (Cost Oriented Memory) Testing”,
Proceedings International Test Conference, Baltimore, September 1992, p. 259.

(2] A.Tuszynski “Memory Chip Test Economics”, Proceedings International Test Con-
ference, Washington, September 1986, pp. 190-194.

(3] M.Nicolaidis “Transparent BIST for RAMs”, Proceedings International Test Con-
ference, Baltimore, September 1992, pp. 598-607.

[4] S.K.Jain and S.H.Stroud “Built-In Self-Testing of Embedded Memories”, IEEE
Design and Test of Computer,Vol. 3, No. 5, October 1986, pp. 27-37.

22

[5] Y.Zorian and V.K.Agarwal “On improving the effectiveness of the standard BIST
approach”, Proceedings 6th International Conference Custom and Semicustom ICs
, November 1986.

[6] K.T.Le and K.K.Saluja “A Novel Approach for Testing Memories Using a Built-in
Self Testing Technique”, Proceedings International Test Conference, Washington,
September 1986, pp. 830-838.

[7) R.Dekker, F.Beenker and L.Thijssen “Fault Modeling and Test Algorithm Devel-
opment for Static Random Access Memories”, Proceedings International Test Con-
ference, Washington, September 1988, pp. 343-352.

[8] S.Nair, F.Agricola and W.Maly “Failure Analysis of High-Density CMOS SRAMs”,
IEEE Design and Test of Computer, Vol. 10, No. 2, June 1993, pp.13-23.

9] A.J. Van de Goor and C.A.Verruijt “An overview of deterministic functional RAM
chip testing”, ACM Computing Surveys, Vol. 22, No. 1, March, 1990.

(10] A.J. Van de Goor “Testing Semiconductor Memories, Theory and Practice”, John
Wiley and Sons, Chichester, 1991.

[11} J.P.Hayes “Detection of Pattern-Sensitive Faults in Random-Access Memories”,
IEEE Transactions on Computers, Vol. -24, No. 2, 1975, pp. 150-157.

[12] V.N.Yarmolik and M.Nicolaidis “Exact Aliasing Computation And/Or Aliasing free
design for RAM BIST”, Proceedings of Workshop on Memory Testing, San Jose,
August 1993.

[13] C.Nair, S.M.Thatte and J.A.Abraham “Efficient Algorithms for Testing Semicon-
ductor Random-Access Memories”, IEEE Transactions on Computers, Vol. C-27,
June 1978, pp. 572-576.

[14] D.S.Suk and S.M.Reddy “A March Test for Functional Faults in Semiconductor
Random-Access Memories”, IEEE Transactions on Computers, Vol. C-30, No. 12,
1981, pp. 982-985.

[15] M.Marinescu “Simple and efficient algorithm for functional RAM testing”, Pro-
ceedings International Test Conference, 1982, pp. 236-239.

[16] B.F.Cockburn “Deterministic Tests for Detecting Single V-Coupling Faults in
RAMSs”, Journal of Electronic Testing: Theory and Applications, Vol. 5, 1994,
pp. 91-113. |

(17] B.F.Cockburn “A Transparent Built-In Self-Test Scheme for Detecting Single V-
Coupling Faults in RAMs”, IEEE International Workshop on Memory Technology
Design and Testing, August 8-9, 1994, San Jose, CA, pp. 119-124.

[18] J.Savir et. al. “Testing for Coupled Cells in Random-Access Memories” , Proceed-
ings International Test Conference, Washington, September, 1989, pp. 439-451.

23

{19] C.A.Papachristou and N.B.Saghal “An Improved Method for Detecting Functional
Faults in Random-Access Memories”, IEEE Transactions on Computers, Vol. C-34,
No. 2, 1985, pp. 110-116.

[20] Z.Barzilai, D.Coppersmith and A.Rosenberg “Exhaustive Generation of Bit Pattern
with with Application to VLSI Self-Testing” , IEEE Transactions on Computers,
Vol. C-31, No. 2, 1983, pp. 150-194.

21] D.T.Tang and C.L.Chen “Iterative Exhaustive Pattern Generation for Logic Test-
ing” , IBM J. Res. Develop., Vol. 28, No. 2, 1984, pp. 212-218.

{22] G.Cohen, M.Karpovsky and L.Levitin “Exhaustive Testing of Circuits with Out-
puts Depending on Limited Number of Inputs” , JEEE International Information
Workshop , Caesarea, 1984.

23] N.J.A.Sloane “Covering Arrays and Intersecting Codes”, J. Combinatorial Design,
Vol. 1, Ne. 1, 1993, pp. 51-64.

[24] L.B.Levitin and M.G.Karpovsky “Exhaustive Testing of Almost All Devices with
Qutputs Depending on Limited Number of Inputs”, Open Systems & Information
Dynamics, Vol. 2, No. 3, 1994, pp. 1-16.

25] G.Cohen, P.Godlewski and M. G. Karpovsky “Exhaustive Testing of Combinatorial
Circuits”, Traitement du signal, revue scientifigue francaise publiee par le GRETSI,
Vol. 1, No. 2-2, 1984, pp. 224-226.

[26] N.Alon “Explicit Construction of Exponential Sized Families of k-independent
sets”, Discrete Math., Vol. 58, 1986, pp. 191-193.

[27} P.Busschbach “Constructive Methods to Solve the Problem of: s-surjectivity, con-
flict resolution, coding in defective memories” Tech. Rep. 8{D005, Ecole Nationale

Supertieure des Telecom., Desember, 1984.

(28] D.T.Tang and C.L.Woo “Exhaustive Test Pattern Generation with Constant
Weight Vectors”, IEEE Transactions on Computers, Vol. C-22, No. 12, 1983, pp.
1145-1150.

[29] J.Savir, W.H.McAnney and S.R.Vecchio “Testing for Coupled Cells in Random-
Access Memories” Proceedings International Test Conference, Washington, August
1989, pp. 439-451.

[30] W.Bleickardt “Multimoding and Its Suppression in Twisted Ring Counters”, The
Bell System Technical Journal, November, 1968, pp. 2029-2050.

[31] M.G.Karpovsky and V.N.Yarmolik “Iransparent Memory BIST”, IEEE Inierna-
tional Workshop on Memory Technology Design and Testing, August 8-9, 1994, San
Jose, CA, pp. 106-111.

24

[32) M.G.Karpovsky, V.N.Yarmolik “Transparent Memory Testing for Pattern Sensitive
Faults”, Proceedings International Test Conference, Washington, October 1994,
pp.368-377.

[33] P.H.Bardell, W.H.McAnney, J.Savir “Built-in Test for VLSI: Pseudorandom Tech-
nigues”, John Wiley and Sons, New York, 1987.

[34] J.Savir, W.H.McAnney “A Multiple Seed Linear Feedback Shift Register”, Pro-
ceedings International Test Conference, Washington, September 1990, pp.657-659.

[35] M.Nicolaidis “Efficient UBIST for RAMs®, VLSI Test Symposium, April 1994,
pp-158-166.

[36] M.G.Karpovsky, V.N.Yarmolik, A.J. van de Goor “Pseudoexhaustive Word-
Oriented DRAM Testing”, Proceedings European Test Conference, March 1995.

25

