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Abstract: This paper presents test sets, testa-
bility measures and attainable lower and upper
bounds for numbers of test patterns for several
important classes of networks for testing methods
providing massive observability.

1 Introduction

New test techniques have recently been developed
that provide visibility, either virtually or directly,
to the logic node or even the electrical node level,
which ensure massive observability in a circuit-
under-test. Such techniques are referred to as in-
ternal access tesl methods. One of the most at-
tractive techniques among the internal access test
methods is monitoring of the quiescent power sup-
ply current {44, testing) for static CMOS circult
[4]. In the following sections we will considere Fy4,
testing only since the results may be easily mods-
fied for other internal access test methods {31. 4,
testing is slow. Typically, less than 1,000 test pat-
terns for Iz4, testing can be applied. Thus, the
problem of generation of short (minimal) tests is
very important for Iz4, testing.

2  Fault Model

In this paper we will concentrate our investigation
on bridging faulis (BFs) as the most commeon fault
model covering physical defects in CMOS cireuits.
(5, 6].

Detection of bridging faults between logic nodes
in CMOS circuits by J44, testing have been inves-
tigated by several authors [3, 5, 6, 7, 8.
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Stuck-at faults can be represented as BFs be-
tween the logic node and V3 and V,, nodes. Thus,
BF's can be considered as the universal fault model,
which cover stuck-at faults, as well as several pre-
viously intractable or types of faults [3, 8, 9].

The number P of BFs for a circuit with N logic
nodes is given by

P:Qh} ( f; ) = (N2+3N)/2. (1)

This number includes AND and OR types BFs
between any two logic nodes, V34 and V;, nodes.
The conditions for bridge detectability by 4,

testing have been investigated by several authors
[5, 1, 3, 10].

3 Test Matrices

For a iest with T test patterns for a given network
with m inputs and N nodes we denote by H; the
(' x m) input matriz, where rows of Hy are test
patterns and by H the (T x N) test mairiz, where
ith row of H represents logical values at all nodes
of the network for ith test pattern (1 =1,...,T).

Theorem 3.1 All BFs of the circuil-under-lest
are detectable iff all columns in a test matriz, H,
are different and not equal to all ones or all zeros,
where a row in, H, represents an input test patlern
end the responses on infernal and oulput nodes. [

The number of rows, T, in a test matrmx, H,
determines the I, test complexity.

Theorem 3.2 The Iz, test complexily, T, for
detecting all BFs for a nonredundant circuil wilh
m tapul, p internal and n output nodes, sofisfies
the following tnequalities




loga(m+p+n+2)] <T < I'lﬂgz(m+?)1+z}+(;5

where N =n+m+p.

We note that lower and upper bounds (2) given
by Theorem 3.2 are attainable. The lower bound
is attained for the case of one gate with N — 1

inputs and the upper bound for the case of a two-
level AND-OR, networks with orthogonal product
terms.

According to Theorem 3.2, test complexity for
detection of all P = (N*?+3N)/2 BFs satisfies the

inequality T < N

4 Fault Coverages

Denote by h; = (hi1,---, hin) the ith row, (i €
{1,2,...,T}) of test matrix, H, and by w; €
{0,1,2,..., N} the row weight (number of 1’s) in
h;. We note that h; is generated by the ith test
pattern. Then, the number, M;, of BFs which are
detected by the ith test pattern is
M; = N 4 wi(N — w;). (3)
The minimal number, M,;,, of BFs detected
by a test pattern is ¥ and the maximal, M.z,
is N + [N/2](N — [N/2]) = (N? + 4N)/4. An
average value of M for uniformly distributed 5; 1s
determined by

Ma = N'}'[(NE_N]/EQ

~ {N®+3N)/4. (4)

The fraction of BFs that are detected by i ran-

For the testability measure C(z2;, 2;) for any two
nodes z; and z; we have

0 < C(z,23) € 1, Cnin(zi, z3) = |p(2:) — p(25)]
Cmu:‘:(zii z;.r') =1- ip(i'i) — p(g)lr (5)

where p(z;) = p(z; = 1) is a signal probability of
node z;, which could be determined, for example,
by the cutting algerithm.

It should he mentioned that for practical cases
it is too difficult to determine the exact values of
C(z;, z;) for all (25, 2;). As a more realistic and
practical approach to evaluate testability we pro-
pose to use an average value of C'(z;, z;) which is
determined by signal probabilities p(z;) and p(z;)
of two nodes 2; and z; as

C*(z:, 2;) = plz:)p(E7) + p{z)p(25),  (6)

where p(Zj} = 1 — p(%;).

It is easy to show that C*(z;, z;) defined by (6)
equals to C(z;, z;) for the case of independent ran-
dom variables z; and z; and is a good approxima-
tion of C(z;, ;) for the general case. Then by (5)

Crin(zi,2;) € C7(7, z7) £ Crmaz(2i, %), (7)

If p(2;) = 1/2, then for any p(z;) testability mea-
sure Cay(zi,2;) = 172, for p(2;) = 1, C(1,2;) =
1 — p(z;), and for p(z;) = 0, C(0, ;) = p(z;)-

A mathematical expectation for the number of

test patterns can be determined as a minimal T
such that:

S0 -0t ) >

>4

Ja-ro, @

where FC is the fault caverage for BFs.

domly selected test patterns has the mean value The complexity of computing test lengths by is

1-—2-%,

5 Testability Measures

As a measure C(z;, z;) of testability of a BF be-
tween nodes z; and z; we propose the probability
of setting these nodes z; and z; to the opposite val-
ues, i.e. C(2;, 25) = p(2z:®z; = 1} by one randomly
chosen test pattern. For BFs between logic node z;
and Vs and V,, we have C(1, %) = p(1®z = 1) =
zi=1) and C(0,z) =p(0 &z = 1) =p(z: = 1).
High values (close to 1} of testability C(z;, 2z;) in-
dicate a good testability of the BF between the
nodes z; and z;.

of the order O(N?). To simplify the computations
we will estimate the average value C for (2, z;).
By (6) and (7) we have

( {j )-1 > C* (i, %)

3]
N
2

where No = S pi and Ny = N — Ny.

Thus R = NgN; _Zf; pi{1—pi) can be used as
a global testability measure for the whole device-
under-test. The complexity of computing this

-1
) {NUNI — ZP;(I — Pi)): (9)




measure is O(N) only. Substituting (9) in (8) we
have

N )_IR))*L

(10)
For example, for the 8AND gate implemented as
the tree of 2AND gates and as the 1 dim array
of 2AND gates we have for testability measure
Ripee = 47.78, R14im = 44.81 and Tiree = 7.7 and
TNdaim = 8.4. (Minimal numbers of test patterns
for these networks are 6 and 9 correspondingly.)

T = (loga(1 ~ FCO))(oga(1— (

6 Test Pattern Generation
and Test Complexities

6.1 Input/Output Test Sets

The fact that Ij4, testing provides for a good ob-
servability implies that for every BF the number
of test vectors detecting this fault will be rather
high. Some evidence for the above conjecture was
presented in {2, 10, 11, 13, 14}, We will prove this
result for several important classes of networks.

Let us consider test sets for input-output (10)
BFs. In this case for the first ¢ = [log,(m + 2})]
rows of test matrix H the ith column correspond-
ing to input variable z; is the binary representation
of i, (i = 1,...,m). If column F,(f = 1,...,n)
is equal to the column, corresponding x; or to the
calurnn of all zeros or all ones, then H includes
an additional row generated by a test pattern such
that Fi(z31,...,2m) D zi = L.

For primitive m-input gates (AND, OR, NAND

and NOR)
T = log, m+2; m=2*
— 1 [logeml+1; m#£2%, kE=1,2,....

For m-bit adder the IO test set consists of

T = [log, m] +3 (11)

test patterns, presented in Table 1 for m = 8§,
where 2 = X 4+ Y.

The optimal test set for m = 2F.bit multiplier
has complexity T' = k + 3. The test set for the
4-bit multiplier is also shown in Table 1.

6.2 Test Sets for Arrays of Discon-
nected Combinational Networks

For the case of an array of disconnected identical
combinational networks (for example an array of

Table 1: Test sets for 8-bit adders and 4-bit mul-

tipliers
Z=X+Y
X Y Z
00009000 | 00000000 | 00000000
11111111 | 0Q000GOO ; 11111111
00000000 | 11131111 § 11111111
11110000 | 11130000 | 41121000
11001100 | 11001100 | 01100110
10101010 | 10101010 | 01010101
Z=X-Y
X Y Z
0001 | 0111 | 00001110
1110 | 1000 | 11100000
1100 | GO11 | GO10016G0
1010 | 6110 | ©11110Q0
0011 | 1101 | 00100001

g m-input NAND gates), it is easy to prove the
following theorem.

Theorem 6.1 Anr array of ¢ identicel discon-
necled networks, where each nefwork 13 described
by a set of boolean functions F; = Fy{z1,...,Tm),
i = (1,...,7) and there exist an inpul pallern
a = (a1,...,am), such that Fj(ﬁl,“,,ﬁm) =
Fi{ay, ..., am), for j = 1,...,r, is I3y, lestable
by

T =Tp + [log, ¢] (12)

test patterns, where Tr is ¢ number of {est patierns
for the network implementing {F;, j =(1,...,7)}.

6.3 Tests for Linear Circuits

For the case of linear circuits consisting of XOR
gates only the following theorem is true.

Theorem 6.2 Inpuf mairiz, H;, for any m-tnput
nonredundant linear circuil implementing

Fj(II,IE,...,Im) = @:‘.{zi; i=1.L2,...n
=
(13)




E%G\f“-. 'ﬂL SOl

where n < 2™ — 1, c: € {0,1} end for any j at
least one €] # 0, has the following siandard form

1 0 0 0
| @10 0
6 0 O 1

]

The complexity of this test 18 T = m. For the
case when there exist j such that all ¢/ = 1, the
test matrix contains an extra row of all zeros. For
n = 2™ — 1 this test is optimal.

Let us consider now a special class of linear net-
works with m inputs where each output depends
on at most [ input variables,

Theorem 6.3 Universal inpui mairiz Hi(m,!)
for all m-input nonredundant linear circuil where
each oulpul depends on at most | input variables
is a parity-check mairiz of ¢ code of length m and
a distance d=21+1. O

Table 2: Minimal numbers of test patterns
Tan, Tea, Ti0s for XOR networks with 32, 64, and
128 inputs where every output depends on at most
{ Inpuis

tet an d wed for OR ntdwory
0nd }w rku'lelb lw'#,‘nfs,

6.4 'Tests for Trees of Primitive
Gates

In this section we will construct tests for trees con-
sisting of g-input (g > 2) AND, NAND, OR, NOR
gates.

For the tree primitive g-input NAND gates we
have

T = (g + 1)[log, m}. (17)

For the binary case we have T = 3[log, m].
As it was shown in [16] lower bounds for T', as
m — 00 for g-ary OR or AND trees are:

1.28{log, m| +1, for g=2;
1.64[loggm]| +1, for g=3;

T2 2[logym] +2, for g=4; (18)
| log, g[log, m] +1, for g 2> 5.

Using results from [16] we have for g = 2

& — 04k
S[loggm] +1, for m = 2%,
I's { [% log, m] + 2, otherwise; (19)

which is close to lower bound (18).

Table 3: Minimal values of test patterns, T, for
m-input OR (AND) trees

2 4 16 32 64 128 2586
3 5

m
T

8
6 7 9 10-11 11-12 13

{ 2 3 4 5 6 7 8 9 10

Taz || 10 15 19 21 25 26 20 30 30
Tea (112 17 24 28 34 36 42 45 46

Tiog [ 14 21 28 35 42 49 56 57 04g 5 Tests for Two-Level Unate Cir-

cuits
Using the Varshamov-Gilbert bound [15] we . In this section we consider two-leve] AND-OR
have (NAND-NAND, NOR-NOR) circuits implement-
ing unate functions F = F(x7],...,z;,), where z;
A-L , denotes either z; or Ty and the expression for F
T < [log, Z ( ; )] (13) contains only z; or T for i =1,...,m.
1=0

Theorem 6.5 An inpul mairiz for a m-input
fwo-level AND-OR nonredundunt circutt smple-
menting unate function F' = F(z},...,z},) con-

. b
sists of m columns |hy; ... By ... |TH
Theorem 6.4 For any binary XOR lree with m m+1

iﬂpuis a number of test petlerns is upperbounded eougito|11 ... 0 ... LI[FR ife =2z; orto
¥ ;

Let us consider now g4, testing of trees of XOR
gates,

hmi hm+1 ]

T < 2[log, m] + 1. (16) [00 ... 1 ...00F8ifzi=%5(i=1,...,m).

i



If F equals to 1 for all inpul patierns defined by
these m columns, then one more lest patliern 1s re-
guired such that for this pettern F = 0. O

7]

For the test complexity, T, for the procedure
described by Theorem 6.5 we have [8]

m+1<T<m+2. (20)
Example 6.1 As an example let us construct a
test matrix for the two-level AND-OR circuit im-
plementing F' = T1z2 + T123 + 2223. Then by
Theorem 6.5 we have

[9]

z1 Tz £3 T1 ZTirz ZTiT3 283 F 0]

1 1 1 @ 0 0 1 1 .
H=10 ¢ 1 1 0 1 0 1|,

0 1 0 1 1 0 0 1

60 1 1 1 1 1 1 4

As we can see all columns in H are different and
not equal to all zeros and all ones, except the last
column. We should add one extra row correspond-
ing to zyzaz3 = 000 since F{0,0,0)=0. O

[11]

[12]
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