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The problem is considered of efficient test design for combinational devices with large
number n of input variables, where each output depends on at most s input variables,
It is shown that the number of test patterns can be reduced drastically if we allow
a small {raction ¢ of all possible cutputs not to be tested exhaustively. The effect

holds even if € approaches zero with the increase of n. Upper and lower bounds for
the number of test patterns in such tests (called {, s}-exhaustive tests) are derived
and constructions of the tests are suggested.

1 Introduction

With the increasing variety and complexity of digital devices the problem of their
testing becomes more and more complex and important. Since generation of an
optimal device-specific test has been shown to be an intractable problem for devices
of large complexity [1], it seems to be promising to develop tests which would be
applicable to a broad class of devices. In particular, consider the class of combinational
devices with n binary inputs, where each output is a Boolean function of at most s

input variables. It has been shown recently in a number of papers [2-fthat all such
devices can be tested exhaustively by the use of tests with the number of test patterns
growing rather moderate with n. However, the number of test patterns in the tests
constructed is still far away from theoretical nonconstructive upper bounds.

Basing on the analogy with the situation in information theory, one can expect that
the number of test patterns can be reduced substantially if we allow a small fraction
g of all possible outputs not to be tested exhaustively. The effect may hold even if
¢ approaches zero with the increase of n. This question is explored and answered
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in affirmative in the present paper. Upper and lower bound for the number of test
patterns in such tests (called (e, s)-exhaustive tests) are derived, and constructions of

the tests are sugpgested.

Such tests may be useful for testing complex VLSI devices when a small fraction
of undetected faults can be tolerated.

2 Definitions and Notations

Definition 1 A fest mairiz T for & combinalional device with n inpuls is a binary
({0,1}) matriz with n columns whose rows are lest pailerns.

Definition 2 A lesi is s-exhaustive for given s inpuls if the corresponding s columns
of tls matriz T contain all 2° binary vectors, as rows.
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Definition 3 A test T = T(e,n,s) is (¢, s)-ezhaustive if il ts s-exhaustive for any &
s-tuples which does not ezceed €. uESi T(0,n,s) 15 called an s-exhaustive lest,

Definition 4 A section of lests (T'(e,n, s)) is asymploiically s-exzhaustive, if e — 0
wher n — 0o.

Denote:
N = |T(e, n, s)| - the number of test patterns in an (¢, s) - exhaustive

test T, n, s);

= min [T :
f(e,n,5) Fin IT(e, n, s)]|;

¢(n,s) = f(0O,n,s).
The function f(0,n, s} and some related functions have been studied in |2, 7-10].
We also call s-tuples for which a given test is s-exhaustive "good s-tuples”, and
all the other s-tuples are "bad” ones.

3 Lower Bound

First we shall prove a few lemmmata which will be used in the further analysis.

lemma 1
f(E:“}S) 2 f(E:" - 1,5) (31)

Proof. Let T(e, n, s} be an optimal (g, s}-exhaustive test, i.e. |[T(e, n, s}| = f(e,n, ).
Denote by r; the number of good s-tuples which include the i-th column of the test
matrix. The total number &, of good s-tuples is, obviously,

n
1
—_ E ri.
)

£=1

G, (3.2)
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The fraction of bad s-tuples is, by assumption, at most £, that is

(3.3)

1

Let r; = minr;. Obviously, ) r; > nrj. Delete the j-th column. We obtain a test
t i=1

matrix with n — 1 columns and f(g, n, 5) rows. The fraction of bad s-tuples in this

matrix is

2 I ni;r,——nsrj fz::f‘
-G () s sy e e
Thus the obtained test is (¢, s)-exhaustive, and (3.1) is proved.
Lemma 2
fle,n,s) > 2f(e,n—1,5—1). (3.5)

(0 F"ti.:m a.ﬂ;i

Proof.Let T'(c, n, s) be a}(E, 5)- exhaustive test, [T(¢,n, s}| = N = f(e, n, s). Denote
by |a] the integral part of a, and by [a] the least integer such that [a] > a. Each
column of the test matrix contains at least [N /2] identical elements (zeros or ones).
Let i = maxr;,where r; is the number of good s-tuples which include the i-th column.

Delete the tbth column and all the rows where the k-th column has the element (0
or 1} that occurs at least [N/2] times. We obtain a matrix with n — 1 columns
and at most | N/2] rows. Let us estimate the fraction of bad Ftuples in this matrix.
Obviously, each good s-tuple in T'(¢, n, 5) which includes the &-th column corresponds
to exactly one good (s — 1)-tuple in the reduced matrix. Therefore, the number of
good (s — 1)-tuples is
1 r
Ger > re > Hgn.

Hence, the fraction of bad (s — 1}-tuples is

1~ (3.6)

T,

—1 —1
1) (o
Thus §v§ obtained test with at most [%f(s, n, s}§ test patterns is (£, s — 1)-exhaustive,

which proves the lemma.

Lemma 3

fle,n,2) > Npin, {3.7)

[ (5-4)

H the
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where Npin ts the minimum tnteger value of N for which the following inequalily

kolds:
N-—-1 n
> =n". .
(LN/?j) = T+en—1) (3-8)
Forn> 1 and ¢ € 1,
1 L1
fle,n,2) 2 logyn” + S logylogyn” + 5 logy 27 (3.9)

Proof. Consider an (¢, 2} exhaustive test with [T{(¢, n, 2)| = N test patterns. Let us
subdivide the nfcolumns of the test into classes such that no two columns belonging
to the same class form a good pair. First, let us find out how many such distinet

classes exists.

The set Z& of all binary vectors of length N is a partially ordered set where
the relation z < y means "z is a descendant of y* (cf. [11,p.33] . (Here z, y ¢ Z¥).
Denote by Z the complement (negation) of a binary vector z and by w{z) the Hamming
weight of z. Obviously, if z < y or z < 7, the vectors r and y form a bad pair.

Consider two possible cases.

I)N=2m, mec N.

Let & = {z|xeZ¥, w(z) <m},
Sz ={z|z€Z], w(z} >m}.
Note, that the function

F:5 — 5, F(z)=7% (3.10)

is a bijection. Moreover, 51US; = Z¥, §1NS; = {z |w(z) = m}, and |$:N S| = (2:)
By Sperner’s Lemma [12, 13 p.99), 51 NS, = {x;:},i=1,2,..., (Emm), 15 the maximal
antichain in Z2™. Therefore by the Dilworth theorem ([14,15 sec. 2.8]}, there exists
a partition of S; into chains of descendants such that any »; € 5; N 53 belongs to

exactly one chain Zf”:

s = Uz, (3.11)

where ZE(I}HZ}IJ =0(i#£7),z: € Z,gl}. Because of (3.10), there exists a partition of
Sy into chains {Z>}:
(=)
5= |J 2, (3.12)
j=1

such that for any Z}:l) = {y:ir}, there exists a chain Z}z}, where y;x = ¥j;- (In
particular, 2; = T; € Z?}, where z;, z; € 5, N1 5;). We call the chain Z}z} = {¥i}
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complementary to Z}:l} = {yir} and denote it Z}z} = EE”. Obviously, Z; = ZEULJZ,G}

is a chain, and chains {Z;} form a partition of Z3™:

&y
= | #, (3.13)

i=1

such that for any Z; Zt-{l] U Z}E} there exists a complementary chamn Z; = Z‘P} L
zM =707 =7

Thus, we obtain % 2:) = (2":1) = (‘;':JEI) disjoint classes C; = Z; U Z;, (i =
1,2,..., (2":1)} each of which does not contain good pairs. (Indeed, for any z,y € C;,
one of four alternativesis valid: z <y, y <z, z <Y,y < T.)

2}JN = 2m + 1, m € N. Take a class C; = Z; U Z; of binary vectors of length
N —1 = 2m. If we extend each vector which belongs to Z; by assigning an additional
cornponent equal to 0, we obtain a chain of vectors of length ¥ = 2m 4 1. Denote
this chain by Z;0. Then the complementary chain is Z;0 = Z;1, and Cig = Z;0U Z;1
is a class of (2m + 1)-dimensional binary vectors which does not contain good pairs.
Similarly C;; = Z;1U Z;0 is another such class. All the classes {Cip,Ci1} (i =

1,2,...,(2’:1)) are disjoint and form a partition of Z;™*'. The number of the

classes is (37) = ({¥74)-

Hence, for both even and odd N, the number of classes 15 k& = [I;}'i%]) As a
result, the n celumns of the test T{g, n, s) can be subdivided into & classes (some of
themn may be empty), such that no ¢lass contains good pairs. Let n; be the number

of columns in the i-th class, so that

To obtain a good pair, it 15 necessary to take columns from different classes. Hence,
the number of good pairs (73 is upperbounded by

Eoj-1
Gg ﬂ 2 niny = G; (314)
j=1i=}
Obviously,
£k k
S5 ni—n)® = 2k-1)> nf-4G; > 0, (3.15)
j=1li=1 i=1
and

k k
EG;-I-ZH? = (Zn;) = n?. (3.16)
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Then, by (3.15) and (3.16),

nz(ﬁ: — 1) '
> . \
G, < T (3.17)
Therefore, the fraction of good pairs is limited by
5 k—1
P (3.18)
(2) (2) (n—1)
Since, by assumption, the test is (g, 2)-exhaustive, it 1s necessary that
n(k — 1)
> ] - .
TENTE 1-¢, (3.19)
or
n
- — T _
k2 e = (3.20)

which leads to (3.7). If n » [ and £ € 1, then N 3 I, and, using Stirling’s expansion,
we obtain (3.9).

Theorem 1 (Lower bound).

fle.n,s) > 2°7*Nin (3-21)
where Ny s the minimum infeger value of N for which the following tnequalily
holds:

(N—l) 5 n—s+2 . (3.22)
IN/2]) — l4e(n—s5+1)
Forn® 1, e 1,
_g . 1 S|
fle,n,s) > 2°7*(logyn® + 2 log, logs n* + Elog;, 27) (3.23)
where
. n—s4 2
n = .
l+e(n—s4+1)

Proof. Applying (s — 2) times Lemma 2, we obtain:
fle,n,s) > 22 %fle,n—5+2,2),

and, by Lemma 3, come to (3.21) and (3.23). Note that a lower bound on ¢(n, s) can
be obtained from (3.23) by setting £ = 0 (i.e. " = n — 5+ 2). A better lower bound
on ¢{n, s) follows from (8].

s
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4 Upper bounds and Test Constructions.

In this section we derive two upper bounds for f(e,n,s). A nonconstructive upper
bound based on probabilistic reasoning is given by Theorem 2. The upper bound
of Theorem 3 makes use of the best s-exhaustive tests. A construction based on
simple codes is presented in Theorem 4. The resulting tests are nonlinear (rows
of test matrices do not comprise a linear space). Linear (g, 5)-exhaustive tests are

constructed in Theorems 5 and 6.

Theorem 2
f('Eln'iS} (_: JE'Ill'rl"l".til'l 1 (4-1)

where Npin 15 the minitmum nleqer value of N for which the following inequalily
folds: '

2 A 23 F n T -1

k1 . sy

o (Gaerr <L

k=1
More roughly,

og [£(7) + 1] —log, (7) = »
fle,n,s) < [ log,(1 — 2-%) ] * (43)

Proof. Consider an ensemble of ali possible binary ¥ x n matrices, each having the
same probability 2=/ It is easy to see that this ensemble is the same as the random
matrix obtained by choosing each element equal to 0 or 1 independently and with
equal probabilities py = py = :E; Let us calculate the probability that a given s-
tuple in such a random matrix is bad. The probability that a given vector of length
s occurs in a given row of s-tuple is 27°. Therefore, the probability of the event
Ai(i=1,2,...,2%}) that i-th vector does not occur in any of N rows 1s

Pr{A;} = (1 ~275N. (4.4)

Hence, the probability q that the s-tuple is bad, t.e. that at least one of the 2° binary
vectors does not occur in the s-tuple, is

¢ = Pr{UA;} DPe(a) = 3 PrlMinA}+

ij:#}
2* 93
— Z 1]1 1( )l—k 27 )‘H (45)
k=1

Then the probability ¢ that in a randomly chosen matrix at least ]_E(’:) + 1] s-tuples
are bad {which means that the matrix is not (¢, s}-exhaustive) is upperbounded by

the unien bound: -1
o (L)
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If @ < 1, it means that there exists at least one N x n binary matrix which is
(e, 5)-exhaustive.
Thus, we conclude that
f(E:an) < Nmin,

where Npin is the minimum integer for which the irequality {(4.2) holds.
A rougher but simpler upper bound can be obtained by retaining the first term
only in the sum (4.5} (which means taking the union bound for ¢}. Then

g < P(1-279)Y.

Finding the mimimum N = N, for which inequality

g < (’:) [sc) +1J'1*2=(1—2—*}” <1 (4.7)

holds, we obtain (4.3). When s is large, (4.3) can be rewritten in a simpler form:

21
g,m,s5) < 2°log, — . 4.8
fle.n,s) & ) (4.8)
Corollary 1 Forl & s, 1/4log, n
2en
b(n,s) < Pslogy o, (4.9)

whick is consistent with the upper bounds on ¢{n, s) obtained in [&], [7] and [8].

Corollary 2 For any fired € > 0,

2 %(log, e~ 1) + %Ingz(ﬂrrlngg e ) « { ligﬂ fle,n,s) < 2°log(2°¢~1). (4.10)
Corollary 2 demonstrates a significant difference between s-exhaustive and (g, 5)-
exhaustive tests. The size of an optimal (g, s)-exhaustive test remains finite (bounded
from above) for any constant values of ¢ and s, while the size of an s-exhaustive test

must grow with n at least as log, n.
Now we show, how (¢, s)-exhaustive tests can be constructed by ”horizontal con-

catenation ” of s-exhaustive tests for a smaller number of input variables.

Theorem 3

f(E,ﬂ-,S) 'c_: ¢5(rmin: S)s (4-11)

where rmin i3 the minimurm inieger value of r, for which the following tnequaliiy holds:

O O@E ) 2 e
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Forn s ande < 1
fle,n,s) < é(r,s), (4.13)

T L(s— 15)(:3:(14)] ' (4.14)

where

Proof. Consider an s-exhaustive test {or r input variables T(0, r, 5). Let |T(0,r, s)] =
é(r, s). Form a matrix of order ¢{r, s) x #[n/r] by concatenating the rows of T(0, r, 5)
[n/r] times. {Let us call it horizontal concatenation of [n/r] matrices T(G, r,5)). If
n = r[nfr] — g, we delete g distinct columns, so that the obtained ¢(r, s) x n matrix

an.dl ng g qroups ng_ L“A"’_'
dentical c

L

|

consists of (r — g) groups of [n/r] identical columnnsY Obviously, an s-tuple is good if
each column is taken {from a diflerent group. Therefore, the number of good s-tuples

o= SOOI (19

15

where summation is taken over ail non-vanishing terms. Note that a* is a convex
function of . Therefore, by Jensen nequality,

o> ()™
(Is) (zﬁ o E‘H%-m)l = Gy. (4.16)

i i .. -1 .
The fraction of good s-tuples ir the matrix 1s &, (’:) . Hence, for the matrix to be
(e, s)-exhaustive, 1t is sufficient that

~1
G (“) > 1 —¢, (417
$
which yields (4.11)-(4.12). If n 3> s and € € 1, then alse r >» 5. Then, using Stirling’s
expansion, we obtain from {4.17)

s{s — L)n

"2 s(s =1} —=2nln(l —€) (4.18)

which results in (4.13)-(4.14).
Theorem 3 shows that the number of test patterns in a (g, s)-exhaustive test can
be substantially smaller, then in an s-exhaustive test.

Corollary 3 For any fired € and s,

lim fle.n.s) < d(—C 1)

T — 00 ?l[‘l(l —E}'S}* (419)
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Consider now constructions of (g, s)-exhaustive tests based on linear codes. Let
us remind a simple property of linear tests {e.g. [7]).

Lemma 4 Consider a 2¥ x n test matriz T whose rows are all code words of a linear
(n,k) code over GF(2). Then an s-tuple (s < k} is good, tff lhe s columns are linearly
independent over GF(2).

Proof. If s columns are linearly independent, there exist s hnearly independent rows
in the corresponding 2* x s submatrix of T. Since the rows of T form a linear space,
the rows of the submatrix contain all the 2* linear combinations of the s linearly
independent rows. Conversely, if the s-tuple 1s good, the rows of the submatrix
contain s linearly independent vectors, and therefore the s columuns are also linearly
independent.

Let H(s) be a matrix formed by the code words of a (2° — 1, 5) simplex code [18,
p.30] as the rows. (This is, in fact, the Hadamard matrix over {0, 1} with the zero
column deleted). The columns of the matrix H(s) also form an s-dimensional linear
space (except for the zero column).

Lemma § The fmcﬁ;:m ex{s) of bad s-tuples in H(s) is equal Lo

s—1 ]
I - 2)
eg(s) = 1= (4.20)
(2° —1)
i=1
and
B = lim exy{s) = 0.711211.... (4.21)

Proof B;lemma 4, the number of good s tuples in H{s) is equal to the number of
different choices of a basis in the s-dimensional column space. Obviously, (i + 1}-th
basis column can be chosen arbitrarily from 2° — 2* columns (the total number of
the columns minus the number ,of all linear combinations of the previously chosen 1
mlumns),Therefure, the total number of good s-tuples i1s equal

1 = 3 ] Y
and
s—1 .
GJ ‘l:Iﬂ{?-F — ?1)

exp(s) = I—F;:_Tj = 1- (4.23)

1@ -9
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Note that £4(s) is a monotene increasing function of s. Remarkably the fraction of
good s-tuples has a nonzero limit whea s — co:

1-8 = 5]_']&, ——(2?_"1) = [J‘:?SSTSB e (4.24)
which gives (4.21).
Theorem 4 |
- -‘.}.! Ggs
fle,n, s} <2 [iogé(m} : (4.25) ‘
here J
e {‘E’ﬂl]!{fr?’—a—s}é’/_— _ -
bla,s) = 1 — (1 —eu(s)) = — (4.26) 3 .
(22 — 5 — 1)a-2* — a)! <&'2"&'5f'
and _

¢ = [n(2° —1)71]. aa) ==

Proof. Consider a matrix ff{s] of a simplex {2* — 1, 5) code and form a horizontal
concatenation A(a,s) of @ = {n(2* — 1)~!] such matrices. The fraction p of s-tuples

with non-repeating columns chosen lrorn A(a, §) 13

Tl 22— Wa-2° — 0 — s)a’
P = éa(;:-}l ) - ((-zs —,jE 1Y(a-2% — .:)! ' (4.28) szi';:s;
Therefore, the fraction 8(a, s) of bad s-tuples in A{a, s) is B
8a,5) = 1 = (L —cu(s))p. (4.29)
Let r be the minimum integer such that 8"(a,s) <¢, that 1s
P ] (4.30)
Consider r matrices {fi;(a,s) (i = 1,2,...,7) obtained by r independent random I

permutations of the columns of A(a, s). Now farm an r-2* x a(2* — 1) matrix M(r, e, s)
by concatenating the corresponding columns of these » matrices. (We call it vertical
concatenation of matrices A;). Let B{i ‘g E?,...,r] be the event that given s-
tuple is bad in matrix A;(a,s). Since the permutations are chosen independently at
random, the events E; are independent. Therefore, the probability that an s-tuple
taken from M({r,a,s) is bad is 6 (a,s) < . Thus, the matrix M{(r,qa,s) is (¢, 5)-
exhaustive. Then, by applying Lemma | ¢{2* — 1) — n times we obtainan r-2* x n
submatrnx which is also {&, s}-exhaustive. Thus

fle,n, s} <r-2° = '2’[ g€ } . {(4.31)

log &é{a, s)
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Corollary 4
, ngE
f(e,n,5) < 2 [lug[sﬂ(s) +s(s — 1)27571 — g (s)s(s — 1]2"*‘1}] ' (4.32)
Proof.
p> (-1DJ[@-i) > [-s(s-127"". (4.33)

i =1

Then (4.32) follows from (4.29), (4.31) and (4.33).

Corollary 5
L fle,n,s) < yloga(1/f) (4.34)

where
v = —{log- 3)"" = 2.034... (4.35)

Prooif. Note that

E & -1
L—exnls) = [J(1-27) [Hu —:"2“’]] .
t=1

r=1

Taking into account {4:33) e obtain

§{a,s) = 1~(l-en(s))r
< 1-(1-279"JJ@-279
=1

< 1-JJa-27%) =8,

1=1

which, by (4.31), gives (4.34) - (4.33). The upper bound (4.25) is not completely
” constructive”, since it is obtained using random permutations. Therefore, we give
below explicit constructions of linear (e, s)-exhaustive tests.

Theorem 5 If s < log, n, there is a consiruclion for a test T{e,n,s) such that
|T(e, m,8)| < [2°F +5(s — D7, (4.36)
and T(e, n, 5) is a linear subspace ﬂf@

Proof. Consider the matrix #{m) of a (2 —1, m) simplex code, where 5 < m < log, n.
By the same reasoning, as in Lemma 5, the fraction p; of good s-tuples in H(m) is
equal to

1—1

Me™-29 . i
i=0 y — -1 i 2=
= ~— o Il P -2y 5 1 -2 IE 28 > 1-2 : 4.37
P E!(E ’_1) i=u( } — ( )




s lee

Exhaustive Testing of Almost All Devices 13

Now form a 2™ x a(2™ — 1) matrix M{a, m} by the horizontal concatenation of
a = [n(2™ — 1)~1] identical matrices H{m). The fraction p; of s-tuples with non-
repeating columus chosen from M (a, m) is equal to

Y 1" -9

py = (n{w-n) 2m — 1y > 1-s(s—1)27""1, (4.38}

Therefore, the fraction of good s-tuples in M{a, m) is

p=pipa > (12"l —s{s—1}27"") > 1—‘2*'"’(1+s(5—1)2"'1}. {(4.39)

The matrix M (a, m) is (¢, s}-exhaustive, lf

==

The minimum integer value ol m which satisfies (4.40) is given by

(4.40)

20

(i+ S(s-1)2. >

m = s+[loga[t + s(s — 11275717 Y| <€ s+l+loga{1+s(s—1)27°"1e™1]. (4.41)

By applying Lemma ! ¢{2™ — 1} — n tumes we obtain a 2™ X n submatrix T(e, n, 5)
which is (g, s)-exhaustive. Thus,

|T{e,n,8)| = 2™ < [2°*' 4 s{s — 1)]e . (4.42)

The case n —s = { € n calls for special consideration. The following lemma is useful
for constructing (g, s)-exhaustive tests in this case.

Lemma 6 Suppose that a test malriz is formed by all the code words of a linear (n, k)
code as rows. Then an s-tuple is good iff the binary veclor v, which has ones in lhe
corresponding s posilions and zeros in the remaining n — s positions does nol cover
any nonzere code word in the dual {orthogonall (n,n— k) code.

Proof. If vector v, does not cover any nonzero code_word of the dual code, then o
the s-tuple consists of linearly independent columns, and, by Lemma 4, the s-tuple is ~
P b J P m y ? P Co d WO F'Gl

good. Conversely, if v, covers a nonzero code word in the dual code, then the columns
comprising the s-tuple are linearly dependent, and, by Lemma 4, the s-tuple 1s bad.

Theorem 6 Forn — s =1 there is a consiruction for a lest T(e,n,n — t) such that
IT(e,n,n—t)| < 2°~LCnt/e)™ ] (4.43)

and T(e,n,n —t) 1s a linear subspace of Z7.

Proof. Consider a linear (n,m) code with a generating matrix which consists of
m nonoverlapping (i.e. having no commeon nonzero components} binary vectors
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Zy,...,&m of weights [n/m| and [n/m}. Obviously, a vector v, = vq; covers a
nonzero code word of this code iff 1t covers at lcast one of the m rows of the gener-
ating matrix. The {rn,n — m) code dual to the previous one will be used as a test,
the code words being the rows of the test mattix T. By Lemma 6, an (n — ¢)-tuple
in the test matrix is bad, iff the corresponding vector v, . covers at least one of the
words 21, ..., 2,, of, in other words, ilf its complement (negation) ¥,_; (which has ¢
nonzero components) does not overlap with at least one of these words.

Denote by x 1y = @ the fact that two binary words £ and y do not overlap. The
probability g that an (n — )-tuple chosen at random from the test matrix 7 is bad
can be upperbounded by the use of the union houwud:

I

. = Pr{di| Voo Nxi =0 =1, .., m)

m - (ﬂ B [_n/mj) (n) B < m{l—1/m) < me¥™, (4.44)

e < m-max Pr{¥,_Tix; 3.0}
H

t t
Hence, our test is (£, n — i}-exhaustive, il

me H™ < ¢ (4.45)

Since the number of test patterns is 2" ™™, we are interested in the largest integer m
that satisfies (4.45). It is easy to see that (4.45) is [ullilled for

m = |{(In(t/e))"t] < t(n{¢/e))™", (assuming UE:_"F (4.46)

which leads to (4.43).
Note that for s-exhaustive tests the best kuown result is {[4), [7])

i

¢(n,n—1) < (4.47)

L]

£+ 1

and thus, for any fixed ¢ and sufficiently large ¢, |T{e,n,n — {)| € ¢(n,n —t}.

5 Asymptotically s-exhaustive sequences of tests.

Let us explore now the asymptotic behaviour of (¢, s)-exhaustive tests when £ — 0
with n — o0o. Denote by ¥,(n,s) the number of test patterns in a test T'(g, n,s)
which belongs to an asymptotically s-exhaustive sequence of tests (T'(e,n,s)) = o,
i.e. [T(e(n),n, s| = ¥.{n,s) for any T(e(r),n,s) € ¢.

Theorem 7 1. For any asymplolically s-exhauslive sequence of lesis there ezisis a
function h,(n — &) such that

ho(n — 5) = oo udien (n—35) — o0, (5.1)
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and

thae(n,s) > 2'hs(n — s}. (5.2)

. For eny h(n) such thal
h(n) — oo when n— 00 (6.3)
there exisls an asymplotically s-exhauslive sequence of lests o such that
0a(n,s) < 2h(n). (5.4)

Proof. 1. Consider an asympiotically s-exhaustive sequence of tests o.

Let
; n—3s+42
i : .}—- +
ho(n — 5) 2 AQ‘DL?1+£(H—-S—I—1}’ (5.5)

where £ = &{n) is the fraction of bad s-tuples in the test T{e, n, s} € 0. Obviously,
if £ = e(n) — 0 when n — co, then A {n — s) — co when {n — 5) — co. Thus, by
Theorem 1,

Ya(n,s) > fle,n,s) > Tha(”_s}* (5'6)

11. Let
¢ = ¢(n) = ?Th{"]h* . L. (8.1

where 7 is given by (4.35).
If A{(n) — oo when n — oo, then ¢(n} — 0 : when n— 0e.- -+ (5.8)

Take #sequente of (¢, s)-exhaustive tests such that §{n,s) = f(e(n),n,s). By (5.8)
this sequence is asymptotically s-exhaustive. On the other hand, by (4.34),

ho(n,s) < ylog,{i/e) = 2°h{n}. | (5.9)

The meaning of the fitst part of Theorem 7 15 that for ¢ — oo with n — oo the
number of test patterns must increase {aster than 2%, if (n — s} — co. In particular, it
cannot remain bounded even {or a constant s. The second part of the theorem shows,
however, that this additional factor h(n) can be chosen to grow arbitrarily slow with
n. [t means that ¥,(n,s) can grow much slower than ¢(n, s}. Thus, by sacrificing an
infinitesimal fraction of all possible output functions, we can gain substantially with
the number of test patterns.
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