Detection and Location of Given Sets of Errors

by Nonbinary Linear Codes*

MARK G. KARPOVSKY SAEED M. CHAUDHRY
LEV B. LEVITIN

Research Laboratory of Design and Testing of Computer Hardware
Department of Electrical, Computer and Systems Engineering

Boston University
Boston, Massachusetts 02215, USA

CLAUDIO MORAGA

Department of Computer Science
University of Dortmund
4600 Dortmund 50, Federal Republic of Germany

Abstract—The problem of constructing codes capable of detection and lo-
cation of a given set of errors is considered. Lower and upper bounds on a
number of redundant symbols for an arbitrary set of errors are derived. These
codes can be used for error detection and identification of faulty processing el-
ements in multiprocessor systems. To this end, new classes of codes for several
types of error sets such as stars, trees and FFT's meshes are presented. The con-
cepts of strong and weak diagnostics (SD and WD, respectively} are introduced
and discussed.

Index Terms—Detection and location of a given set of errors, diagnostic of
muliiprocessor systems or arrays, error detection, error location, linear codes.

1 Introduction

In order for processing elements to cooperate on solving a problem, an intercon-
nection structure (network topology) is provided so that they can communicate
with each other. Such multiprocessor systems are increasingly being used for
high-performance computing {2}, [3], [8], [9], [19]. In many cases, algorithms
are developed to exploit specific multiprocessor interconnection structures like

*This work has been supporied by the NSF under Grant MIP 9208487 and the NATO
under Grant 910411.

meshes, rings, stars, trees, hyper cubes. Some well-known multiprocessor inter-
conneckion networks are described in [6], [10], [15].

Built-in self-test and self-diagnostic is becoming a viable alternative for a
VLSI chip, board or system design. Techniques based on space and time com-
pression are used fo compress output test responses into signatures [1], [20].
Faulty processing elements can be identified by an analysis of distortions in the
computed signatures [12]. These approaches aim at reducing the number of sig-
natures required for diagnosis. Such approaches have been used for chip, board
and system level testing and diagnosis (see e.g., [18]).

For the diagnosis (fault detection and location) of a system of processing
elements the system is represented by a directed graph & whose vertices corre-
spond to processing elements and directed edges correspond to communication
links between processing elements [13]. Test data is applied to a set of input
vertices of this graph and test responses flow through the graph to a set of out-
put vertices. Due to failures in processing elements or communication links, a
set of errors E{G) s observed at the output verfices which correspends to the
structure of the underlying network topology.

In this paper we will consider the problem of constructing error detecting
and locating codes for a network of processing elements modeled by a graph.
The major problem in the design of error detecting and locating codes 1s the
problem of minimization of the number of check symbols of a code for a given set
of errors. In Section 3 we present upper and lower bounds for codes detecting
and locating an arbitrary set of errors. Section 4 is devoted to analysts of some
important communication topologies for multiprocessor systems and construc-
tions of corresponding codes for detection and location of the underlying graph
€rroTs.

2 Definitions and Approach

Let V,* denote the n-dimensional vector space over GF(q),qg= 2 (GF(g)is 2
Galois field of ¢ elements). We denote by supp(v) the support of the n-tuple
v = (Vg,¥1,...,¥n-1), L& supp{v) = {i € {0,1,...,n— 1}|v; £ 0}.

Let X denote the set {Xo, X1,...,Xn_1} of N processing elements. Con-
sider a digraph G having X as aset of vertices and aset U = {Up, U1,...,Upr—1}
of directed edges (b-bit communication links) between vertices of G. Let us de-
note by I C X the sef of input vertices and by O C X the set of output vertices.
We shall also assume that the graph has no cycles and all output vertices are
reachable from at least one input vertex. Let || = n (|O] denotes the cardinal-
ity of O) and Y = (y0,%1,--.,¥:-1) € V;” be an output vector for the system
represented by graph & where y; € GF(¢) is an output of the corresponding
output vertex O;, i =0,1,...,n — 1 and g = 2 (for simplicity we assume that
all output vertices have b-bit outputs).

The problem to be considered is error detection and location under the

assumption of single vertex failures in the graph (7. A failure in the graph
(system of processing elements) refers to a physical malfunction that cause the
undesired event. The effect of a failure 1s the introduction of errors in the
output vector Y. We consider a faul} in the graph which alter its output value
to Y = (%o, ¥1,...,%n-1) where §; € GF(q). The error in the graph output ¥
can be characterized by the error vector £ = {eg,e1,...,€,-1) where ¢; = §#; Dy
for i=01,...,n— 1 (& is component-wise modulo 2 addition).

Let us first define an error set F({(7) characterized by the underlying graph
(. In our definition of an error set we assume that at most one vertex or
any number of incoming edges to this vertex may fail and a fault in the graph
manifest itself by distorting all successor vertices outputs 1.e. error propagates
along a directed path. This assumption is reasonable for the case when the
system of processing elements is tested by a large number of randomly chosen
test patterns and, with probability close to one, a distortion will be propagated
to all successor vertices [12].

Let B; = {(a::E;;'iF), Egj :', - ef(fll)} denote a set of error patterns corresponding
to a fault in vertex X; where E,Ej) ¢ {1,2,...,qg — 1} if there exists a directed
path from X; to O; and EEJ} = 0 otherwise (EEJ) = o’) & y?], ﬂE"")}ygj), are
faulty and fault free outputs for the output vertex (J;, i =0,1,...,n —1). The

set E(G) = Ui_ﬂl E; of all possible error patterns corresponding to all single

vertex failures in (7 is called the error set for (=.
Let E(G) C V], 0 ¢ E((), be an error set for . We shall call a linear

(n, k), k < n, code defined by a (n — k) by n parity check matrix H over GF(q)
a scheme that allows detection and/or location of error set E(G) where the

block length n is equal to the number of output vertices |O| = n in G.
Let E(G) C V', 0 ¢ E(G), be an error set for G. A linear (n, k) block code
C over GF{g) of length n defined by a (n — k) by » parity check matrix H

1. detects E{G) if and only if

(a) for every E; € E(G), HE[™ #£ 0 (E}" 1s E; transposed; all computa-
tions are over GF(q)).

2. locates E(G) if and only if

(a) for every E; € E(G), HE!" # 0 and
(b) for every E;, E; € E(G) with supp(E;) # supp(E;), HE]” # HEY .

3. corrects E(() if and only if

(a) for every E; € E(G), HE[" # 0 and
(b) for every E;, E; € E{G) with distinct ¢,j, HE;" # HEY .

A slightly different definition of error locating and correcting code has been
given in [17].

y[} Y] e e }rp_l

Figure 1: p-ary Star Network Topology.

To illustrate the above definitions let us now consider the problem of fault
diagnosis for the p-ary star network topology (see Figure 1}. For the p-ary
star, the single central processing element {root) is connected to all others,
N =p+ 1, and n = p. Due to single vertex or processing element fatlures we
have the following nonzero errors in the p-ary star:

(th El: == Ep—l):
(60, 0, ..., 0),

E(G) — (U, Ely avsy 0), ; (1)
(ﬂr ﬂ& Tty Ep—l}

where e; € GF(g) — 0. Thus, we have (¢ — 1)’ + p(¢ — 1) nonzero error vectors
for a p-ary star over GF(q).

For error detection the problem is reduced to optimal construction of a
parity check matrix H with n columns and a minimal number of rows r < n,
such that for any error pattern E; € E(G), the vector HEY has at least one
nonzero component. Let ;, 1 € i < r, denote rows in a panty check matrnx o,
then to detect all single vertex failures in graph 1t is sufficient for any ¢ > 2
to have at least one row h; in H such that |supp(h:) Nsupp(E;)| = 1 for any
E; € E(G). This condition ensures that any two or more nonzero components in
error vectors corresponding to the same vertex failure, £;, will not compensate
and may not produce an all zero syndrome.

For the p-ary star, it is easy to see that to detect any single faulty ocutput
vertex, a row of all 1’s in H is sufficient, since all error vectors corresponding
to a single output vertex failure have only one nonzero component and for the
central vertex fault one can take any row with one 1 and p — 1 Os. Hence, the
following parity check matrix H can be used for detection of p-ary star errors

for any p > 2 and ¢ > 2:
P 1 ... 1
H = : 2
o el ®
Thus, for any p-ary star, p > 2, ¢ > 2, r = 2 and we have a class of {(p,p — 2}
star error detecting codes over GF(gq).

For identification of faulty vertices the problem is reduced to optimal con-
struction of a parity check matrix A with n columns and a minimal number of
rows r < n, such that for any two error patterns E;, F; € E((), with different
support, HE]" # H E}‘*, where the number of errors with different support is
equal to the number of vertices in the graph .

Since, to locate all single vertex failures in graph (it is necessary that the
number of error vectors with different support 1s equal to the number of veriices
N 1n the graph G we have the following attainable lower bound on a number

of outputs n (block length of an (n, %) error locating code) for a single vertex
failure locatable graph:

n 2 [loga(N +1)]. (3)

We now present a construction for star error locating codes over GF(q).
Let o be a primitive element in GF(g) (« is a primitive element if and only if
ot 2ol fori#j,4,5=0,1,...,¢ — 2 [16]). The code defined by the following
H matrix locates errers in a p-ary star:

1 1 1 1
1l a o - afl

H=1190 0 . o * (4)
_ﬂ 1 0 .- i} L axp

where 4 < p < gq.
For an output vector ¥ = (yo, #1,...,Y¥n-1), we define its syndrome S(Y') =
(S].:I Sﬂ: -3 Sf:ﬂ—k) Gl
S(Y)y=HY". (5)

Dhagnosis of a single vertex failure will consists of two steps: syndrome com-
putation and association of the syndromes to a faulty vertex. A straightforward
approach to the syndrome computation is via a combinational logic circuit that
implements the parity check matrix and the association of the syndrome to a
faulty vertex can be specified by a location algorithm.

The syndrome computation for the parity check matrix described in (4) can
be implemented with 2(p — 1) GF(g) adders and (p — 1) multipliers {note that
here we need a multiplier that multiplies a field element from GF(g) by a fixed
element from the field).

The location algorithm for the above (p, p—4) p-ary star error locating codes
is described as follows:

Let S;, i =1,2,3,4 denote the syndrormes obtained.

1. If5;=0,:=1,2,3,4: no error, end.
2. If 53 # 0 and 54 # 0: error in the central vertex (root), end.

3. If 53 = 0 or 54 = 0: error in vertex (leaf) j, 0 < j £ p— 1, where
ol =S:;_/51.

4. End. O

For the case of a p-ary star with p = 2' — 2 and ¢ = 2 one may choose as a
check matrix for error location a matrix with 2° — 2 different nonzero i-tuples as
its columns except for the all 1 vector. For example the following check matrix
can locate all single vertex failures in the star with p=2° —2 =6 and ¢ = 2:

" 000111]
H=| 011001 |. (6)
| 101010 |

Therefore, for the p-ary star with p = 2° — 2:
=1, (7)

and we have a class of (2* — 2, 2" — 2 — i) perfect star error locating codes over
GF(2) {11i.

It is interesting to note that the parity check matrix for star error detecting
codes (2} is over {0,1} C GF{g). Such codes are particularly simple to imple-
ment since the check symbols are obtained using only additions in GF(q), no
multiplications are needed. Therefore, from the viewpoint of hardware 1imple-
mentation it 15 advantageous to have codes with parity check matrix over {0, 1}
(see e.g., [12]).

In the next section, we present upper and lower bounds on the minimum
number of check symbols for codes detecting and locating an arbitrary set of
errors.

3 Error-Detection and Location Capabilities of
Linear Codes

A lower bound on r = n — k&, minimum number of redundant symbols, in any
(n, £} block code capable of detecting an error set E{(’) can be proved as follows.
Let E(G) C V, 0 & E(G), be the set of errors we wish to detect. A linear
(n, k) code over (GF(q) has ¢* code vectors. If this code is to detect the set
E(G) of errors, all error vectors must not be in the code. Thus the number of
code vectors must be no greater than the total number of vectors in the space
minus the number of error vectors in E(G):

¢* < ¢" — |E(G)), (8)

where |E(()| is the cardinality of £(G). Thus
r > n— flog,(¢" — |E(G))]. (9)

Another and more efficient lower bound on a number of redundant symbols
for a code detecting a set of errors E((G) can be proved as follows, Consider
a graph G(E) = (E(G),U) having the error set E(G), 0 € E(G), as a set of
vertices and U a set of edges {(E;, E})|E; @ E; € E(G)}. Let F; © E; = Ej €
F((G) and let H be a check matrix for a code detecting the set of errors E(().
Since I 1s a linear code, H(EfrﬁE}‘"} = HE¥ GQHE = HEY # 0. Therefore,
HE} # HEY, which means that the syndromes for two errors E; and E; must
be different if F; is connected to E; in G(F).

Let v(E) denote the chromatic number for G(£) (y{E) is a minimal number
of colors required to color vertices of G{ £} in such a way that no two neighboring
vertices have the same color; techniques for graph coloring with lower and upper
bounds for ¥(£) can be found e.g. in [4]. Then we have the following lower
bound on a minimal number r of check symbols in a code detecting F(G):

r > [log, (v(E) + 1)]. (10)

We note that the above lower bound is attainable. For example, for a p-ary
star (see Figure 1), p > 2, and ¢ = 2:

11...1},,, p = odd,
H=¢ f11...1 oven (11)
10...0], PTEEE

We also note that for the classical case when E(G) = {el0 < ||e|| < 2¢} (]]e]]
denote the number of nonzero components in ¢) we have y(E) = ¥ :_ (%) and
(10) is the well known Hamming bound [18].

An upper bound on a number r of redundant symbols for a code defecting

a set of errors F(G) for any n, k < », and any E(G) C V], 0 € E(G), is

r < [log, ([E@)(g— 1) + 1)]. (12)

This bound follows from the fact that a linear (n, k) code over GF(g) with ¢*
code vectors detects error set E(G) if and only if all code vectors are in the set
V? — B(G) and in any set with ¢* — 1 — |E(G)| > ¢* — (¢ **' - 1) (¢ —- 1)~
nonzero vectors, there exists a linear subspace with ¢* vectors [14].

Lower and upper bounds for a code locating an error set E(G) can be ob-
tained from the above bounds for error detection by replacing error set E(G)
with E{G) L {E{ D E_f|supp(E.-} 5/-' Eupp(Ej],Ei,Ej = E(G]} This 15 due
to the fact that if a code defined by the parity check matrix H detects a
set E(G) U {E; & E;|supp(E;) # supp(E;), E;, E; € E(G)}, then for any
E;, FE; € E(G) with supp(E;) # supp(E;), HE;" # HE}" i.e., code locates
error set E{G).

for a (n, k) code over GF(q) lﬁcating ror set B(G) hold: Pk
: , : 2
| log, Y+)] <y <m. 1)
E - - ! We note also that a lmea.r (n, k) code w;th a panty check mat H]ﬂcatmgﬂ,,:v‘
an error set E(G &? corrects g (&) if and only if fof every. distifrct

——y —

e G rﬂ:?ﬂ € E(G) w1th supp(= supp(Hy) there gxists a pair 57, € E(G)U0 ...
: w11;h su}gp,(E) gé suppﬁE_, such that Wﬁ%ﬂ To show this assume

&) E(G). Therefﬂre there exist at least one pair E,, E, such that HE! = HEY
_@ where Fy, E, have the same support. Since there exist at least one pair E;, E;
" such that B, @ F, = E;®F; and E;, E; have different support, we have H(EY @
0y EY") = 0 which implies HE]" = HE}" w whlch is a contradiction, because the code
€ locates E(G).”We note that t the above condition is a necéssary and sufficient
_~condition on the error set E(G) such that if and only if this condition is satisfied

7/ any linear code locating E(G) will also correct E(G).
f{ For example, for p-ary star with p = 5 and ¢ = 2%, E(G) = {(¢q, €1, €2, €3, 4),
| (€0,0,0,0,0),(0,¢1,0,0,0),(0,0,e2,0,0), (0,0,0,e3,0), (0,0,0,0, e4} where e; €
"} {1 =01, =10,a? = 11}. A code locating E(G) does not guarantee error cor-
L

__rection sincefertwoerrofs By = (1,1,1,1,1), %, = (1,1, o, ¢, &) there i 15 Ilﬂ pair
AEL,,E-'WIth different support such that. Eg-@r-E-——--E-%-*B_, = (U 0,02, o? -:rg}

] lo n::.a.tlng

Using the above arguments one can see that any code over
?é) ¢an also corrégtPerrors.

. up tﬂémdependent errors (E(G) = {el0 < ||e]] <
(I S : '
&t &‘Eisame is a,%.iiir.uej_br codes locating burst errors.

——

4 Codes for Diagnosis of Multiprocessor Sys-
tems

In Section 2 we have shown that the problem of hardware minimization for
diagnosis of a system of processing elements modeled by a graph can be reduced
to the design of a code with a minimal number of check symbols detecting and
locating graph errors. In this section we will present several nearly optimal
constructions for codes detecting and locating errors in tree and Fast Fourier
Transform (FFT) interconnection networks. These interconnection networks
have been widely used (see e.g. [5], [6] and [10]).

4.1 Detection and Location of Tree Errors

Let T% be a p-ary full tree of height A (p > 2,k > 2) (see Figure 2). The height
h is the length of a longest path from the root to any leaf. Here we assume that
input vertex is the root and output vertices are n = p*~1 leaves of the tree.

{3}

E.E'Ar)

— T

!

1
——

I

i1

ﬁ_ | . _~{Note a —@- .%1 =0). T e e ”“"""""J"“'"“""‘:ﬁ" ’ Q:" :L':]

| el
|

T

L A 1)
p- height h
L
Figure 2: p-ary Full Tree Network Topolegy.
For a p-ary tree of height A, the set of errors E(G) is:
r l'_:t.n, Cy., . E-Fh_j_l, Ephﬂ—ﬁl ruep Ejph_z_l, E{F—ljjjh'ﬁ' . sph_l-l]' L
{eg:, =1, - s eh—2_5: 0. .., a, o, ..., ay,
E[:l; (u raag a, Eph_g: . :Eph___-z_l, (1 rae g l:l],,
! {ﬂ, a, anmy 0, 0, = aay o, G{P_l:lph—ﬂ 1 . "' a ¢P1I-—1 _]_}’ l
{eg. 0. ..., a, o a, o, ...,),
{0, Eyr e 0, o a, D, ...,),
L (o, a, Laa g o, a, P (L a, l:ph_l_l] J
1 (14)
where e; € GF(g) — 0 and |E(G)| = S004 (g — 1)? :

The recursive comstruction for check matrices of (p*~1,p*~1 — &), p > 2,
¢ > 2, tree error detecting codes is given by:

F

pr———e——" -,
Hy= | HyyHpy---Hyq |, (15)
%

where W is a row vector of one 1 followed by p*~! — 1 (’s and
11---1
HE—'[ID_”D]Exp, (16)

(Hp 1s a check matrix for the p-ary tree of height k).

© 0) 2] 36

oRoRoNoRoRoNeo o RoNoNo R RO RO RoX©

8 9 10 "11 "12 "13 14 “15

Figure 3: 4-ary Full Tree of Height # = 3 — Example.

It can be easily shown that all syndromes obtained by Hj for tree errors are
not equal to zero and the number of rows r in Hj 1s equal to the height i of
the tree. Thus we have the class of (p"~!, p*~1 — h) p-ary tree error detecting
codes.

The complexity L for the syndrome computing network in terms of a number
of GF(q) adders is

L=(p""1=1)Lg, (17)

where Lg is the complexity of a GF(g) adder and H}, given by (15) is optimal
from the point of view of decoding complexity (note that elements of Hy are 0
or 1 for any ¢, therefore no multipliers are required).

Example. Consider the 4-ary full tree of height h = 3 over GF(2°) shown
in Figure 3. This tree has |[E(G)| = (8—1)!* +4(8 -1)*+16(8—1) ~ 3.32x 1019
different error patterns due to 21 different single vertex faults. ‘These errors are:

ERLY =1 o I C3 = N s Th BT <& i B =103 211+ 10 =15+ =14 E15)
‘F’D! 3) L I B3 a, 0 a2, 0, 0, a a, LY o, , a, D]I
I:l:l,, o, qa, 48 L €K, CR, Gy Q, Q, Q, a, o, &y a, ﬂ],
{0, o, 0, o, a, g o, 0, eg. Sa, =1gs =11 0, i, o, o},
(0, o, a, n, q, o o, 0, 0, 0 0, 0 &12, €13, €14, C€15)s

Ty 0, a, o, a, o o, a, a, Q qa, D, 0, o, a, o7,
(0, £ a, &, a, 0 o, a, Q, a 0, o, o, o, o, o),

. {0, 0, Q, &, q, o, a, o, 0, 0, Q, o, o, . 4, e13).

where ¢; € GF(23) - 0.
Based on the construction given in (15) we have the following parity check

13
o
[)
|}

P
e >

L AL AL LB

el
LM
")
r
Al
o
L]

iy,

N

Figure 4: Syndrome Computing Network for the 4-ary (16, 13} Tree Error De-
tecting Code — Example.

matrix for the (16,13) tree error detecting code over GF(23)

T 1111 1311 1111 1111
1000 1000 1000 1000 |, (19)
1000 0000 0000 0000

H3=

and the combinational network for computing S(Y) = {81, Sz, S3) = HsY™ is
shown in Figure 4. O

For the case of a p-ary full tree over GF(2) of any height A, h > 2, we have

_ 1, p=odd,
"= { 2, p=even. (20)

A recursive construction for check matrices for the class of (2°~1,2%-1 — 9)
tree error detecting codes over GF(2) can be obtained in the following way. We
define the following mapping for columns in check matrix Hy:

[0 ,“;- 00 [0 n [11]

0 00 |° 1 01 |°

[1 [10 (1 [01]

0] ~in]’ _1_] 1] (21)

The parity check matrix H, can be obtained recursively from Hj_; by (21)
where Hy = I; (I3 is an identity matrix of 2 by 2). For example, the matrix Hy4
for the binary full tree of height four, h = 4, n = 8, is given by:

|01 11 10 01
Ha= [10 01 11 10 |- (22)

We now present a construction for the class (p"~1,5"~1 — 3k + 2) tree error
locating codes. The code defined by the following recursive definition of Hj, i
locates all tree errors:

————lT L ——

e ——’—-_H_';:_l Eﬁ-l e Hh—l :,| ':Hr' ﬁé .

-1 aae-a - aP=l gp=1 ... gp-1 z
10---0 00---Q0 ... 0 0o ... o |+ @&
00---0 10---0 --- 0 0 ... 0

where o

aPf—1 ig’

1 1 1
l ¢ w* - --

H2=19 0 0 . o ! w1
¢ 1

74
4 < p < ¢ and o Is primitive in G4g). Thus for any p-ary, 4 < p < g, tree

r = 3h — 2 and-we have the class-of (p*=d. ph=laFh 42} peary tree-error locating
codes over-GE(g) For the case of p = 3 one can also use the above construction
V(23Y with Hy = I3 (I3 is an identity matrix of 3 by 3). Therefore, for a p-ary

tree withp =3, ¢ > p, r = 38 — 3. T-,’?
For binary tree over &{¢} Eﬁ'e?t;]]uwing recursive conséruction can be used

for the class of (281 -2h—=f 2} Bifiary tree error-tocating codes over-GF{g)
[Hpy Hp_y] ﬂi N

-

Hy= 1} 10---0 00---0 |, (28
[00---0 10---0 |

Z
where Hs = I, Thus, for a binary tree over &F(g) of height A, r = 24 — 2 and-

we have-theclassoof (281,251 -2k 1 2) binary tree error ToTatin T
GELg). _

The complexity L for the syndrome computing network in terms of numbers

of GEf¢) adders and multipliers is: g g
Z
b L@ - p)+hp-))le+((h- D)le, 26

where Lg is a complexity of a multiplier that multiplies a field element from
GE4q) by a fixed element from the same field.

%
|

\

——
o ——
r—an,

|-

P
LoV '&W*“* “f- Errgr
The deeoding. procedure for tree md'?@':ﬂry simple. Let us denote the—

S;Hhé Gh=1 7
s o s

where 5* ! are syndromes due to the [Hy_1Hp_1 - Hp—1] part of Hj, (see %})
and S7, 5% 5% are syndromes for the last three rows of the parity check matrix
Hy. Let St denotes the syndrome for the all 1 row. The location algorithm to
find a faulty vertex 1s described as follows:

1. If5;=0,i=1,2,...,3h — 2: no error, end.
2. Let 1 =h.

3. If both S%. # 0 and 5'% # 0: error location is the root of the tree of height
7, end.

4, For 7 > 2, if either 52 =0 or S = 0: error location is in the subftree &,
0<k < p-~1, where o = S{/Si_l; for j = 2, if either $2 = 0 or 53 = 0:
error location is in vertex (leaf) k, 0 < k < p—1, where oF = 57/5': end.

5. Repeat steps 3 and 4 for tree of height j = 7 — 1.

6. End. ot Mgl h=7%
Example-continued: The parity check matrix Hs for the 4-ary (1679) tree }— e T
error locating ende w 4.
11 1 1t1T 111 \ 1 1 I 1 1- L 1 %]
1 a o &l 1 a o2 & |1 a o o 1 a o o'
1 0 0 0l 1 9 @ 0 1 0 0 0 1 0 0 (e |
Hi = n 1 0 o110 1 © { 0 1 0 1 0 1 0 B | .
1 1 1 1o o a a o o o o o o o of '3 o=
1 0 0O 01 0 0 0 0 0 G 0 0 0 0 0 4 | .ﬂ{f
L0 0 D gy 1 0 0) 0 0) 0 0 I'.? "

0 0 i
\g o A o2, @) 4l
Suppose that root of subtree 1 (see Flgm‘e }{) is faunlty and the received message

18:

F;iﬁ#}’/({lﬂﬂﬂlali 10000,0000) @)L

Then the syndromes of this message are R

S8 = Hﬁ:e= (2, 0°, 0, @, &2,{],&)'5!. (%D)L(f}
This yields S3 = 0, therefore the error is in the subtree 1 since, 57/83 = a®/a =

a,i=1. Since S5 # 0 and 83 # 0, error is in the root of subtree 1 of height 2.
The combinational network for computing S 7= HzY ™ is shown in Figure ;5

w — A0 s
Y 1{’"2{.."#‘ o

¥, “"'I;":-‘i{*:'.‘mﬁf
/7. 1, Y

14?1 r 5¢- ' Ve [i : . ;
LA ¥ > 5%
5 ‘*,\'///' > :%
W
¥z "i-

a0

WA

P22 NNN\T
) llﬁ;y'\v ,
Ilﬁd N e
¥) .y AN @—h—>B—> 5!
Y1z ,// \ 1
Y3 — 3
LT ”

M’.,&@L
Figure 3: Syndrome-Computing Network'Tor the 4-ary (169} Tree Error-Loeat-
ing Code—Example. v] He,.;h% h=13,

> 85

> 53

4.2 Detection of Errors in Fast Fourier Transform (FFT)
Networks

The results presented above for detection of tree errors can be extended to
other graphs of practical interest containing tree structures as subgraphs (i.e.
any single vertex failure propagates through the graph in a tree-like manner).
Below we consider an iImportant application of tree-like codes for detection of
errors in Fast Fourier Transform (FFT) network [5].

For n-point FFT, there are N = nlog, n vertices interconnected with log, n
levels of butterfly structures, e.g., the graph for the 8-point FFT (decimation-
in-frequency (DIF)) is shown in Figure 6.

If we also consider input fanout branches as possible source of errors, there
are n{log, n+1) single faults in the n-point FFT graph. Due to these single faults

WA=
Wifﬁ _ }jj

0 h
NI =

VA0 iyﬁ
VAR VA=

Figure 6: Eight-Point DIF FFT Network Topology.

we have the following nonzero errors for the 8-point FFT graph of Figure 6:

[(Eﬂa €, €2, €3, €4, €5, &g, ET)? 1
(€0, e, e, €3, 0, 0, 0, D),

0, 0, 0, 0, eq, es, €5, ez)

(Eﬂ: €1, U: U; 01 U: D: 0): I
(0, U, €z, €3, U, D, U, U),
EG)={ (0, 0 0 0 e, e, 0 0), | (31)
(ﬂ, U, 0 G, 0 0 €g, Ef),
(o, 0, 0, 0, 0, 0, 0, 0
(0} £1, U U, U, U, ﬂ, 0),

. (0! U! U: U: 0: 0: ﬂ: ﬁ?):

where e; € GF(g) ~ 0 and |E(G)| =3 F_ 2 (¢ - 1)
A recursive construction for the (27,27 — p — 1) DIF FFT error detecting
codes is:

Hzp—l ng—l] (32)

f?ﬁp —_ [W

where W be a row vector of one 1 followed by 22 — 1 0’s and

H, = [1“ (33)

¥q > S4

Figure 7: Syndrome Computing Network for the (8,4) DIF FFT Error Detecting
Code.

We note that a similar construction for the class of (22,27 — p — 1}, decimation
in time (DIT) FFT error detecting codes is also possible.

Based on the above construction we have the following parity check matrix
Hys for the (8,4) DIF FFT error detecting code over GF(¢):

(11 11 11 11]
e [0 00 1 o0
10 00 00 G0
The complexity L for the syndrome computing network is:
L=(22—1)Lg, (35)

and Hsy» given by (32) is optimal from the point of view of decoding complexity
(note that elements of Hq» are 0 or 1 for any g, therefore no multipliers are
required). The combinational network for computing S(Y') = (S1,...,5:) =
H; Y™ is shown in Figure 7.

We note that for FFT graphs error location is not possible due the fact that
different faults may have the same error patterns.

In Table 1 we summarize our results on linear error detecting and locating
codes for different meshes (stars, binary and non binary full trees and FFTs).

Table 1: Minimal Numbers of Check Symbols for Strong Diagnosis of Multipro-
cessor Interconnection Networks.

Graph Parameters | Number of Check Symbols r
N.n Error Detection Error Location
p-aty star r+Lp 2, p>2,¢4>2 4,4<p<g¢

1, podd, g =2 i p=2"-2 g=2
2, peven, g =2

Binary full tree of height h [2" —1,2*~ | R > 2, ¢>2 | 2h =2, h 2> 2, ¢> 2
2, =2

p-ary full tree of height & %:‘Tl,ph'l h* p>2, 4> 2 Jh—2,4<p=<q
l,podd,q=2 | 3A—-3,p=3,4>p
2, peven, q = 2

2F point FFT p2P 2F p+1* —

*Parity Check Matnix is over {0, 1}.

5 Weak Diagnostics of Multiprocessor Systems

The approach to error location adopted in the previous sections is based on
rather a strong requirement that for every two errors, E;, E; if supp(F;) #
supp(E;), then HE}Y # HEY" (cf. Section 2).

This requirement can be reformulated in the following way. Denote by U; =
{E;} the set of all errors E;p with the same support supp(FEix) = ¥; C Y, such
that U; C E{G). Then, for any two U;,U;, i # j,

HU;))NHU;) = ¢ (36)

(Note that the check matrix H is a linear operator H : V7 — V).

Condition (36) defines what can be called strong diagnostics (SD) of a given
class of errors E(G) in G. However this requirement may be too restrictive and,
in some cases, may result in too large redundancy r. Moreover, 1t should be
born in mind, that a fault that can manifests itself as an error with a largest
possible support ¥; can, in fact, manifests itself as an error with a smaller
support Y; C Y;. If |¥z| = I, then the fraction of such cases is of order {/¢. Since
in SD we assume that any fault manifest itself as an error with the maximum
possible support (any output which can go wrong does so) we can not guarantee
correct location of that fraction of faults.

It looks attractive, therefore, to consider a different approach which would
relax the requirement (36), thereby considerably decreasing the value of r, and,
on the other hand, would keep the fractions of faults denying location reasonably

small for large g (of ©(1/¢)).

Denote V; = {E|supp(E:) C Y;} the set of all errors whose support are
subsets of ¥;. Obviously, V; is an m-dimensional coordinate subspace of V?*,
where m = |¥;|. Then the problem of error location can be formulated as
follows: For a given set {V;} find a linear mapping H : V' — Vy such that for
any & # j,

H(V;) # H(V;). (37)
We will call it weak diagnostics (WD).

The linear operator H can be viewed as a check matrix of a linear code of
lengih n and dimension (n — 7} over GF(g) which is a sub space of V* and the
kernel of the operator H.

Below we consider a few typical system topologies, give the explicit con-
structions for & and estimate the probability of correct fault location.

5.1 Faults In Stars

A star is a tree of height 2. Consider a p-ary star, where p < ¢. Here n = p
is the number of leaves. Let o be a primitive element in G F{g} and consider a
(2 x n) matrix

HF[l 1 1 --- 1]

l o a* --- o®!

(38)
Let (51, S52) be the syndrome. Then the ratio Sq/S5) reveals the faulty leaf:
Sg/slzﬂfi, i:U,l,...,ﬂ.—l (39)

The misdiagnosis occurs if {39) holds, but in fact the root is faulty. For
every i, (39) defines a subspace in V;* of dimension (» — 1). The intersection
of all those subspaces corresponds to the case 53 = 0, 52 = 0, which defines a
subspace of dimension (# — 2). Thus the fraction of misdiagnosis cases is

g = g ng—1 =n

i
e

g q° q

(40)

In a practical situation, n < 100, ¢ = 2°%, and w, & 2.5 x 10~%, This
negligible probability of mislocation allows us to reduce the redundancy by a
factor of 2: r = 2, instead of r = 4 for SD (cf. Section 4.1).

5.2 Faults in Trees

Consider now a more general case of a p-ary tree of height h (Fig. 2). Here
n = p"~! is the number of leaves. The check matrix &}, has the following form:

Hyy Hpq -+ Hp_1
1

Hy = —
h 11---1 oa--x -+ a1 af

a1] (4l

where M5 is given by (38) (with p substituted for n). The number of rows in this
matrix r = A, whereas r = 3k — 2 for 8D (cf. (25)). The location procedure is
simple. Let (S1,5a,...,54) be the syndromes. Then, similar to the procedure
in Section 5.1, the ratio S;/S; reveals the faulty subtree of height & — 1: if
Su/S1 =0, i=0,1,...,p— 1 we decide the fault is in the subtree whose root
ts the node ¢ at the second level from the top (Fig. 2), otherwise the tree root is
faulty. Similarly, if S4_1/5 =a*,i=0,1,...,p— I, 1t reduces the faulty part
tc a subtree of height h — 2, etc.

However, there is a possibility of making a wrong decision at any step of the
procedure, due to the fact that it may happen Shor/Si=e*i=0,1,...,p— 1;
k=10,1,...,h— 2, in spite of the fact that the fault is at level k£ + I from the
top. Using the expression (40) and omitting terms of higher order in g~ L, we
obtain the fraction of misdiagnosis cases:

we = pr o+ (1 —pg prt +(1-pg) 2pg 7+ 4 (1 — pg)t 2pg !
= 1—(1—pg ')*! (42)

For large ¢, we ~2 (A —1)pg™', which is, again, very small for practical values
of the parameters.

5.3 Faults in Disconnected Processors

Consider now the situation when we have a set of n processors disconnected
in the testing mode. Then a fault in a single processor manifests itself as a
single error. Our goal is to locate faulty processors, i.e. to locate errors up to
multiplicity {. Hence the set of errors is a ball B; of radius { in V;* centered at
the origin.

Obviously, the minimum number of check digits that would allow us to locate
at least some errors is r =1+ 1. We choose matrix H to be the check matrix of
a g-ary Reed-Solomon code:

1 1 | B 1
1 & af ... on!
2y —
7= 1 &2 &4 cen gy {n 1] (43)
I 1 ﬂ;I adl L. &I{n—l} |

The remarkable property of this matrix is that any (I+1} its columns are lin-
early independent. Since Reed-Solomon is an MDS code, it attains the Singleton
bound, and its distance d=r+1=1{+ 2.

It should be pointed out the difference between our problem of error location
and the more usunal problem of correct decoding [7], [21]. In spite of the fact
that, in the situation considered, any code that locates all errors up to a given
multiplicity corrects all such errors as well, the problems are quite different.

In decoding the goal is to find a coset leader of the minimum weight, thereby
minimizing the probability of error. In our problem we do not consider proba-
bilities; we are interested to find out how many errors from B; can be uniquely
identified by their syndromes, in other words, which cosets intersects with B; in
exactly one point.

Consider the set {¥;},i=1,2,..., (’;), of all possible I-tuples from n. Then
Vi = {Eixjsupp(£ix) C Yi} is an I-dimensional coordinate subspace in V*,
Vil = ¢'. Obviously, |; Vi = By It is easy to see that the mapping H : Vg —
V;H maps any V; to i{;“ injectively. Indeed, the opposite would mean a linear
dependence of { columns of /. Also we observe that

swi= (e wimi=3 (2)a- (1)

3 m=0

The ratio of these numbers differ from 1 in terms of order ni~1¢~!. Hence-
forth we neglect these terms assuming that { € n < g.

Denote the image H({V;) = W;. All W; are I-dimensional subspaces in the
({4 1)-dimensional space of syndromes H(V;*) = W. Let us estimate how many
members of W; do not belong to any other subspace W; = H(V;). Note that
any two subspaces W;, W; Intersect over a subspace of dimension ({ - 1}. The
minimum dimension of intersection of three subspace is {{ — 2), etc. (The prob-
ability that randomly chosen ¢ subspaces intersect over a subspace of dimension
higher than I — ¢ + I is of order ¢~ —+2) ¢ < 1+ 1). Alternatively subtracting
and adding terms corresponding to intersections of two, three, etc. subspaces
we obtain the following estimate for the fraction of errors in any W; that can
be located:

oo = o= () e (B e

I+1 ny
= > (- ((I)t l) 7, (45)
where w, = 1 — w,. |

We are interested in the case when w, is close enough to 1. It requires that
(’;)q-l < 1. Then the terms 1n (45) decrease monotonically and we can extend

the summation up to (}) terms. Moreover, since the largest intersection term
{the second) is negative, one can believe that the expression will give us a lower
bound for the fraction of localizable errors. Therefore,

ez 3 N G PRI (O PO Y

t=0

For example, if{ = 5, n = 100, ¢ = 232, then w, = 0.979. Thus, by allowing a

Table 2: Mimimal Numbers of Check Symbols for Weak Diagnosis of Multipro-
cessor Interconnection Networks.

Graph Parameters | Check Symbols Fractions of
misdiagnosed errors
N,n 7 We
p-aTy star p+1,p 2 (ng — 1}¢
p-ary full tree of height h [Z=1, pP— B 1—(1—pg~1)h-1
i disconnected processors ", N I+1 <1—(1- g_l)(t)-l
with up to [faults

small fraction of errors not to be located we reduce substantially the redundancy
fromr=214zFtor=1+1.

In Table 2 we summarize our results on linear error locating codes for dif-
ferent meshes (stars, trees and disconnected) with weak diagnostic.

6 Conclusions

In this paper we have presented bounds on numbers of check symbols required for
codes detecting and locating arbitrary set of errors. These codes can be used for
1dentification of faunlty processing elements in multiprocessor systems or array
processors. We presented several nearly optimal error detecting and locating
codes for tree and FFT errors. Hardware implementation based on the proposed
codes results in considerable savings of redundant overhead. The concepts of
strong and weak diagnostics are introduced and estimates of probabilities of
correct fault location for weak diagnostics are presented.

Acknowledgment

The authors would like to thank Professor Tatyana). Roziner of Boston Uni-
versity, Boston MA, for valuable discussions on the results presented in this

papet.

References

[1] P. H. Bardell, W. H. McAnney, and J. Savir. Buslt-in Self Test for VLSI:
Pseudorandom Techniques. Wiley Interscience, New York, NY, 1987.

[2] K. E. Batcher. Design of a Massively Parallel Processor. IEEE Transaction
on Computers, C-29:836-840, Sept. 1980.

[3] J. Bently and H. T. Kung. A Tree Machine for Searching Problems. In
International Conference on Parallel Processing, pages 257266, 1979.

[4] C. Berge. Graphs and Hypergraphs. North-Holland, New York, NY, 1973.

(6] D. F. Elliott and K. R. Rao. Fast Trensforms: Algorithms, Analyses,
Applications. Academic Press, New York, NY, 1982

6] T. Y. Feng. A Survey of Interconnection Networks. JEEFE Compuler,
14:960-965, 1981.

[7] C. R. P. Hartmann. Decoding Beyond the BCH Bound. IEEE Transaction
ont Informalion Theory, pages 441-444, May 72.

[8] J. P. Hayes et al. A Microprocessor-Based Hypercube Supercomputer.
IEEE Miero, 6:6-17, Oct. 1986,

[9] W. D. Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.

[10] K. Hwang and F. A. Briggs. Computer Architecture and Parallel Processing.
Academic Press, New York, NY, 1982.

[11] M. G. Karpovsky. Weight Distributions of Translates, Covering Radius,
and Perfect Codes Correcting Errors of Given Weights. IEEE Transaciion
on Information Theory, IT-27:462-472, July 1981.

[12] M. G. Karpovsky and S. M. Chaudhry. Built-in Self Diagnostic by Space-
Time Compression of Test Responses. In IEEE VISI Test Symposium,
pages 149-1H4, 1992,

[13}] M. G. Karpovsky, L. B. Levitin, and F. S. Vainstein. Identification of Faulty
Processing Elements by Space-Time Compression of Test Responses. In
International Test Conference, pages 638647, 1990.

[14] M. G. Karpovsky and V. D. Milman. On Subspace; Contained In Subsets
Of Finite Homogeneous Space. Discrele Mathematics, 22:273-280, 1978.

[15] S. Y. Kung. VLSI Array Processors. Prentice-Hall, Englewood Cliffs, NJ,
1988.

[16] F. J. MacWillams and N. J. A. Sloane. The Theory of Error-Correcting
Codes. North-Holland, New York, NY, 1977.

[17] B. Masnick and J. Wolf. On Linear Unequal Error Protection Codes. IEEE
Iransaction on Informaiion Theory, I'T-3:600-607, Oct. 1967.

[18] E. J. McCluskey. Built-in Self Test Techniques. IEEE Design and Test of
Computers, pages 2128, Apr. 1985,

[19] F. P. Preparata and J. Vuillemin. The Cube-Connected Cycles: A Versatile
Network for Parallel Computation. Communication of the ACM, 24:568~

572, May 1981.

[20] S. R. Reddy, K. K. Salyja, and M. G. Karpovsky. A Data Compres-
sion Technique for Test Responses, IEEE Transaction on Computers, C-

38:1151—1156, Sept. 1088.

[21] U. K. Sorger. A New Reed-Solomon Code Decoding Algorithm Based on
Newton’s Interpolation. IEEE Transaction on Information Theory, [T-

39:358-365, Mar. 1993.

