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- Fault Detection in Multiprocessor Systems
and Array Processors

Mark G. Karpovsky, Fellow, fEEE, Tatyana D. Roziner, and Claudio Moraga

Abstract — Off-line testing of large muitiprocessor networks or
VLSI chips with many cutputs requires a large volume of mem-
ory for reference data storage. Space compaction combined with
time compression of test responses can essentially reduce an over-
head required for testing and diagnosis. In this paper, we discuss
the problem of optimal design for SPace COmMpPressors
(compactors), to minimize the number of observation points for
detection of single faulty components in mitltiprocessor networks,
A. space compactor is assumed to be followed by a time compres-
sor, to detect a fault not necessarily manifesting itself for a single
test pattern. -

We formulate the rules of design for a space commpaction ma-
trix for the topology of the circuit-under-test (CUT) modeled by
an arbitrary acyclic graph. Tree arrays and Fourier transform
networks are considered as examples. The lower and upper
bounds on the number of space compactor outputs are ohtained,
and optimal space compaction matrices are determined for abave
mentioned CUT topologies. Simple procedures for design of off-
line testing devices with built-in sell-testing are presented. Esti-
mations on a complexity of proposed designs are given.

Index Terms — Fourier fransform networks, fault detection in
¥LSI devices, data compression {compaction), integrated circuits
testing, off-line testing; VLSI devices testing.

I. INTRODUCTION

IT is hardly possible to overestimate the importance of the
problem of hardware testing. With the development of ad-

vanced technologies for VLSI chip manufacturing, the prob-

lem of testing becomes more important and also much more
complicated. As a result, considerable effort is being devoted
to the development of efficient and reljable methods of testing

{see e.g, [6], (18], [19]). Built-in off-line self-testing (BIST)

becomes in many cases a necessary feature of a VLSI chip.
Evidently the area needed for the checking circuitry and for
the storage of reference data should be minimized. This re-
quirement gives rise to testing techniques based on reducing
the amount of test response data (response compression or re-
sponse compaction, [3], [8], [9], [101, [12], [13], [14], [15],
(21], [22}, [24], [25], [26], [28], {291, [30], [31], [32], [34]).
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The general siructure for off-line testing by a space-time
compaction of test responses essentially follows that of Fig.1.

The circuit-under-test (CUT) receives test patterns from the
test generator (TG); the N outputs of the CUT are space-
compacted to a smaller number r < N in the space compactor
(SC). The outputs of SC are compressed in time by the time
compressor (TC) tnto r signatures and compared in the com-
parator (A) with the reference signatures (pre-stored in the
memory reference block (MRB)). The space compactor (SC)
is 2 combinational ¢ircuit and the TC is a sequential one.

Time and space compressors described in literature are
transition- and edge-counting .compressors [8], [21], linear
space compressors [24], linear feedback shift register (LFSK)
signature analysers/compressors [7], [12], [13], [14], [26], ac-
cumulator-based parallel compactors [6], [25], [28], [30]; also,

.COMmpressors using spectral methods have been developed [10],
[13], [31]. Cellular automata (linear finite state machines) have
been proposed recently as an alternative for LESRs for signa-
ture analysis [3], [29], [341. The choice of a certain compac-
tion method depends on the tradeoffs between cost and the
percentage of fault coverage (aliasing).

The model of a network that might contain a fauity element
(a graph where the nodes represent processing elements (chips,
boards, computer nodes, etc.), and the edges are the communi-
cation links) is rather general. If the circuit-under-test (CUT) is
a standard chip manufactured in large quantities, with a certain
percentage of defective units that should be rejected, then the
task of the efficient fault detection becomes probably even
more important than fault location. :

In this paper we will consider the problem of optimal design
of space compactors (SCs) for fault detection for off-line test-
ng. (Time compressors following space compactors can be
implemented by standard MISRs [22]). The major problem in
the design of SCs is the problem of minimization of the num-
ber of outputs, r, of an SC for a given network, in such a man-
ner that any single fault that manifests itself in the non-
compacted output(s), can be detected also by the circuit with
the space compactor, We present a solution of this problem for
tree arrays of processing elements and for FFT networks. The

proposed optirnal SCs are linear and can be implemented by -

XOR gates' only. For FFT networks, the proposed checking
crrcuit requires smaller overhead than e.g., the design of [32]
based on the use of multipliers. The gain in complexity of the

- required overhead (compared to the conventional straightfor-

ward method of checking of all outputs of a circuit) can be as
high as N/(log,N) for a large size FFT.

0018-9340/95504.00 ® 1995 IEEE

T T o, T, i SPE T - 1= e T,




384

Xo
16
b _
Test Test
patterns responses

Fg.1, Block diagram of a space-time compactor for off-line testing.

II. THE PROBLEM STATEMENT

Consider a directed acyclic graph & which represents a
network of processing clements (PEs). The PEs are located at
the nodes, and the directed edges of the graph represent b-bit
communication links. Let G have N, input nodes (nodes with
outgoing edges only) and N output nodes (nodes with only the
edges entering these nodes). In this paper, N; = N in most
cases. We shall assume that the following is valid for the
graph:

1) The graph G has depth d (i.e., the maximum number of
edges in a path from an input node to an nutput node is
d-1). :

2} Any output node is reachable from at least one mput
node.

3) At most one PE in the system (of any number of incom-
ing lines to one PE) may be faulty.

4) We shall consider below single additive errors in inear
systems (with acyclic graph topology); only detectable
single faults at the system nodes will be considered. A
detectable fault in a node (i.e., in a PE) is the one that
manifests itself in at least one output node and for at least
one test pattern from the test pattern set. In other words,
any error of detectable type propagates to an output node
level. This assumption is reasonable for the case when
the network is tested by a large number of randnmly cho-
sen test patterns
We shall assume that any error at a node propagates to all
successive nodes. Since the communication links are

multibit (b-bit, e.g., b = 32) fines, the probability of error
masking it all blts 1$ vanishingly small,
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Certain assumptions should be ‘done as to the structure of
the nodes. As mentioned above, the nodes are assumed to be
processing elements (devices, computers, processors, etc.) Our
model describes the network (which is actually a CUT) on a
system level, and our approach does not depend on the gate
implementation of a specific node. This node level model is
widely accepted in the literature. We do not consider the case
when the nodes of G are just gates.

Let the N outputs of graph G (we shall use this loose nota-
tion for the outputs of the network with topology modeled by
graph G) be ¥ = (Yo, Y1» - YH1) » 1€, ¥ is 2 vector-column of
the output values in the fault-free system, and let

5=(5g> F1» - Fws)" be the output vector distorted as a result
of a fault in one of the PEs {or incoming lines to the PE};
¥ 3; € {0, 1, ... g-1}, where g = 2". The last statement
means that y; ¥; are b-bit binary values (fault-free and faulty,

respectively) of the j th output PE; j=0, 1, ..., N-L.

Let @ denote bitwise (for vectors, alsn coOmponentwise)
modulo 2 addition. For y @ y vector, consider its support
(that is, a vector with { th coordinate equal to 0 if y; = y; and

equal to 1 otherwise} and call it error pattern, . All posmble
error patterns for a given graph G (and single fault case) con-
stitute the error set, E, |

Example 1. Let N = 3, b = 4 (three 4-bit nurputs), lct
y= ({]101 1101, 111 )" andy = (0101, 1110, 001{})
y& ¥ = (0000, 0011, 1101)™ and e = (0, 1, D7, thatls
second and third outputs are incorrect.

A linear binary space compactor {(SC) can be described by

an {r X N) binary matrix A (we shall call / a "space compac-
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tion” matnx). The outputs of the compactor form vector of
signatures, § , where

5§ =Hy= Gﬂs §iswees Er-u)rr,
5 €{0,1, ..., g—1}

{see Fig.1); all additions and multiplications are modulo 2 op-
erations. For example, if ¥ =3, b=2, ¥y = (01, 11, [}I)T’,

r=72, and
H—I 0 1
1011
we have
0 1
R R 1 0 1 0 O
s=Hy= I 1= ]
3 [U 1 1] [1 G}
u{) 1_

The necessary and sufficient condition for error detection by
an SC is Hy # HY for all y and all 7 generated by single
faults in the network. Thus, the problem to be solved is the
problem of optimal space compaction in a single fault detec-
tion task: for a given topology of directed acyclic graph G with
N outputs, construct the error-detecting matrix H with N col-

umns and minimal number of rows r <A, such that for any er-
ror pattern e € E, the vector He has at least one nonzero com-
ponent. Moreover, to eliminate the possibility that two or more
“secondary” errors in the outputs (induced by the same single
fault at an internal node)} will compensate and produce no dis-
tortion in §, we require that for any e € E, there exists at least
one row h of matrix A such that vector H e ¢ has only one
nonzero component (e is componentwise multiplication of bi-
nary vectors 2 and e; multiplications and additions are mod 2
operations, componentwise for vectors and bitwise for a com-
ponent). The problem of single fault detection in graph G with
N outputs is closely related to the problem of construction of a

g-ary linear error-detecting code of the length N with (N-r) in-
formation digits and r check digits detecting a given set of er-
rors, E (defined by graph G); H is the parity-check binary ma-
trix for the code [16). If E is a set of all binary veciors with at
most ! 1s, then our problem is a classical and difficult problem
of construction of a best g-ary linear code detecting ! errors
with a minimal number of check digits [16].

Note that from the viewpoint of minimization of the hard-
ware needed for space compaction, it is advantageous to have
an error-detecting matrix H with binary elements since in that
case only XOR gates are needed for space compaction (see
Section I'V).

ITI. FAULT DETECTION IN TREE STRUCTURES

The binary tree structure is a model for a number of hierar-
chical computing systems (e.g., dictionary and searching ma-
chines [2], [27]). Many concurrent algorithms can be mapped
onto a binary (or a p-ary) tree; the architecture of a general
purpose multiprocessor concurrent computer can be modeled
by tree structures [17]. Therefore the interast in reliable im-

piementation of tree architectures is justified. A good survey
of different approaches to fault-tolerant binary tree structures
can be found in [9].

We are interested 1n finding the structure of a space com-
pactor with a minimal number of outputs, 7, to detect any sin-

gle fauity node in the tree of depth d. The space compaction . -

matrix H{d) should have » rows that are linearly independent,
that is, no one of the rows of Hg(d) can be obtained as a sum
modulo 2 of other rows (the coefficients in the linear combi-
nation can be either 0s or 1s}). The maximum number of line-
arly independent rows {or columns) in Hs(d) is the rank of this
matrix over Galois field GF(2"). Only r < N independent out-
puts of space compactor will be monitored, instead of N out-
puts of the tree. We are therefore interested in minimizing
(the number of space compactor outputs and the number of
rows in Hg(d)), and we would like to have the rank of H{d)
equal to r., |

Consider a directed acyclic graph with the levels numbered
0 to d—1 (level d-1 is the level of output nodes). A single fault
at any node (or at any number of incoming links to the node)
results, under the assumptions of Section I, in a certain error
pattern, ¢, with 1s i the positions corresponding to the nodes
of the last level with distorted cutputs. We shall call two error

patterns e, e; non-intersecting if &; » ¢;=0 (= is compo-

nentwise multiplication). The following theorem gives the up-
per bound for the number of rows in Hs(d).

Theorem 1. Let G be a directed acyclic graph with d levels

~where only single-node faults (or fanlts at any number of the

inconmng lines to one node} can occur. If for any two nodes of
the same level, their error patterns either coincide or do not
intersect, then the minimal number of rows, r, of the space
compaction matrix Ho{(d) which detects any single detectable
fault, 1s less or equal to 4. |

Proof. To detect a single fault in any output node, the row
of all 1s in HAd) 1s sufficient. Consider all the nodes of the
level i, 0 < i < d-2. A faulty node of this level implies a certain
output ertor pattern, e¢*, with component numbers jg, f1, --- J
equal to- 1 (the rest are 0s). To detect the faulty node, the
space-compachon matrix must contain at least one row k& such
that e*sh (+ is componentwise multiplication} has only one
NONZzero component.

Assume that there are g; distinct and non-intersecting error
patterns for the faults in the nodes of i th level. If £ 1s ¢hosen
as a vector with g; 1s in such a manner that k intersects with
each of g; error patterns in a single component only, then the
row ki will detect all the single-node faults of the i th level. In
other . words, it i1s enough to choose a single 1 in each one of
the g; non-intersecting subsets of 1s in the output error patterns
for level i. The rest of the components of row h are to be taken
as Os. The resulting N-tuple will be a row of Hs{d) detecting
the faults at the nodes of the i th level. Since the error patterns

for different levels of & may coincide, the number of rows, r, .

in Hd) 1s less or equal to d. |
A simple procedure for constructing a space compaction
matrix Hg(d) can be suggested as shown below.

o Step 1. Construct a set, E, containing all possible distinct

I L



386

error patterns resulting from the single-node faults for a
given acyclic graph G (modeling the array of PEs). An
error pattern 1s an N-bit binary vector (V is the number of
output nodes), and the i th bit of error pattern is 1 if and
only if the error manifests itself at the i th output of the
graph.

e Step 2: Partition the set E into the minimom number of
subsets, r, where the 1s in any two elements of a subset
do not intersect.

- » Step 3. For each element in a subset, if the number of 1s
in this element is § and _,r > 1, then arbitrarily replace j—1
1s to Us.

o Step 4: Construct a set, H, which contains r vectors. Each
vector in H is corresponding to a subset of the partition,
and it is formed by bitwise XOR (vector XOR) on all
elements in the subset. Each element of H will be used as
& row vector in space compaction matrix Hg(d). |

In a sense, the procedure described above is more general
- than the result of Theorem 1 since it does not require that the
pattitioning of E into subsets be done according to the node
level. It is evident that the space compaction matrix for a given
eraph might be not unique. )

Example 2. Consider a four-point FFT graph of depth 3
with 12 nodes (see Fig. 2). There are seven distinct error pat-
terns for single-node faults. For any tnput node fanlt, the error
pattern is (111]) 1%, two patterns (1100) = 1*0° and
(0011) = 0°1? for the middle level do not intersect as well as
the four patterns with a single 1 for the output nodes. The
space compaction matnx for this graph can be selected as

I 1 1 1
H=|1 0 R
1 0 0

1
0

A balanced p-ary tree of the depth d is a directed graph with
a single mput node (the root) and p outgoing edges for each
node except of the output nodes; the number of output nodes is
' p©'. The following theorem states that under the following

rather weak condition (Equation (1)), we have r 2 d for a p-ary
tree, that is, one cannot go below 4 in the number of rows of
space-compaction matrix for a p-ary tree topology.

Theorem 2. Let graph G be a p-ary tree of depth d having
N =p“” output nodes, and let the outputs of the sysiem repre-
sented by graph G have values b from the Galois field GF(g)
where g = 2° (b-bit output values). Then any space compaction
mainx H{d) with r rows and N columns for the tree with d
levels G has arank atleastd (e, r>d) if

1
Iugp(l +(g- 1)'1_)

The proof of Theorem 2 is given in Appendix A. We note

that 521) 1s satisfied for most practical cases (e.g., =32,
g=2")

d=< , g=2"

(1)

Corollary. It follows from Theorems 1 and 2 that for a p-

a4 e e eEmm LELEs 1 W LPRIar
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Fig. 2. Example of a graph with error patterns that either coincide or do not
intersect for any two nodes of the same level,

ary tree such that (1) is satisfied wehave r=d = 1+ log,N; N
is the number of tree outputs, r is the number of (independent)
rows in space-compaction matrix, and d is the tree depth.

Example 3. For a binary tree of depth d = 4 (with 2*? = 8
output nodes), the space compaction matrix H(4) has four rows
and eight columns:

11 1 1 111 I
110 0 1 1 0 0
H(4)= .
1 0 0 0 1 0 0
10 0 0 0 0 0 0]

It the columns of H(4) are numbered 0 to 7 starting from the
left, it can be seen that there are four linearly independent col-
umns in H(4), say numbers 0, 1, 2, and 4. Using (1) it can be
obtained that for g > 6 (i.e., more than 2-bit output values), it
is impossible to construct H(4) with less than four rows.

Example 4. This example illustrates that in the case when
(1) 1s not satisfied, it is possible to construct the space-
compaction matrix with the number of rows (and rank) less
than the depth of a tree. Let p=2, d = 3, g = 2 (a binary tree of
depth 3, see Fig. 3, with the system outputs that can have val-
ues 0 or I only). The condition (1) is not met:

d=3>1f(log,2)=
There are seven distinct error patterns: (10%), (0109, (0°10),

0 i 2 3

Fig.3. A binary tree of depth 3 (p =2, d = 3) for Example 4.
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(0°1), (1207, (0%1%), and (1*), and the space compaction matrix
H(3) can be constructed with two rows only:

o 40 ]

The general rule of constructing H(d + 1) for a p-ary tree, if
H(d) is known and (1) is satisfied, is as follows: H(d) (having
d rows) 1s repeated p times, and one more row (the last one
having a single 1) is added: -

CH(d) | H(d) | | H(d)]
Hd+D)=|-—— | ——— | === | -—=
H_.l“‘U | 60 1 - | 00

As a special case of p-ary tree, the star topology of graph G
needs H-matrix of two rows only as specified above. For the
single fault case in a star graph, instead of checking all N = p
output values, it is sufficient to check only two functions: the
sumn of all the outputs and any single output.

IV. FAULT DETECTION IN ACYCLIC GRAPHS
CONTAINING TREES AS SUBGRAPHS

The resuits presented above for tree stuctures can be ex-
tended to other topologies of practical interest containing tree
structures as subgraphs, since any single node fanlt manifests
itself propagating through the graph in a treclike manner. The
faulty node is the root of a tree subgraph of G, and the leaves
of the tree are the distorted output nodes. We consider below
several special important cases.

A. Fast Fourier Transform.

Consider the graphs corresponding to the flow diagrams of
the fast Fourier transform (FFT) [5]. The processing elements
(PEs) located at the nodes of an FFT graph are simpie
(multiply-add cells) but their quantity may be very large. For

reverse
Level O 1T 2 3 order
Xg i=0 < =0 Y,
o A-._ D
X, 2 , s 2 ;2
Xy 3 Y"" T 3 ;u
X, 4 - 4 ;
x: 5 "‘ “\v v,' = 5 ?:,
NRV/A\V- -G

[ NN,

Fig. 4. The flowgraph of the eight-point DIF FFT.

X, 7

an N-point FFT, there are Nlog,N PEs if we do not consider
the input nodes as processing elements (they are just fan-out
peints). However, for the purpose of generality it will be con-
venient to consider the input nodes also as PEs and conse-

"quently as possible sources of faults; in that case, there are

N(loga N + 1) PEs in the whole graph, Note that an FFT flow
diagram can be viewed as a structure composed of intersecting
binary trees; therefore the results formulated for tree graphs in
the previous section, are valid for FFT graphs.

For an N-point FFT, the number of graph levels is.
d=1+ logsN, and it will be shown below that the space com-
paction matrix H{d) has d rows.

Evidently the space compaction based on H{(d) can be very
efficient in the case of large size FFTs: instead of monitoring
N outputs, one can check only 1 + logoN outputs of the SC, and
any singke detectable fault will be detected.

The space compaction matrix H(d) has slightly different
forms for DIF FFT and DIT FFT (decimation-in-frequency
and decimation-in-time fast Fourier transform, [5]) but the re-
cursive rules to obtain H{d + 1) are similar. Let H{d} denote
space compaction matrix for the N-point FFT; d = 1 + logyV. It
¢an be shown {as follows from the Procedure described in
previous section) that the space compaction matrices for N-
point DIF FET and for N-point DIT FFT (I + log,N rows, N
columns) can be written as shown below:

Space compaction matrix Hy p(d):

Row 0 All 15 in the row: (1™
Row 1. N/2 pairs (10): (1"
Row 2 N/4 4-tuples (1000): - {1000)™*
............. (3)
Row (d-2) ~ Two (N/2)-tuples, each (10022
. with a single 1 on the left:
Row (d~1) A single (leftmost) 1 (10™)
| in the row:
Space compaction matrix Hy pr{d):
Row 0 All 1s in the row (1"
Row 1 N/2 and Ni2 Os: (172"
Row 2 ~ N/4 15 on the left, (14PN
the rest are Os:
......................................... (4)
Row (d-2) Two 1s on the left, {12093
the rest are (s:
Row (d-1) " A single (leftmost) 1 (10"
in the row:

Example 5. The graph for the eight-point DIF FFT is
shown in Fig. 4. The error patterns of the eight-point DIF FFT
implied by single-node faults are:

(10, (0105, ..., (071} (level 3);

(170°), (0*1%0%), (0*1%0%), (0°1%) (level 2);
(1*0*) and (0*1%) (level 1): _
(1%} (level 0).

For the eight-point DIT FFT, the error patterns are the same as.

in DIF FFT for levels 3 and Q. For level 2, there are patterns
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(10°10%), (010°10%), (0°10°10), and (0°10°1). For level 1, the
patterns are (10)* = 10101010 and (01)* = 01010101. Thus

_ - 8
111 1111
- (4')= 1010 1010] (10)* .
* 1000 1000 (wa)z
1000 0000 )
_1{} -
and | -
‘1111 1111 1®
He o (4)= 1111 0000| _ 1%0* 6
’ 1100 0000 120°
1000 0000 107

B. Walsh-Hadamard Transform, :
- The flowgraph of the Walsh-Hadamard Transform (WHT)

[S] differs from the flow-graphs of FFT (Fig.4 and Fig. 5) only

in the values of twiddle factors (x1s for WHT). Therefore the
space compaction matrices for WHT flowgraphs are the same
as for the FFT matrices (one of the two types can be chosen
depending on the factorization of the fast WHT matrix).

V. HARDWARE COMPLEXITY OF SPACE
COMPRESSORS FOR FFT-NETWORKS

Consider the conventional method of testing of an FFT net-
work for an N-point transform when each of the N b-bit out-
puts is compressed to an b-bit signature by a b-bit MISR and
bitwise compared to b-bit pre-stored reference values. This
method requires 2Nb flip-flops (N b-bit MISRs and Nb bits of
storage for reference values, Nb gates for MISRs, Nb one-bit

comparators (1.e., Nb two-input XORs), and Nb—1 two-input -

OR gates (See Fig. 6). Thus the complexity of a conventional
testing circuit is: .

Level O 1 2 3
Xy i=0 '

F e

=0 ¥,

SN 7

X, 1
X
Xe 3 ' “A’A’ 3' Y
XX, 5,
Xy 4 . “"#‘1‘ Yy
Xy D ‘ ¢ AVA S ;5.
X, 6 — AVAS 6 ;ﬂ
X 7 ' x 7 Y,

Fig.5. The flowgraph of thé eight-point DIT FFT,
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L =2NbLy+ (3Nb-1)L, ' @
~where Ly is a flip-flop complexity (in terms of two-input

gates), and L, is a complexity of a two-input gate.

For the design with space-compaction matrix H; for N-point
FET graph, N—1 b-bit mod 2 adders can provide the needed
logoN + 1 outputs. For example, it can be seen (Fig.7) that for
the e1ght-point DIT FFT, seven b-bit adders will perform the
needed multiplication of the graph outputs by the matrix (5)
which results in a signature (§;, 5, §, §,):

7 3 |
o "'“-Zi'i 91 =Zi’f; s3 =Yo + 35 8§ =Y.
=0 =0 _
For this small size example (eight-point transfarm), one has to

monitor four outputs §,, §), §;, § instead of eight
(¥gs¥y, -+=s¥7); In general case, the number of the signature

components is logaN + 1 which gives an essential gain com-
pared to N. The proposed space-compaction design requires

- b(logaN + 1) storage cells, b(log:N + 1) flip-flops of b-bit
MISRs, b(logaV + 1) gates of MISRs, b(log,NV + 1) for b-bit |

XORs of comparators, b(log,N + 1) — 1 two-input OR gates,

and N-1 b-bit adders mod2 (see Fig. 7, n = 8). Each adder
mod 2 is actually a set of b two-input XORs (bitwise modulo 2
addition), and the complexity of a space-compaction circuit for
N-point FFT equals

Ly=2b(log:N + 1) Ly + [(3bogsN + 1) + N-1)b — 1] L, (8)

Note that the number of mod 2 adders is minimal if a paraliei
space’ compressor is considered: no less than N-1 additions
mod 2 are to be performed for any network with N outputs, For
example, if b = 32, N=2'° = 1024, and Ly = L, (one gate
complexity for a flip-flop), then L; = 1.64 x 10° L,
L;=3.45x 10°L,. -

In (8), the highest order term is the last one including the
factor of N. This term arises due to the high number of adders
mod 2 used in the paralle] design of Fig. 7. For a large size FFT
chip, the spectral components are generally obtained in a bit-
parallel, component-serial manner (one component per clock;
seg e.g., [20]). Therefore it makes sense to vse serial accumula-
tion of the output values instead of paratlel bitwise addition
mod 2 and save significantly in the complexity of the checking
circuit. If bitwise adders/accumulators mod 2 (T flip-flops) are

used, their number can be logh,; + 1 only (see Fig. 8).

The controlling counter in Fig.8 will provide addition en-
ables for log,N + 1 adders for the accumulation of signature
components. One of the adders/faccumulators (computing s54)
will add all the components of the spectrum; the next-one will
add a value once m two counter clocks, the next one will add
once in four counter clocks, ete, The complexity of such a de-
sign will be as follows:

Ly = [3b(logyN + 1} + logaV)] Ly +
[3b(logyN + 1) + 0.5(log,V)* + 0.5log N-11L,  (9)

The complexity of (9} (see Fig. 8 for N = 8) will be of the

 order of blog,N for large N which provides an essential gain

of the order N/log,N compared to the straightforward ap-
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Fig. 6. A straightforward comparison of -bit outputs of the eight-point DIT FFT to pre-stored correct signature values sp, 8¢, ..., SN (¥ = 8).
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— = I _ Clk
gl x| B
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(b T-flip—flops)

Fig. 8. The space-compaction circuit for the eight-point DIT FFT (N = 8) with logaN + 1= 4 addtrsfﬁccumulaturs used for word-segial signature generation.

proach (7). For b =32, N=2", and Ly= L;, [ = 2.2 X 10° L,

(whereas L; = 1.64 10° L,; the gain Ly/L; = 74.5).
Fig. 9 illustrates the comparison of (7), (8), and (9) for
b=16.

V1I. CONCLUSIONS

- Optimal design for space compactors minimizing the num-
ber of the observation points for single fault detection in a lin-
ear circuit-undertest has been presented. The networks model-
ing the structure of chip-under-test are tree arrays and FFT
networks; also, more general examples (directed acyclic
graphs) have been considered. The estimation of hardware
complexity of the proposed design of space compactors for
FFT networks shows that for large size transforms, the gain in
hardware complexity can be of the order Nflog,N where N is
the size of the transform.
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APPENDIX A. PROOQF QF THEOREM 2.

We shall prove Theorem 2 for binary trees; the proof can be § -7
easily extended to the case of p-ary trees. The theorem canbe 3.7
proved by induction. The theorem statement is correct for
d=2 {and g>2, for a binary tree); in this case the matrix § .
Hg (2) has two rows, one consisting of 1s and the other having -
single 1 (the rest of the elements are Os). Assume that the theo- § .70

rem statement is true for a tree G(d) of depth 4, ie., that
rank(H (d)} = d when (1) is satisfied. We shall suppose that §-
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Fig. 9. The comparison of complexity of hardware needed for off-line testing -

for the proposad approach (L for the design of Fig. 7 and L; for the design of
Fig. 8) compared to the complexity L, of the straightforward testing hardware
with compression in time only. L;, Lz, and L, are the equivalent numbers of
two-input gates for 16-bit data (b = 16)..

rank({H; {(d + 1) = d while (1) 1s satisfied; it will be shown that
this results in a contradiction. |

We repeat below for reference purpose the statement of
Theorem 1 (formula (Ap1), same as formula (1) of Section 1

< 1 . g=2b  (Apl)

- lﬂﬁp(lﬁ- (q—l}-t)

A binary tree G{d + 1) of depth d + 1 can be constructed
from two identical binary irees G (d) and G,(d) and one addi-
itonal node (the root) as shown 1n Fig. A-1.

ROOT

LN NN RN

Fig. A-1. A binary tree of depth & + 1 constructed from two binary trees of
depth d. |

Let a space cumﬁactiun matrix for the binary tree of depth
d+ 1 be Hg{d + 1) and let its rank be 4. If we subdivide the
matrix Hg(d + 1) into two equal parts:

Hg(d+1)=[H,(d)} H,(d)]

then H(d) must be the space compaction matrix for G,(d), and
H(d} must be the space compaction matrix for G,(d). By as-
sumption, rank(H(d}) > d (as well as the rank of Hy(d)).
Therefore each one of the matrices H\(d), H,d) must have at
least d linearly independent columns.

Consider now the case of a single fault in the root PE of
G(d + 1). All the outputs of G; and &, will be distorted; if e is
any error vector (2°-tuple), then the r-tuple H(d + 1) ¢ has at
least one nonzero component since Hq{d + 1) must detect any
single-node fault in G{d + 1)}. Consider the linear combination
of all columns of Hid + 1) taking the linearly independent
columns of H{d) and H,(d} with any nonzero coefficients

0 i d-1 0 2 -1
_'ﬂ]: a‘]t === l‘:1] r_%: 'ﬂgr === ﬂz '

(from the field GF(g)), and the rest of the columns of
Hd + 1) can be taken with some fixed coefficients, e.g., all
1s. This linear combination of columns of Hg(d + 1) must pro-
duce a2 nonzero vector.

Let A and k; denote linearly independent columns in H; (d)

and Hx(d), respectively. Then
-1 . . d-1 .
S hal@4, = © Haj ® 4, (Ap2)
{=0 i=

where A;, A, are the vector sums of all the colurnns of matri-
ces Hi(d), Ho(d) except of the d linearly independent ones. (All
additions and multiplications are module 2 operations).

Since (Ap2) should hold for any choice of nonzero

¢ -3 .  d-l o 1 d-1

a,, a,..a anda,, a3, ....8; ,
the inequality in (Ap2) means that there are two sets (with
(g — 1)* distinct d-component vectors in each set) in the
d-dimensional space of a’-coefficients, and no vector of one

set can be found in the other set. This contradicts the assump-
tion since from (Apl) (same as (1) of Section III) for p =2 we
have 2(g-1)° = ¢°

For a p-ary tree, the proof is similar, only the logarithm in
{1) is to be taken as a base-p one.

APPENDIX B. NOTATIONS (IN ALPHABETICAL ORDER)

b Number of bits in the inputs and outputs of CUT, SC, TC.

d Depth of acyclic graph modeling the topolegy of CUT.

e Error pattern.

E Set of all efror patterns resulting from single fauits in the CUT.
G Acyclic graph modeling the topology of CUT. -

g The number of distinct noN-intersecting error patterns for the # th
\evel of graph G.

H The set of vectors (rows of compaction mafrix).

Hg(d) - Compaction matrix for graph & of depth 4.

L Complexity of CUT. _

AL Compiexity of testing hardware (except of test pattern generator).

L1, Ly, Ly Compiexities of different off-line testing designs.

Lg Complexity of a flip-flop. '
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Ly One gate complexity. .

N Number of the CUT outputs.

M Number of CUT inputs.

q Number of elements in the Galois field GF{(g); q= =2

r Number of space compactor outputs. ~

5, 5 Signatures {fault-free).

5, § Observed signatures.

T The mamx of CUT.

Tr Transposed vector (superscript).

X3y . X1 The hlputs of CUT.

Yiyeos Ya-1  Fault-free CUT outputs.

For+ s ¥y Observed CUT outputs (test responses). .

Fa Comparator block.,
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