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A Design of Self-Diagnostic Boards by Multiple

Signature Analysis *
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Abstract—A new design approach, based on multiple signature analysis, for
self-diagnostic boards is presented. For this approach, test responses from all chips
on the board are compressed into space-time signatures using nonbinary muitiple
error-correcting codes and faulty chips are identified by analyzing relations between
distortions in these signatures. This approach results ir a considerable reduction
of a hardware overhead, required for diagnostic, as compared to the straightforward
approach where separate signatures are computed for each chip on the board. The
presented diagnostic approach can also be used for identification of faulty boards in
a system or for faulty processors in a multiprocessor environment.

Key Words—Built-in self-diagnostic, design for testability, multiple signature

analysis, self-diagnostic board (system), space-time compression of test responses.

I. Introduction

In this paper, we will consider a design approach for a self-diagnostic board. We
assume that the original board consists of several chips with or without any provision
for built-in self-test [1], {2]. The proposed design approach requires an additional
diagnostic chip. This chip is responsible for controlling and execution of a diagnostic
algorithm (presented below) on the board. We further assume that all the chips on

the board are functionally interconnected through a common bus, and this bus 1s
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used for transfer of data between chips. This configuration is illustrated in Fig. 1. If
chips on the board are not interconnected via a common bus, an additional test bus is
required for transferring data between the chips and the diagnostic chip, for example,
a test and diagnostic bus. For the case of IEEE Standard 1149.1 Test Access Port
(TAP) and Boundary Scan Architecture {3] chips on the board are sequentially linked
to the diagnostic chip, with a four (optionally five) signal test bus, forming one long
scan chain and necessary control signals for TAPs will be provided by the on board
diagnostic chip.

The diagnostic chip (see Fig. 1) consists of three components: (i) a test pattern
generator implemented by a linear feed-back shift register [4]-{7] to generate pseudo-
random test patierns; (ii) a multiple signature analyzer; and (iii) a timing and control
module. On receiving an external command, board level diagnostic is initiated by the
diagnostic chip. The on-chip test pattern generator generates pseudorandom input
test patterns. These test patterns are applied to all chips on the board and results
are sequentially shifted into the diagnostic chip. Random pattern testing, in some
cases, may take much longer time to fully exercise a board, alternafively, one may
use weighted random pattern testing [8] to provide necessary test coverages. (The
problem of a test length for pseudorandom tests has been extensively studied see e.g.
[2], [4j-[7]. In this paper we assume that a selected length T of the pseudorandom
test is sufficient to provide for a required fault coverage for all chips on the board.)

Test results from all chips are compressed into space-time signatures by a space-
time compressor based on a nonbinary multiple error-correcting code. In particular,
we use {-error-correcting g-ary Reed-Snlnmnn (RS) codes [13] for space compression
and single-error-detecting RS codes for time compression where / is a maximum num-
ber of faulty chips on the board and g = 2™ (m is the width of the system bus). The
signature analyzer module compares the obtained signatures with the predetermined
reference signatures and analyze relations between distortions in signatures to find
upto ! faulty chip locations. The special case of this approach for I = 1 was pre-
sented in [15], [16]. Application of single error-correcting RS codes for ROM testing
was considered in [17], [18]. Analysis of aliasing probabilities for testing by signature
analysis based on single and multiple g-ary error-correcting RS codes was presented

in [19]-[21].




In Section II, we consider a straightforward approach for a self-diagnostic board
based on generic signature analysis. This approach requires n (n is the total number
of chips on the original board) reference signatures to be stored for diagnostic. This
approach has ®(nm) hardware complexity for a board which has n chips and m-bit
system bus.

Implementation of the .straightfurwa.rd approach does incur a high overhead and,
therefore, may only be viable for boards with a small number of chips. In Section 111,
we present an I-faulty-chip diagnostic algorithm which will require only 2! reference
signatures to be stored for any number of chips on the original board. The proposed
approach requires @(Im) hardware and results in considerable savings in a required
overhead as compared to the straightforward approach.

In Section IV, we present a modular VLSI design of the signature analyzer module
for the proposed diagnostic chip. This design can be easily expanded to accommodate
any chip-fault multiplicity I. We will also compare the space and time complexities for
this design to the straightforward design and present details of a prototype diagnostic

chip implementation.

II. A Straightforward Self-Diagnostic Board De-
sign Approach

For a straightforward self-diagnostic board design, we consider an approach based
on generic signature analysis. For this approach, each chip on the original board
is tested separately (Fig. 2). A linear feedback shift register {LFSR) is used as an
on-board test pattern generator. Pseudorandom tfest patterns are applied onto the
primary inputs of chip 1,0 £ 7 < n — 1, being tested; Test responses from chip ¢ are
transferred to the multiple input signature register (MISR). When all T (test length)
test responses are transferred, signature s; is obtained. The obtained m-bit signature
s; is then compared with the corresponding precomputed reference signature s). Any
mismatch between s; and s? is detected by the m-bit comparator.

The signature analyzer module for the straightforward approach can be imple-
mented by a m-bit MISR, a m-bit match detector, a m-bit = x 1 MUX and n m-bit

reference signature registers, where n and m are the number of chips and number of
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outputs per chip on the board, respectively, The space complexity L;, in terms of
equivalent two-input gates, for the signature analyzer module for the straightforward
approach is

Ly = 13nm + 15m + g(m) + n[log, n], (1)

where g¢(m), 1 < ¢g(m) < m, is the number of XOR gates in the feedback network
for the m-bit MISR. (A flip-flop is assumed to have a complexity of 12 two-input
equivalent gates.) For example, a board with n = 100 chips and m = 32 outputs
per chip requires about 42,800 equivalent two-input gates for the signature analyzer
module {g(32} = 3).
The time complexity P, for the straightforward approach (number of steps in the
diagnostic procedure) is
P =(n+ 1T, (2)

where T' is the length of the test.

III. A Multiple Signature Analysis Self-Diagnostic
Board Design Approach

Since an implementation of the straightforward approach incurs a high overhead (see
(1)), we present an alternative approach for the board-level self-diagnostic. This
approach is based on multiple signature analysis {presented below) and the major
advantage over the straightforward approach is that only 2! reference signatures are
stored for any number of chips on the original board to identify upto I chip faults.
The d.-ia,gnﬂstic procedure for this approach requires: (i) application of pseudoran-
dom test patterns onto the primary inputs of chips; (i) space and time compression
of test responses into 2{ signatures and computation of distortions in signatures; and
(iii) location of upto I faulty chips by analyzing the relations between distortions in
the obtained signatures. A block diagram for this approach is given at Fig. 3.
Consider a board consisting of n chips. We assume here that every chip has
the same number of output pins equal to m. (For the case of unequal numbers of
output pins one can take m as a maximum number of output pins per chip and

assign additional zero components to the outputs of chips with less than m output




pins.) Let y(f) = (yo(t),41(¢),. .., ¥n-1(t)) be a board test response at the moment
£, 0 < ¢ < T —1, where T is a number of test patterns applied. A component y;(t),
0 <1 < n—1,of y(f) is a test response (m-bit symbol) from the chip number i,
0 < 2 < n, due to the {th test pattern.

Step (i) of the approach requires application of T test paiterns to n chips on
the board. As a result, T board responses y(0),y(1),... (T — 1) are obtained.
These board responses can be represented by a (T x n) matrix ¥ = [v:(¢t)] where
yi(t) € GF(g=2"),0<i<n—1,0<t<T—1(GF(q =2") denotes the Galois
field of order 2™),

Step (ii) requires a two-step (space-time) computation of 2{ m-bit signatures
s = (80,81,..-,821-1) from Y. This multiple signature analysis scheme is based on
space compression techniques [9]-[11] and on nonbinary RS codes [12], [13]. Space-
time compression of test responses can be considered as a decoding procedure for a
concatenated code {12], where the inner (space compression) code is [n,n — 21, 21 +- 1]
RS code and the outer (time compression) code is {7, T — 1,2] RS code.

The first step (space compression) is to compute space signatures based on a [n, n—
21,20 + 1] l-error-correcting RS code over GF(gq). The codewords v = (vi,vg, ciisUp)
of this code are vectors in the n-dimensional space GF(g)" over GF(q), v; € GF(q).
The {-error-correcting RS code C' C GF(g)" over GF(q) with block size n and number
of redundant symbols 21 is the null space, C = {v|v H" = 0}, of check matrix H,

whose transpose is

1 1 1
& o o ol
H' =| | . N (3)
_ ol o2(n-1) .., lln-1) _

where n < ¢ — 1, and a is a primitive in GF(q) (a is a primitive element if and only
ifat £ fori#3,4,7=0,1,...,2™ —2) [14].

Space compression of ¥ based on the above code is defined as
Z=YH", (4)

where Z = [zj(t)] and z;(t) = wo(t) @ 11(t)?* @ -+ B yua(t)alH1-1), 0 < 5 <
2l -1,0 <t < T~ 1. (@ stands for the component-wise modulo two addition.)




Computation of Z is performed by 2[ MISRs with feedback polynomials corresponding

2 21
to a,a,...,a*.

The second step (time compression) is the computation of space-time signatures
from the intermediate space signatures z9(t), z1(¢),. . ., z2r-1(t) using {T,T — 1,2] RS
code over GF(q). To compute space-time signatures s = (30,51,...4821-1), time

compression of Z based on [T,T — 1,2] RS codes over GF(q) is performed as follows:
5 = HfZ, (5)

where

H = [a"1a"2...1], (6)

and s; = o’ 17;(0)®aT 22;(1)®- - - @2;(T—1),0 < j < 2—1. This time compression
requires 2/ ideniical MISRs with the feedback polynomial corresponding to a (o is
the root of the feedback polynomial).

Using (4) and (5), space-iime compression of a board test response Y into 2!

signatures is

8 = HfYH:f, (7)

where H, and H; are called space and time compression matrices, respectively.
For fault detection, we need to compute distortions § = (8,8, -, 8x-1), In

space-fime signatures and verify whether & is equal to zero or not. The distortions

6 = (80,81, -+ ,8211) are defined as follows:
§=3@s° (8)

where §; = 3;® 3%, 0 < 7 <2 —1 and 5% = (3,5, --,5Y_,) are precomputed space-
2

time reference signatures from the fault free board response Y. If § = (0,0,...,0),

we conclude that the board is fault-free and the diagnostic procedure is completed.
Example: Consider the case of a board with n = 5 chips, m = 3 outputs per
chip, double chip faults ({ = 2) and T = 6 test patterns. We further assume without
loss of generality that y;(¢) = y)(¢) @ &(t) and 32(¢() = 0,0 < i <4,0< ¢t <5
where y(t) and e;{t) are fault free response and error from the chip ¢ at moment £.

Therefore, 52 = 0 and

§=s@s® = HYH". {9)
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Let us consider first the construction of the finite field GF(23) with 22 elements. To
construct this field we choose a primitive polynomial as p(z) = z*® = ® 1 over GF(2).
The nonzero elements of the field GF(2%) {of|i = 0,1,...,6}, can be generated by a
MISR (see Fig. 4), that bas a characteristic (feedback) polynomial p{z), with injtial
state (d3,dy,dp) = (0,6,1) and input (22,21,29) = (0,0,0). These seven nonzero
elements of GF(2°) (internal states of MISR) are given in Table 1. The polynomial
and and exponential representations in terms of the primitive element o are given
by columns three and four of Table 1. The primitive element e is a root of p(z) =
LOrdlie, tPadl=0.

Now consider the following board response matrix ¥ where each element in ith
column represents y;(t) = et} (¢t = 0,1,...,5), produced by the chip number i,
0 <i<4:

0 a® 0 0 0.
@ 0 0 0 0
0 ¢ 0 ot 0
Y = (10)
0 ¢« 6 0 0O
0 & 0 a 0O
0 1 0 &% 0

From this response matrix we can see that chips 1 and 3 are faulty.
Since n = 5 and ! = 2, we select a check matrix H, of [5,1,5] double-error-

correcting RS code over GF(2°) for space compression by (3) as

1 1 1 1

o az {13 4

2

¢ o | (11)
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From (4), space compression of ¥ (10) based on the above H' can be represented as

1 o o o
O 0 0 ¢
Z=YH" = a® a of 1 (12)
ol o ot of
& 0 1 1
] at o 1 0 )

Since T' = 6, we select a check matrix H, of [6, 5, 2| single-error-detecting RS for

time compression by (6) as
H, = [&5{14{13{12111] : (13)

and by (5) we compute the space-time signatures s == (39, 51, 8, 83) as
s =H,7 = (aﬂaia“,a) : (14)

Since Y° = 6 and § = s is not equal to zero (from (9)), we conclude that the
board is faunlty. O

Once the presence of a fault is detected, locations of faulty chips are computed by
the decoder shown in Fig. 3 which analyzes relations between distortions 8y, ..., §21—1
in the observed signatures. The function of the decoder is to perform the diagnostic
algorithm (presented below).

Without loss of generality, let us assume that y;(¢) = y?(t) @ e;(t) with y)(¢) = 0,
0<:<n—-1,0<L{<T—1. From (3)-(8) we have for distortions &p,...,82_1 in

signatures:

Tr—1 -1 n—1
6 =Y (E e;(t)ﬂ““"') T = B e (j=0,1,...,20-1),  (15)

t=0 =0 t=0
where
T—_1
e;= » et)a’ 17t (i=0,1,...,n—1), (16)
t=0

is the time compressed error vector. Thus, distortions are syndromes of a {ime com-
pressed error vector e = (ep,€1,...,¢€,_1) {e; is given by (16)) for the space compres-
sion code generated by H, and

§ =eHT, (17)




Since the minimum distance of the space compression [, n — 2I] RS code is 27 - 1,

up to 2l chip-faults can be detected, and up to I chip-faults can be located from

distortions in signatures.

To locate faulty chips, we need to solve the following system of 21 equations:

ﬁu = E{lﬂ‘:“ & E,‘zﬂiz Gb---& E{Iﬂ!“
' 2 2 2
b = e oM Dea? - e a’
(18)
24 20 20
b1 = e a” Qea”? B O e at
where 1y,...,14, €;,,...,€; are unknowns. Our interest is only to find up to ! locations

t1,...,% from 2[ distortions in the obtained signatures.
It is worth mentioning here that for the case of single-faulty-chip [15], [16], this
can be accomplished by a very simple decoder. Also, for the case of double faults

(I = 2), efficient implementations are possible due to simple analytical solutions for
the above system. However, for a chip-fault multiplicity [ more than two analytical
solutions are very cumbersome and require a complex decoding procedure. Below
we present a diagnostic algorithm, which utilizes a modified form of the Euclidean
algorithm [22], [23], as a recursive procedure for calculating faulty chip locations form
distortions in the obtained signatures.

Let
2i-1

5(1!) = E Ehmﬂ—l—k = ngm_l P §1m2“2 B P 521._1._. (19)

k=0
be the polynomial representing distortions § = (&,...,83_1) in signatures. The

diagnostic algorithm to find the faulty chip locations is a two step procedure: (i)
perform the modified Euclidean algorithm (described below) on 2% and &(z), to obtain

the fault locator polynomial A(z) = Aoz @ Aiz'' & -+ @ Xy; and (ii) find the faulty
chip locations X = {z;/0 < j <!}, where z; =i if A(a') =0 for: =0,1,...,n — 1.
Consider the two polynomials * and §(z). The modified Euclidean algorithm is
a recursive procedure for finding the :th remainder r;{z) and the quantities v;(z) and
t:(x) that satisfy
vi(z)z® @ t;(2)8(2) = ri(z). (20)

As soon as the degree of the ith remainder r;(z) is less than I, the algorithm stops.




The resulting ¢;(z) at the termination of the algorithm is the desired fault locator
polynomial A(z) = £;(z).

The modified Euclidean algorithm involves four sequences of polynomials (ri(2)),
(2:(z)), (t:i(2)) and (u;(z)) with initial conditions as

ro(z) = =%, go(z) = 8(z),

to(z) =0, ue(z)=1. (21)

The rules to compute riy3(2), giy1(%), tip1{z), and wuzyy(2) are

riv(z) = [oigri(2) @ Girigi(2)) © owriqi(2) ® Fiqiri(z)],

gi+1(e) = oigz) @ Firi(=), (22)
Lz} = [oigeti(z) @ Giriuil2)] ® 2l [oiriui(2) @ Gigiti(2)],

uiv(z) = owuiz) @ Giti(z),

where r; and g; are the heighest nonzero coefficients of r;(z) and g¢{z), respectively,
d; = deg(ri(c)) — deg(qi(z)), 0: = 1if d; > 0 and o; = 0 if d; < 0 and &; is the
negation of o;. The modified Euclidean algorithm stops as soon as the deg(r;(e)) is
less than I. {Note that v;(z) is not used in the decoding algorithm.)

For step (ii), the simplest way to find the roots of A{z) which correspond to faulty
chip locations, is by trial and error {Chien search {13], {24]). To check whether chip %,
0 €1+ <7 —1,is faulty or not, we simply compute A(e*) and check for zero. A block
diagram for the above diagnostic algorithm for identification of upto I faulty chips is
given 1o Fig. 5.

Example continued: Step (i): modified Euclidean algorithm is used to compute
A{z). The polynomial §(z) based on the previously computed (see (14)) distortions

§ =(a®, &b o, a)is
3
$z)=) &2 =2’ @’ Dotz ®a. . - (23)
k=0

Since deg(ro(x) = 2*) = 4 and deg(go(z) = §(x)) = 3, fori = O we havedy =4—-3 =1
and, therefore op = 1. Hence by (22)

ri(z) = a’ro(z) ® z9o(z), q1(z) = go(z),
ti(z) = a’to(2) @ zuo(z), wui(z) = uo(z),

i0
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where
ro(z) = 2, go(z) = 8(z) = o®2® @ o®z?, Batz @ «,
to(z}) =0, ue(z)=1.
Thus,
rl(:n) =a’2* Dotz Qaz, qz) =P D2 Dtz P e,
ti(z) ==, uy{z) = 1.

Computations required to construct fault locator pelynomial A{z) for this example
are presented in Table 2. The modified Euclidean algorithm terminates after step 4
because the degree of 74(z) is one, which is less than I = 2. At this moment, the
computation for A(z) = Ae2® @ A2 @ A, is complete, and the fault locator polynomial
for this example is

AMz)=lfz)=* Dz P o’ (24)

Step (ii): Chien search is used to compute locations of faulty chips. Computations
of Chien search are presented in Table 3. It is evident from the 5th column of Table 3
that & and o® are the roots of the fault locator polynomial A(z) = z? @z @ af. Hence,
we conclude, that chips 1 and 3 are faulty. O

The above proposed approach requires only ©(im) overhead and this overhead
does not depend on a number of chips in the board. For large m (say, m > 32), an
additional field compression from GF(2™) into GF(2?%), where b < m, will result in
a reduction of an overhead to ©@(b). A design of optimal GF(2™) —» GF(2%) field
compressor 1s presented below.

Consider an optimal binary [m,m — b, 4 1] linear error detecting code of length
m with b redundant bits. The parity check matrix H, of this code is Hy = [h,,],
where hy,, € GF(2}, 0 < p <b—-1,0 < g < m —1. Let us define a mapping
H; : GF(2™)* — GF(2%)" as follows:

', 0

H
H = o . (25)

0 Hy |
Field compression of Y based on H; 1s defined as follows:
X = HyY, (26)

11




where X = [2:(8)], =i(t) = Hy{t) e GF(2°),0<i<n—-1,0<¢t < T - 1, and
all multiplications and additions are performed in GF(2). A field compressor based
on above mapping is shown in Fig. 6. Computation of X (26) is implemented by &
parity trees corresponding to b rows of check matrix ..

The effectiveness of a field compressor largely depends on its error propagating
capability and actual errors caused by faults in chips. All faults in chips resulting in
distortions of at most l; bits at any given moment of time at the output of every chip
will not be masked in the field compressor. The fraction of errors with a multiplicity
larger then l which are not propagated (masked) by the field compressor is (2m—b —
1)/(2™ — 1) = 27°, Therefore, desired fault coverages can be achieved by selection of

the corresponding field compression [m,m — 8] code.

IV. A VLSI Implementation of Diagnostic Chip

In this section we present a VLSI implementation for the above proposed diagnostic
chip. We will also compare the space and time complexities of this implementation
with implementations based on the straightforward approach presented in Section II.

For the approach presented in Section III a VLSI architecture for the signature
analyzer module of the diagnostic chip consists of three blocks (see Fig 3): (i) data
compressor block; (ii) reference comparator block; and (iii) fault-locator block. The
VLSI logic structures associated with each of these block are described below.

The data compressor block computes 2! space-time signatures from board test
responses using equation (7). This block (see Fig. 7) consists of 4 m-bit MISRs.
MISR;, ..., MISRy perform space compression of test responses yo(t),.. ., ¥n-1(t),
t=0,1,...,n—1, into space signatures 29(¢),..., z2_1(t) (see (3), (4)). MISRyryy, ...,
MISR perform time compression of these intermediate space signatures zy(t),. . . , zo_1(t),
t=0,1,...,7 — 1 into the space-time signatures sg,...32_1 (see (5}, (6)).

MISR; (k = 1,...,2I) have iis feedback connections setup to multiply its contents
by a* and add its input in GF(q), g = 2™. A block diagram for such a MISR is shown
in Fig. 8. Test responses y;(t) ({ = n — 1,n — 2,...,0) from n chips at a moment
t, 0 <& € 7T ~ 1, are clocked into the MISR;, ..., MISR,;: the contents of the
MISR,, ..., MISRy are z(£),. .., za-1(t), respectively. {Note that the MISR,, ...,
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MISRy; are cleared prior to application of vi(t)y i =n—1,n —2,...,0.) Thus, after
n iransitions, n m-bit test responses yo(Z),...,¥n—1(¢) are compressed into 2{ space

compressed responses zo{t),...,zz 1(¢) as
20(t) = (- (gna1(t)e ® yn-2(t))a @ yn_s(t) .. )a & yo(t) = 'E:lyi(t)&i:

zi{t) = (... (g1t} ® yp_2(t))a’ & Yn—3(t) .. )o? @ yolt) = Ey;(t)aﬁ,

(27}

(- - (gn-1()™ © Yn-2(2))a® © yu_s(t)...)o™ ® yo(t) = E yi(t)a™,

1=0

|

zp1-1(t)

At this moment, the contents of MISR,, ..., MISRy; are transferred to MISR,,,,
.o« MISRy. Next, MISRy, ..., MISRy are cleared, and the process of obtaining
zo(t +1),..., 2z 1(t + 1) starts.

MISR, (k =2l +1,...,4l) have its feedback taps corresponding to the primitive
polynomial p(z) = ™ @ pm—12™ @ -+ - @ 1 where p; € {0,1} and p(a) = 0 (MISR;
(k=2{+1,...,4]) multiply its contents by a and add its input in GF(q)). A block
diagram of MISR (k == 21 + 1,...,4l} is given at Fig. 9. Space-time signatures
8 = (80,82,...,821_1) are obtained by MISRy.;, ..., MISR, respectively, as

so = (...(20(0)a ® 2(1))x & 29(2).. . )Ja® (T — 1) = g::zu(t)a —1=t I
T-1 4
8 = (. . (El(ﬁ)ﬂ: @ .31(1)){1 @ 21(2) - .)ﬂ.’ ﬂ';'ll EI(T —_ 1) = E .Z]_(t)ﬂ -lht, -
(28)
8op_1 = ( .o (.331_1(0)& &b .Eﬂ...]_(l))ﬂ: D 321_1(2) ‘s .)ﬂ: &b 321_1(T — 1) = g Ez;_I(t)ﬂTnlrt.

The reference comparator block (see Fig. 10) compares the obtained signatures
80, . - -, 397—1 with the prestored reference signatures s3, ..., s3,_,, in registers regsd, .. .,
regss, , respectively, to detect any fault in the board and it also computes distortions
80,...,021—1 in the signatures. This block is implemented by 2im two-input XOR
gates, 2] m-bit registers, and a 2Im-input OR gate. The outpuis of the reference

signature comparator are component-wise exclusive-ORs between obtained signatures

21
80, - - -, 8211 and references 83, ...,39,_,. If the distortions § # (0,0,...,0), the “Fault
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Detected” signal is equal to one and the fault-locator block is signaled to execute the
diagnostic algorithm described in Section I1I.

The diagnostic algorithm is implemented by the fault-locator. The outputs of the
fault-locator are faulty-chip locations. A VLSI implementation for the fault-locator
block requires one Euclidean cell implementing (22}, 6! + 2 m-bit shift registers, !
m-bit MISRs and a modulo n counter. A block diagram for the fault-locator block

1s given in Fig. 11. Coefficient registers r and g are 2Im-bits long, whereas registers
t and u are (I -+ 1)m-bits long.

The function of the fault-locator can be described as follows. First, as soon as the
“Fault Detected” signal is equal to one, § is loaded into the register ¢ and registers r, ¢
and u are initialized according to the initial conditions given in (2 1}, then the contents
of registers ri(z), gi(z), ti(z), and u;(z) are shifted into the Euclidean cell. The
Euclidean cell computes the quantities 7,4, (x), gi+1(2), tir1(2), and z;41(z) based on
(22) and shifts them back into the corresponding registers. As soon as the Euclidean
cell detects that the deg(riy1(z)) is less than ! it indicates the completion of the
algorithm by making the “Stop” signal equal to one. At this moment, the contents
of the register ¢ are coeflicients of the fault locator polynomial. In the worst case, the

computation of a fault locator polynomial requires 2{ steps or 4*m clocks.

As soon as the “Stop” signal is equal to one, contents of the coefficient-register ¢
are clocked in MISR.,, ..., MISRg. MISRy., s, ..., MISRs have their feedback set
up to multiply by of, /1, .., a, respectively. By clocking MISR4.1, ..., MISRg, we
substitute o, a,...,a™? for z, into A(z), to find its roots.

In order to test a®, component-wise modulo two sum of the contents of MISRy, 1,

.- +» MISRg (see Fig. 11), which are the coefficients A, ..., \i_1, respectively, is com-

pared with the coefficient A;. If the result is zero, then o is a root of A(z) and chip 0
is faulty; otherwise it is not. Now, to test a, first, each coefficient X;, 0 < 7 <1 —1,
is multiplied by of~7. This is accomplished by clocking MISR 41, .- ., MISRs;. These
new set of coefficients, Apof, ..., A\i_1c (contents of MISRyy4, ..., MISRs; after one

transition, respectively) are summed and if their result is equal to A;, then « is a root
of A(z) and chip 1 is faulty.
In general, a* is a root and chip 7 is faulty if and only if E;;}] A;0i9) is equal to

Ar- Thus, at each step,i (2 = 0,1,...,n—1) we only multiply the coefficients \;a{!-),
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0 <j <1-—1, by o7 1o obtain the next set of coefficients and this is accomplished
by clocking MISRyi41, ..., MISR5;.. Thus, in n clocks, faulty chip locations X are
obtained from the modulo n counter. (Note that the clocking of the MISR .4, ...,
MISRe: and of the counter is implemented the same clock.)

Example continued: Let us now consider an implementation for the Example
given in Section III. For this example, we require eight 3-bit MISRs for the data
compressor block in order to compute four space-time signatures (I = 2). An im-
plementation for the comparator block requires four 3-bit registers to store reference
signatures, 12 2-input XOR gates for computing distortions &, and a 12-input OR
gate for fault detection. MISR,, ..., MISR, are required to multiply by a,...,at,
respectively. (A block diagram for a 3-bit MISR to multiply by o? is given in Fig. 12.)

In Table 4, we show the state transitions of MISR,, ..., MISR, to obtain the first
row of Z (see (12)) from Y (see (10)) and in Table 5, computations of space-time
signatures (see (14)) by MISR;, ..., MISR; are presented.

An 1mplementation of the fault-locator block for this example requires 14 3-bit
cyclic shift registers for four coefficient registers », q,¢, and =, and one Euclidean cell

to compute error-locator polynomial A(z). Computation of faulty chip addresses X
requires two 3-bit MISRs and a 3-bit modulo five counter.

In comparing the hardware complexities of the diagnostic chip for the straight-
forward approach and for the space-iime diagnostic approach, we will estimate the
complexities of the signature analyzer module only, since, the complexities of the test
generation and control modules for both approaches have approximately the same
order and in most cases much smaller then the complexities of signature analyzers.

The space-time diagnostic approach requires 5/ +1 MISRs, I+ 1 m-bit cyclic regis-
ters, one Euclidean cell, and one modulo n counter (hardware required for computing
space-time signatures and for determining the roots of a fault locator polynomial is
shared). The space complexity I, for the I-faulty-chip approach in terms of equivalent

two-input gates, is
Lz = (1191 + 202)m 4 (5¢(m) + 20) + 102[log, I} + 13{log, n| + 4¢(m) + 138, (29)

where g(m), 1 < g(m) < m, is the number of XOR gates in the feedback network for
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a m-bit MISR and from (1) and (28) for I/m — 0, log, n/m — 0, we have

Ll T

The total time complexity P, for space-time approach is

Py = (n+1)T + 4l*m, (31)
and comparing (2) and (29)
Pl 413111
— 1 ‘ |
Pg (n + I)T (32)

In Table 6, we show a comparison of the space complexities for the straightforward
approach and the proposed space-time approach for the case of a board with 32-bit
system bus and a number of chips 20 < n < 200, and for the chip fault multiplicity
l=1,2,...,5(g(32) = 3). Since, the number of signatures required for the space-time
approach is always 2/, the advantage L,/ L,, of this approach over the straightforward
approach is more apparent with an increasing n. In Fig. 13, we show the percentage
savings ('1 — L/ 1:1) x 100 in hardware for boards with a 32-bit bus for the case of chip-
fault multiplicity 1 <1 < 5, by using the proposed space-time diagnostic approach.
One can see, for example, that for a 32-bit system bus board with 100 chips and
for the 3-faulty chip diagnostic, the proposed approach offers about 57% savings of
hardware.

Another alternative that can be used to implement the proposed space-time diag-

nostic algorithm is an assembly language program utilizing as efficiently as possible
the internal microprocessor architecture [25], {26]. The execution of the proposed
diagnostic algorithm on a microprocessor, assuming a m-bit processor and one clock
cycle to multiply by a in GF(2™), will require additional ®(I) time overhead as com-
pared to the above application-specific VLSI implementation. Since, number of test
patterns can be quite large for random testing this alternative may not be viable for
boards with a large number of chips. ﬁ

An application specific integrated circuit (ASIC) for the above VLSI implemen-
tation has been simulated at the gate level. The simulaied diagnostic chip has a
capability to handle 255 chips on board with a 32-bit bus architecture and can locate
upto three faulty chips. A field compressor based on {32,16] Reed-Muller code {13]
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is used fo compress chip responses from 32-bits to 16-bits. Some important charac-

teristics of this prototype diagnostic chip, including performance and gate counts are

summarized in Table T.

Conclusions

In this paper we have proposed a board-level self-diagnostic technique by multiple sig-
nature analysis. This technique is based on space-time compression of test responses
by nonbinary multiple error-correcting Reed-Solomon codes. Multiple faulty chips
can be located by an analysis of distortions in the obtained signatures. As described
In this paper, this technique requires only 2/ (where ! is the chip fault multiplicity)
reference signatures for any number of chips on the original board and all chip faults
with a multiplicity up to ! will be correctly identified. For the case of a board with
system bus architecture a modular VLSI design of the diagnostic chip is presented.
The design of this diagnostic chip depends on three parameters, m—the number of out
put lines per chip, n~the number of chips on the original board, and I-the required
chip-fault multiplicity. The proposed approach can be expanded to accommodate
higher levels of integrations. We also note that the proposed approach is also capable

of supporting a variety of board (systems) without requiring special customization.
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Figure 1: General Configuration of Self-Diagnostic Board.

Figure 2: Straightforward Approach-Signature Analyzer Module.

Figure 3: Multiple Signature Analysis Approach-Signature Analyzer Module.

Figure 4: Block Diagram of a 3-bit MISR-Example.

Figure 5: [ Faulty-Chip Diagnostic Algorithm.-

Figure 6: Field Compressor for a Space-Time Diagnostic Chip Design.

Figure 7: Logic Structure of Data Compressor Block.

Figure 8:; Block Diagram of a m-bit MISR, (k = 1,...,2I).

Figure 9: Block Diagram of a m-bit MISR, (k=2[+1,...,4]).

Figure 10: Logic Siructure of Reference Comparator Block.

Figure 11: Logic Structure of Fault-Locator Block.

Figure 12: Block Diagram of 3-bit MISR to Multiply by o?-Example.

Figure 13: Percentage Savings in Overhead for {-faulty-chip Diagnostic Over Straight-
forward Approach for 32-bit System Bus.
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Table 1: Representation of the Nonzero Elements of GF(2°%), Generated by ?la) =
EPad@l =0,
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Table 2: Step (i): Modified Euclidean Algorithm—Example.

Table 3: Step (ii): Chien Search Algorithm—Example.

Table 4: State Transitions of MISR,, ..., MISR, performing Space Compression of

Test Responses—Example.

Table 5: State Transitions of MISRs, ..., MISRs performing Time Compression of
the Space Compressed Test Responses—Example.

Table 6: Hardware Overheads {Gate Counts) for Different Numbers of Chips n On a '
Board with a 32-bit System Bus.

Table 7: Prototype Diagnostic Chip Data. |
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Table 1: Representation of the Nonzero Elements of GF(23), Generated by p(a) =
had@l =0.

t || dodidy | o a olat
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11 0140 o a
21 100 | o a?
3011 o ©1|a°
400110 |[a® & e at
51111 |e® ©a &1|a
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Table 2: Step (i): Modified Euclidean Algorithm-Example.
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Table 3: Step (i1): Chien Search Algorithm-Example.
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Table 6: Hardware Overheads (Gate Counts) for Different Numbers of Chips n On a
Board with a 32-bit System Bus.

n || Straigtforward Universal Diagnostic
Approach Approach

=1 =2 =3 I=4 []=5
20 8,903 || 10,522 14,467 18,412 22255 26,200
40 17,363 || 10,535 14,480 18,425 22,268 26,213
60 25,803 || 10,535 14,480 18,438 22268 26,213
80 34,323 | 10,548 14,493 18438 22281 26,226
100 42,783 || 10,548 14,493 18,438 22281 26,226
200 83,283 || 10,561 14,506 18,451 22,294 26,239

Table 7: Prototype Diagnostic Chip Data.

Implementation:

Ihagnostic Chip Block || Number of Equivalent
2-Input Gates
Control 781
Data Compressor 2,520
Comparator 1,549
Fault Locator
(1) Buclidean Cell 9,478
and Registers
(1i) Chien Search 859
Total 15,187
Operating Conditions (100 ns Clock):
Parameter Time | Unit
Single Fault Location || 109,400 ns
Triple Fault Location | 317,200 ns
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