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Diagnosis by Signature Analysis of Test Responses

Mark G. Karpovsky, Fellow, IEEE, Lev B. Levitin, Senior Member, IEEE, and Feodor S. Vainsteigg

Abstract— We propose a new approach for identification of
faulty processing elements based on an analysis of the compressed
test response of the system. The test response is compressed first
in space and then in time, and faulty processing elements are
identified by hard decision decoding of the corvesponding space-
time signature. The approach results in comsiderable savings in
hardware required for diagnostics.

index Terms— Diagnostic for computer systems and array
processors, signature analysis, hard decision decoding, space-time
compression of test responses.

I. DIAGNOSIS BY SPACE-TIME
COMPRESSION OF TEST RESPONSES

ET us consider the diagnosis problem for a system of

(not necessarily identical) processing elements (e.g., a
systolic array). The system is represenied by a directed graph
G whose nodes correspond to processing elements (PE’s)
and whose directed edges correspond to communication links.,
Our approach to the diagnosis problem is based on signature
analysis of test responses, Signature analysis has been widely
used for chip and board level testing and diagnosis [1]-{12].

The common approach to fault location is based on ver-
ification of signatures for cach of the output PE’s of the
system, and analysis of the signature distortons. This approach
results in a considerable overhead which grows proportionally
to the number of output PE’s in the system. Ancther approach
which makes unse of space compression Of test responses
before signatre analysis was proposed in [11] and [12] for
the case when only one PE in the system may be faulty,
and this was generalized in [19] for the case of multiple
fanlts. This approach results in a significant reduction of
the required overhead, but it can be used only in the case
when communications between PE’s in the testing mode are
implemented by the system bus or when each one of the PE’S
has provisions for a boundary scan [20].

The straightforward approach to diagnostics by signature
analysis is illustrated by Fig. 1. Test responses y(f) =
(11.(1),- - -, ¥n(1)), at the moment £ (y;(¢) is a b-bit binary
vector), are transferred via the system bus into a redundant
chip in such a way that the response y;(t) at the output
¢ is compressed in time by a b-bit linear feedback shift

ister with parallel load (LFSR 7). After all test responses
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Fig. 1. The strightforward approach to diagnostics.

¥(1), - -, y(T) (T is the number of test patterns) have been
compressed by the b-bit LFSI}ﬂs with parallel inputs, the
corresponding  signatures s;,---, $, are compared to the
precomputed reference signatures s3,---,s., and the emor
vector e = (ey, -+ -, ey, ) is computed, where

0.
1, si £ 873
e; = {0, 0

5 = 8;. {1}
The identification of a faulty PE is implemented by an (n x N)

decoder (IV is the total number of PE’s in the system) with

the input ¢ = (e, ,ea).

We assume that @ number of test patterns 77 i1s sufficiently
large, so that a fault in a PE wilt manifest itself by distortions
of signatures corresponding to all cutput PE’s connected with
the faulty PE.

For example, if the original array is the binary balanced tree
(Fig. 2), a fault in PE; will result in error vector 111310000,
(The time compression is performed by b-bit LFSR’s with
parallel load. We assume that the fault is not masked in any
one of the eight LFSR’s with parallel load. We assume that the
fault is not masked in any one of the eight LFSR’s compressing
in time eight sequences y;(1),---,%(T)(t = 1,---,8). The
probability of masking is very small for large b [1], [73-[9].)
The relation between faulty PE’s and error vectors for the
binary tree of Fig. 2 is given in the first two columns of Table
L.

In Sections I and II, we assume that at most one PE, or
any number of incoming communtcation links to this PE, may
be faulty and, as a result of these faults, the comect 5-bit
binary output of this PE is replaced by any other b-bit vecior
at any moment of time. The generalization of our approach
for location of multple faults is presented in Section III,
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Fig. 2. Three-level balanced tree of PE’s.

TABLE 1
ReraTions BeTweeN FaurTy PE’s, Exror VECTORS, AND
ErroR SYNDROMIS FOR THE THREE-LEVEL BINARY TREE

Fig. 3. An example of nondiagnosable systolic array.

The system is diagnosable iff all n-bit error vectors are
different and not equal to {0,---,0). Since the number of
different error vectors is equal to the number N of PE’s in
the system, we have the following lower bounid on a number
of cutpuis n of a diagnosable system:

n > flog,(N + 1)]. (2)

Note that lower bound (2) is attainable (see, e.g., binary hy-
percube arrays in Section II). An example of a2 nondiagnosable
system is given in Fig. 3. In this case, faults in PE. and PE;
cannot be distinguished, since in both cases e = (011}.
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Denote PE; < PE; (G) if there exists a path from PE; to
PE; in G. Then two systems Gy and G with the same set of
PE’s are equivalent from the diagnostic point of view when
PE; < PE;(G,) iff PE; < PE;(G3). For example, arrays
represented by Fig. 6(a) and (b) are equivalent.

For the straightforward approach to diagnostics represenied
in Fig. 1, the required hardware overhead L, in terms of
a number of equivalent two-input gates, is of the order of
L1 = O(bn) + O(Nn). For example, for the eight-level
binary tree with & = 32, we have n = 128, N = 255, and
L1 =~ 110000 (assuming that one flip-flop is equivaient 1o
eight gates).

In this paper, another approach to diagnostics is described
which results in a considerable reducticn of the required
overhead, while the probability of missing a fault remains
small. It is shown below that, in many cases, the overhead
can be decreased to Ly = O{blog,n) + (N log, n}. This
approach does not require redesigning and introducing self-
test inte PE's. Fault location, in this case, is implemented
by an additional fauli-free PE which generates lest pattemns,
compresses test responses first in space and then in time,
and analyzes the compressed responses {signatures) to identify
faulty PE’s. The structure of this additional PE does not depend
on the structures of PE’s in the original system.

The presented diagnostic approach may be used to provide
for fauit-tolerance in the system. In this case, the error locating
procedure is implemented by a host PE which is assumed Lo
be fault-free. After completing the diagnostic phase, the host
initiates the reconfiguration phase to bypass the faulty PE. The
algorithms for reconfiguration and their implementation have
been developed, e.g., in [16] and [17].

To illustrate our approach (o diagnostics, let us go back 10
the example of the three-level binary tree with n = 8, N =
15 (Fig. 2). Instead of compressing in time the sequence
y(1), - -+, y(T) (where y({) = (1{%),- -, ys(t)) and y;(2) is 2
b-bit binary vector) by eight b-bit LFSRJs with parallel load,
we first compute z(f) = Hy({), where

"01000100-
10100000
100010001
H = 140001010 (3)

0100111

e —

and all the computations are performed modulo two. This
is the space compression step which results in z({) =
(z1(t), -+, 25(1)). Now, we will compress the sequence
z(1),---,2(T) in time using only five b-bit LFSR’s. The
resuliing five signatures s;,..-,ss are compared to the
precomputed five reference values s},-.-,s0, and the
identification of a faulty PE is made by analyzing the error{ o
syndrome (the compressed error vector) &° = (@,ﬂg),

where ef = 1 iff s; # 57 and ¢f = 0, otherwise. For example,
if PEs is faulty, then by (3}, ¢ = {01101). Error syndromes ¢*
for different faulis in this wee are presented in the rightmost
column of Table I. Since different faults result in different
nonzero syndromes ¢°, identification of a faulty PE can be
implemented by decoding . Thus, we have been able o
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Fig.I 4. Space-time approach for diagnostics.

reduce the overhead (using only five LFSR’s and five reference
values, instead of eight for the original approach)}, and we can
still 1dentify a faulty PE,

The block diagram for the proposed diagnostic approach
based on the space-time compression of test responses 1s given
in Fig. 4. The output response vector (1) = (v (), -+, ¥a (i)
is compressed in space into z{t) = (z1(#},---, 2-(¢)) where
y;(t) and z;{t) are binary b-bit vectors, z(1) = Hy(t) and H
is a binary (r x n) matrix (r < n}), and multiplication of H
by y(¢) is performed over GF(2). This space compression
is implemented by an H-counter modulo » and + T-flip-
flop registers 73, - - -, T,.. The sequence of output veciors for
the H-counter is the sequence (hy,- .-, k,) of r-bit columns
of matrix H. Space signatares z{f) = (z1(¥), -, z.(1))
are compressed in time by r LEFSR’s with parallel load.
Final space-time signatures s;,---,s, are compared to the
precomputed reference values s, ---,s?, and the resulting
error syndrome e = (ef,---,ef) (ef = 1iff s; # sf)
is decoded to indicate the fanlty PE. This identification 1S
possible iff there is a one-to-one correspondence between
PE’s and error vectors ¢ = (ef,---,ef)ef € {0, 1}).
This mapping ¢°(¢)(z = 1,-.., N) defines an embedding of
the graph G representing the original system of PE’s into
the r-dimensional binary cube. The set of vertices of the
r-dimensional binary cube (i.e., the set of all r-bit binary
vectors) is a partially ordered set: we consider vecior a (o
be a descendant of vector b, if ¢ can be obtained from b
by replacing some of the components equal to 1 by zeros.
(It is said also that b covers a.) The embedding of graph G
into the r-dimensional cube must preserve the partial ordering
on G defined by its directed edges, i.e., if (4, 7) and (i, g)
are directed edges in G, then e°{i} = e°(j) V e®{g), where
V stands for the componentwise « operation. The embedding
of the three-level binary tree into the five-dimensional binary
cube is given by the rightmost column of Table 1.

An overhead for the space-time compression (including the
space compression hardware overhead) i1s of the order of
Ly = O(br) + O(Nr). Comparing to the overhead L, for
the straightforward approach, we have

Li n
L= 4)

Since r < n, the space-time compression technigue is more
efficient than the straightforward approach. To minimize the
overhead, onc has to minimize the length » of syndromes e°.

Since all #-bit binary error syndromes e® must he different
and not equal to (0,---,0) for all N PE’s in the system, the
following (attainable) bounds hold:

[logo(N+ 1)1 <7 <o (5)

The overhcad minimization problem for the space-time
signature diagnostics can be reduced to constructing an {r x n)
binary matrix H with minimal » such that the system remains
diagnosable after the space compression z{t) = Hy(2) of its
output y(f). This problem will be considered in Section II.

It is easy to show [15] that the relation between the error
vectors ¢ in the original system and error syndromes e° is
given by the following formula:

e =Hge, (6)

where & stands for the Boolean multiplication of an (r x n)
binary matrix & by an n-bit binary vector e with addition
being replaced by = For example, for the binary tree of Fig.
2 with PE; being faulty, we have from (3): e = (00110000}

angd
r—ﬂ-u

) ; G o
01000100 1 0
10100600 1 i

. |ooo10001 |

© = |oooor010 | © g = {0 (7)
00100111 X 1
_ Pl L.

which corresponds to the fifth row in Table I.

Thus, the overhead minimization problem can be formulated
in the following way: construct a space compression matrix A
with a minimal number of rows such that for any two error
vectors e and e/

H®e+# H®el, H@e#0, H®@e £0. (8)

The set of error vectors e is defined by the topology of
interconnections in the original system, and the number of
erTor vectors is egual to NV,

It is remarkable that condition (8) on matix H is similar
to the necessary and sufficient condition for a check matrix of
a ¢code correcting error patterns defined by the graph . The
major difference is, however, that in our case operations over
G F(2) are replaced by the Boolean operations. The solution
for the overhead minimization problem for several important
classes of systems is given in the next section.

To conclude this section, we note that the proposed space-
time signature approach 0 diagnostics is based on the “hard
decision” deccding of signatures s = (s1,---, 5.}, when we
identify a faulty PE by the binary vector e which indicates the
distorted components in s. The magnitudes of distorticns are
not important for the hard decision procedure. An alternative
procedure is a “soft decision” decoding of & = (s;,---, 5/)

[vcar'"



for the space-time signature diagnosis. In this case, the identi-
fication of a faulty PE is based on the anatysis of magnitudes
of distortions in components of s, Soft decision techniques
have been developed in [11] and [12] for board-level space-
time signamre diagnosis in case of single faults and in [19] for
multiple faults. Similar techniques for space-time diagnosis of
multiprocessor systems with single and multiple faults have
been developed in [13]. In [11]-[13] ard [19], the assumption
has been made that components of the system are disconmected
in the testing mode. In this paper, we will consider only hard
decision space-time techniques, but we will not require the
PE’s be disconnected in the testing mode. We assume that
components of the system under test are interconnected in the
testing mode the same way as m the computing one.

II. DIAGNOSIS OF ARRAY PROCESSORS

It is shown in the previous section that the problem of
hardware minimization ¢an be reduced to the design of an
optimal space compression matrix I with a minimal number
of rows r, satisfying (8).

Let us start with a lower bound for r. The set of all possible
error patterns {e{*)} defined by (1) is a partially ordered set:
elk1} < elk2) jff e(¥2) covers e(¥1). Suppose we have a chain
of error patterns

eF1) < (k) < ... < el¥P), 9

(In particular, if there is a path in & of length d (i.e., with d
PE’s in the path) from an input PE to an output PE, then the
error patterns corresponding to PE’s on that path form such
a chain with D — d, and maximum d is called the depth of
the system.) Then, by (6), the corresponding error syndromes
e¢(e¥i)) also form a chain of length D of r-dimensional
vectors with increasing weights (the weight of a binary vector
is the number of componenis equal to 1). Since the zero vector
e’ = (0,---,0) is reserved for error-free condition, we obtain

r>D>d (10)

where I} is the maximum length of a chain (9) of error
patterns, and d is the depth of the system. Lower bound (10) 1s
attainable, for instance, in the case of 1-dim arrays [Fig. 5(a)]
and of 2-dim near-neighbor meshes [Fig. 5(b}]. It is obvious
also that if the same error pattern 1) belongs to two or more
chains with distinct error patierns of a maximum weight, then
r should exceed D

r>D+1. . (11)

The last situation occurs for rhombic arrays [Fig. 6(2)] and for
triangular arrays (Fig. 10). In this paper, we consider systems
with D = d.

Lower bounds (5), (10}, and (11) can be improved if we
have additional information about the topology of the original
system, Let N (k) be the number of paths of length at least h
in the original system. Then, for embedding the system in the
r-dimensional binary cube, all endpoints of paths of length at
least A should be encoded by nonzero r-bit binary vectors of
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(2)

(b)

Fig. 5. (a) Line of PE's. (b) (k x w} near-neighbor mesh of PE’s.

weight at most r — A + 1. Thus,

f (:) > N(h). (12)

=1

Another improvement of lower bounds (3) and (10) can
be obtained for systems with many paths which do not
have any endpoints in common [e:.g., rhombic meshes, Fig.
6(a)]. Let M({h) be a number of paths of length at least &
which do not have any endpoints in common. If our array is
embedded into a binary r-cube, then the binary r-dimensional
vector corresponding 10 a node is a descendant of a vector
corresponding to the previous node in the path., Thaus, each
path contains vectors of at least h different weights and the
difference between the weights of endpoints of each path is at
least i — 1. Consider now two “polar zones” in the r-cube:
vectors of weights w > [%'] and of weights w < [%1
Then at leas: one of the endpoints for any path of length at
least £ belongs 1o one of the polar zones. Therefore,

(=21 /r r r
Y olil+ i| > M) (13)
=1 i=[ 25

Lower bounds (12) and (13) are valid for all valoes of
h =23,---,d
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{b)
Fig. 6. {(a) (d x n) thombic mesh of PE's. (b) Hexagonal mesh of PE's.

We will present below several nearly optimal constructions
for space compression matrices H and lower bounds on
minirmnal numbers of rows r in H for several important ¢classes
of systems: balanced trees (Fig. 2), 2-dim rhombic meshes
[Fig. 6{(a)], riangnlar meshes (Fig. 10}, and cubic meshes (Fig.
11). These arrays have been widely used (see, e.g., {14] and
[18]).

A. Diagnosis of Tree Processors

For the d-level binary tree T (d is the number of PE}s on the
path from the input to any output, n = 2%-1, N = 29— 1), we

Fig. 7. Recarsive construction for d-level binary tree T.

denote by r(d) the minimal number of signatres to be stored,
ie., r{d) is a minimal dimension of a binary cube C, (4 such
that T; can be embedded in C,.{,-_r] with preserving the partial
ordering in Ty. For example, from Table I, we have r{4) < 5.

Since for the d-level binary tree N(d) = 29!, we have

from (12)
r(d)—d+1 {r(d)
> t ] >4 (14)
=1
Solving (14) for large d, we have
r{d) = 1.29(d — 1). (15)

To construct an r X n space compression matrnx Hy for 7,
[which yields an embedding of the T3 into . and provides an
upper bound for r(d)], we will use the recursive construction
for the balanced binary tree Ty, shown in Fig. 7. Here d =
p+1-—-1and T}, T2,---,T7 (P = 2°7}) are identical trees
T, of depth ¢ with Q@ = 2¢~! oulputs.

Suppose that space compression matrices for 7, and T,
are Hy = [h k2 .- hl') and H, = [AlA2 - - - h$], respectively,
where h}, and b} are columns of H, and /,. Then it is readily
seen that A; can be constructed as follows:

L1l 1 252 2 PP F
hlphg---ha hi,hg---h% | hplhg ---h£
Hq|hIhZ...h@ | hlRZ...hS hih2.. . hS
(16)

Thus, we have the following equation:

rid)=r(p+1-1) < r(p}+rg). (17)
An example of this constructon ford = 6,p=4,and ¢ = 3
15 shown 1n Fig. 9.

Matrix 4 is given by (3), and the comesponding embedding
of Ty into Cs 18 given by the rightmost column of Table 1.
From (3) and (14}, we have »(4) = 5, which shows that the
lower bound given by (12} is attamnable.

Matrix Hy and the comesponding embedding of T3 into C;
is given in Fig, 8, and Hg is given in Fig. 9. By Fig. § and
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L

Fig. 8. Opumal space compression matnx H: and embedding of the
five-level binary tree into 6-dimensional binary cube.

(14}, we have r{5) = 6. Using this result and (17}, we obtain

d:4k+l;

r(d) < {[g(d —1)] +1, otherwise; (18)

which is close (o lower bounds (14) and (15). Some exact
values of r{d) and upper and lower bounds for r(d) are given
in Table II for d < 12.

For the case of balanced p-ary trees (p > 2}, lower bound
(14) should be rewritten in the form

r(d)—d+1 {(d)
Y i | > (19)
i=1
Asymptotically, for d > 1, it gives
r{d) > 1.64(d—-1) forp=3;
r(d) > 9 - 1) for p = 4; 20)

r(d) > (d—1)log,p forp> 5.

Another lower bound for p-ary trees (p > 2) is given by (2)

r(d) > l-lngz (“: _"11 + 1)}

For p > 4 and d >» 1, (21) gives a tighter lower bound than
(20).

Lower and upper bounds for »{d) for different p > 2 are
given 1n Table III for N < 5000. The gap between bounds
is very small.

21)

Fig. 9. Construction of the space compressions matrix for the binary rees
Ty, Ty, and Tg I:d = 3,4, ﬁ}.

TABLE 11
MmmaL NUMBERS OF SIGNATURES 7(d)} REQUIRED
FOR DIAGNOSTICS oF d-LEvEL BINARY TREES

TABLE [i
MmMAL. NUMBERS OF SIGNATURES rp(d) FOR
DIAGNOSTIC OF d-LEVEL p-ARY TREES (n = p9~1)

Tables 11 and I1I illustrate considerable savings in hardware
for the proposed space-time signature diagnostics approach
over the straightforward diagnostic for binary trees. For ex-
ample, for the binary tree with V = 255 processing elements
(d = 8 n = 128) and b = 32 output lines for every PE,
assuming »(8) = 11 (see Table II), we have a reduction
in hardware (measured in equivalent two-input gates) from
Ly = 110006 to Lo = 10000,
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B. Diagnosis of 2-dim Rhombic Arrays

The 2-dim rhombic mesh is shown in Fig. 6(a) (we assume
that first and last columns in the mesh coincide). Denote by
r(n, d) the minimum number of rows in the /I matrix that
performs the space compression of test responses for this mesh,
Obvicusly, the array is not diagnosable for d > n. The lower
bounds for »(n, d) following from (5) and (11) are

r(n, d) > max ([logy (nd + 1)], d+1).  (22)

A more specific lower bound can be obtained by the
following reasoning. In a rhombic mesh of dimensions d and
n, one ¢an find n paths from the nodes of the top level to the
nodes of the bottom level which do not have any endpoints in
common. Thus, M{d) = n, and by (13) we have

[==1/r v r
n< Y. (f)+ > (1)
=1 i=[=54]

The minimum value of » that satisfies (23) is a lower bound
for r(n, d).

The construction of a matrix A for a rhombic mesh can be
obtained in the following way. Consider two matrices f; and

(23)

H,, each of order (d + 3) x 3(d + 3) shown below;

" faq Tiys Iapy 7
g, = |00---0 | 00---0 | 11---1
00---0 1 1t---1 | 00-.-0
- Ign fa4 ETR
Hp= |11---1 | 00---0 } 00---0 24)
006---0 | 11---1 | 00---0

where Iz, is the (d + 1)-dimensional identity matrix.

Now let n = 3(d + 1)m,k = [log, m]|, where m =
1,2,---, and let gr be the codeword for the integer {0 <
! < 2% — 1) in the k-bit Gray (reflexive) code. Denote by G
a £ x 3(d + 1) matrix which consists of identical columns
g:. Let B; be the (k + d + 3) x 3(d + 1) matrix which is
obtained by vertical concatenation (writing one matrix under
the other) of matrices /1 and G, for an even { and H» and
(z; for odd . Then the space compression matrix H of order
rxn, where r = k+d+3 and n = 3(d+ 1)m, is obtained by
the concatenation of matrices B; in the order of increasing
i(! = 0,2,---,m — 1), Thus, we have (for m even) the
eguation given in (23) below.

An example of matrix H forn =18,d=2{k=1,m =2)
is given at the bottom of this page, after (25).

H, H, H; Ha
H=[Bg | By |Bz|: | Bm-1] = |Ga G1 G2 Gm-1
Iay1 Iapr lanr fay1 Iapn Lo fayr  Jat1 lag fagr  Ippa Id+1\
g---0 0---0 1---1 1---1 0...0 0..-9 g...0 0...90 1-..1 l1---r 0.---0 Q---0
=lo...0 1---1 0.--0 0---0 1---1 0---0 0---0 1---1 0---0 0...0 1-.-1 0--:0
do Y a1 /5] J2 g2 Gm—1 Hm—l)
(25)
B Ig 173 Iﬂ Ig IE IE ]
‘H, Hs| 000G 000 111 I11 000 000
H=[B|Bil=|Gs Gi|=1000 111 000 000 111 000
- - Jogodo JoFogo  Fododo giigy i1y 19151
-100 100 100 100 100 100 -
010 010 010 010 010 010
001 80601 8001 0G1 8001 8001
= [ 000 Q00 111 111 000 000
D00 111 | 060 000 111 0G0
000 HI 000 111 111 11




TABLE IV
BoUuNDs ON MINDMAL NUMBERS r(n, d) OF
SIGNATURES FOR RHOMBIC (d X n)-MESHES

TEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994

TABLE ¥V
MmMAL NUMBERS OF SIGNATURES r(n, d} FOR
RHOMBIC (d X n)-MESHES WITH SMALL n AND d

It can be readily shown [15] that all the syndromes obtained
by H designed above are different. The number of rows in H
is given by

L
r=k+d+3= |-1'Dg23(d+1)
and (26) provides an upper bound for r{n, d).

Matrices H for n # 3(d + 1)m can be obtained by slight
modifications of the construction given above.

The lower bounds given by (22) and (23} are attainable and
sometimes coincide with the upper bound for r(n, d) given
by the above construction, which provides the exact value of
r(n, d).

In particular, for n = 3(d + 1)m:

-|+d+3 (26)

r(n, 2) = [log, m} +5
= flog, n —2log, 31 + 5 27

r(n, 3) = [log,m] +6
= [log, n — log, 3| -+ 4 (28)
flog, m] + 6 < r(n, 4) < [log,m] + 7 (29)
flog, m| + 7 < r(n, 5) < [log, m] + 8 (30)
d+3<r(6(d+1),d)<d+4  (31)
r(3(d+1),dy=d+3 (32)
M(d+2,d)=d+2 (33)
r{d+1,d)=d+ 1. (34)

The lower bound (%) based on (22) and (23), and the upper
bound (I/) based on (27)34) for r(n, d), are presented in
Table IV for n < 2000 and d < 20. Results for small n and
d are shown in Table V. One can see from Tables IV and V
that the gap between lower and upper bounds for r(n, d) is
very small.

Fig. 10. Tnoangular mesh of PE’s.

Formulas (27)<34) show that space-time signature diag-
nostic provides considerable hardware savings as compared .
to the straightforward approach (time compression only). For
example, for the thombic array with n = 108,d = 8, and
b = 32, the straightforward approach requires approximately
L; =~ 10° equivalent two-input gates, while the suggested
method requires only Ls ~ 12 x 10° gates.

C. Diagnosis of Triangular Arrays

Let us now consider a problem of space compression for
triangular meshes (sce Fig. 10). (These meshes have been
nsed for solution of dynamic programming problems [14].)
For these meshes, n = 2h — 1, N = 0.5A(h+ 1), and d = .
Since syndromes e¢© should be different for faults in PE; and
PEqs..1 (see Fig. 10), by (11), in this case,

r(d) 2 d+ 1.

(33)

The following construction for the space compression ma-
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I'_" 1
Fig. 11. 3-dim F-ary amray of PE’s.
trix A attains this lower bound:
000---01 1 Q0-.-007
000--.10 O 00..--00 ]
000--.00 O 0O0---01
ggo.-.00 0 00---11
000---00 0 Q0---10
010---60 0 O1---00
100---00 0 11--.90
000---00 1 10-.--00
- d d_g ol -
Thus,
n 2d — 1
di=d+4+1 —
ndy=d+1, T IT (37)

and about 50% reduction of an overhead can be obtained by
the space-time signature diagnostics,

D. Diagnosis of Cubic Arrays

Let us now consider the problem of optimal space com-
pression of outputs for 3-dim arrays (see Fig. 11). For the
3-dim (p % p X p) array (p > 2), a processor PE; ; ;. with
coordinates (i, j, k) have inputs from PE:i1,, &, PE: 41, k.
and PE; ; 141(¢, 4, £ =0, 1,-- -, p—2). Boundary processors
PEP_;[}L_&, PE;‘.P_}_,_&, and PE-,'J: F—‘l(ii j, k= 0,1,-- P —
1) are inputs to the array, and processors PEq ;. &, PE;i ¢ &,
PE; ; o4, 5, k=0, 1, ..., p— 1) are outputs of the array. In
this case, N = p®,n = 3p® ~ 3p + 1, and d = 3p — 2. Thus,
for this array,

r=r3(p}) 2> 3p-2.

(38)

To compress the response from n = 3p? — 3p + 1 ouiput
PE’s, one can monitor only 3p — 2 PE’s with coordinates
(Il:r 0, 0)!({]: j: 0)? and (ﬂ! 0, k)(i, j! k= U; 1: DAY 1)*
Then, PE; s x is faulty iff I is amax ¢ suchthate; o g # 0,/
is$ maxj such that ep ; ¢ # 0, and K is max & such that
eo. 0. & 7 0. Thus, for the p-ary 3-dim cubic array

ra{p) =d =3p—2. (39)

From (4},

Iy I’ —3p+1
Lo 3p—2 F

and for a large p, considerable savings in overhead can be
obtained by the proposed space-time diagnostic.,

Let us now generalize our previous results to the case
of m-dimensional p-ary arrays (m > 2,p > 2). For these
arrays, every PE; with coordinates ¢ = (¢, 92, -+ -, &5, -+, &m)
and i; € {0,1,---,p — 1} have m inputs from PE’s with
coordinates ¢ = (i1, 2, --, 4+ 1, -, in{j=1,2,---,m).
Boundary PE’s with at least one of the coordinates being equal
to p—1 are inputs to the array (there are p™ —p™ ! such PE’s),
and PE’s with at least one of the coordinates being equat to
0 are outputs (there are n = p™(p — 1} output PE’s). For
these arrays,

N =p™,

n
oo e =
r

(40)

andd=(p-— 1)m+ 1. (41)

To compress the responses from n = p™ — (p — 1}™ output
PE’s, one can monitor only (p— 1)m+1 PE’s with coordinates
(0,0,.--,4,-+.,0},7 € {0,1,.-+,p — 1}, Then PE; with
I ={h, I3+ ,1Iy) is faulty iff I; is a max¢; such that

€0,0,--4;,-0 F 0{j=1,2,---,m). Thus, in a view of (41), , 7
we have for m-dim p-ary arrays / [howd.
_r= *‘m(ﬁﬁ/(;-/l}mﬂ @) | {p,
and = R . [) |
Mm ) for large (43) —
r {p— Dm+ 14 g p
— __‘_-_-_-’____________.___-———-"'H""‘-\___‘HR
It follows from thatform =2, wehaven=r =12p-1;

but for m > 2, we have r < n, and savings from space-time
diagnostics are increasing with an increase in a number of
dimensions of a cubic array.

For the important case [14], [18] of binary hypercube arrays
(p = 2), we have

r:rm(2)=m+1 {44)
which attains lower bound (2). In this case
n 2 =]
r m+1 (43)

and considerable savings in overhead can be obtained by the
space-time diagnostic. We note also that for binary cuobes,
coordinates I = (I, I,---, I )(I; € {0, 1}) of a faulty PE
can be computed as

I = (GU . 'Ul)E[}g...m V(UG s 10}Egg.,,1gV(1{] - “Uﬂ)ﬂm...g[}, p

P
In Table VI, we summarize our results on minirnal numl:gg

of signatures for different arrays (lines, 2-dim meshes, cu

Sy
f,f"“

-

—_—

™

T

l"-,_
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TABLE VI
MmmMAL NUMBERS OF SIGNATURES AND COMPRESSION RATES FOR SPACE-TIME DI1AGNOSTIC

binary and nonbinary balanced trees, 2-dim rhombic meshes,
and triangular arrays).

I1I. LOCATION OF MULTIPLE FAULTS

In this section, we will apply the space-time diagnostic
procedures developed in previons sections for location of
multiple faults in arrays of PE’s. To locate a fault with
ﬂPE’s in the system are faulty), we will use an {-
step sequential procedure. At every step, we run the space-time
diagnostic procedure described in Sections 1 and II, identify
one faulty PE, replace it, and then repeat the procedure again.
For example, for the three-level binary tree of PE’s represented
by Fig. 2 and a triple fault in PE,, PEs, and PE4{I = 3) by
Table I at the first step, we identify that PE; is fanlty, at the
second siep PEg and at the third step PE, 4. For this example,

12 = b7.1% of all double faults and 5z = 25.7Y0f all triple
faults will be located. Thus, using the same hardware required
for location of single faults, one can locate a considerable
pordon of multiple faolts by the multistep sequential error
location.

We will estimate now fractions #; of faults with multiplicity
{ which can be located by this procedure for each one of the
arrays considered in Section II.

As was shown in Section II, the space-time diagnostic of
array (7 results in an embedding of G into r-dimensional
binary cube €, where outputs of ¢ are encoded by columns
of the space compression matrix H. If PE;, PE;, and PE; are
encoded by €°(Z), (), and e°(k), and there are links from
PE; to PE; and from PE; 10 PE;, then e°(i) = €°(7) V e°(k).

A faslt with maulplicity { in PE;,, PE;,,---,PE;, is
locatable if and only if the set {e®(i;)}, e°(d3), - -, e%(4;)}
is totally ordered, ie., for any i,,4, € {i,14s,---,4}
either e°(i,) > e“(#) or e°(i;) < e°(i) {e°(i,) =
(€3(i.), 5(is), - €Slia)) > e(ie) = (e5(is), €§(is), -, .
er(iy)) iff €(d,) > ei(d;) forall j = 1, 2, .., ), For exam-
ple, in the tree of Fig. 2, the triple fault {PE;, PE¢, PE;j4}
is locatable since (see Table I) e°(#)) = (11111) > e(ig) =
(10011) > e®(414) = (00011) and {PE;, PEg, PE;,} is nol
locatable since e°(ig) = (10011) is not comparable with
e*(711)} = (C0100). |

We note that by the definition of the embedding G — C,,
a fault in {PE; ,---,PE;} is always locatable if there exisis
a path P in G such that PE;,,---,PE;, € P.

It was shown in the previous section that all single faults can
be located by the space-time diagnosis. We will now estimate
a fraction n; of locatable double faults for arrays considered
in the previous sections.

Let No be a number of pairs {PE;, PE;} (¢ # 4,4, =
1,---,N) such that e®(¢} > e°(J) or e°(§) > e°(¢). Then

(Z" )N

We will apply formula (46) to estimate 7, for systems with
different topologies described in Sections I and II.

For 1-dim array [Fig. 5(a)l], all faults with any multiplicity
are locatable, For the 2-dim (h x w)-near neighbor mesh [Fig.

172 (46)
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S(b)]s we have

< (7) B
() (0%

ZZ(H - 1)

i=1j=

h+w-—2
:0.5(1+ A ) 7)
For the binary m-cube of PE’s
i H‘ﬁ.
gm , ,
am ),hi 2 = ( ) Z(z = 1)
| i=0
\(ﬁ; = 9-mHl(gm _ 1)~1(gm _ 9m) (48)

and 7. 15 decreasing exponentially with an increase 1n a
number of dimensions.
For a p-ary 3-cube of processors

AN

F1.33,fa=1

BN 1)\ °
= | 2 2 —pﬁ
_ / 3p?+3p—6

and no 1s converging to 0.25 with an increas¢ in p.

For the general case of p-ary m-cube array of processors
(p > 2,m > 1), we have

i U
2 Y (i,
1?1! Il'ﬂr“'hiﬂt:l

) ()

Formula (50) generalizes our previous résults for the 1-dim
array (m = 1), 2-dim meshes (for h = w = p), binary cube
(p = 2), and p-ary 3-cube.

For a p-ary star array (p-ary tree with d = 2 levels) with
p=%2 —2 wehave r = i and

o —1\ "' s /7 _
(+) £0)e-
s A

( 2 ) (3r -2t 4 1)

p+1\ "
=1 2 ((p+2)%3-2-3). (51

Thus, for p-ary stars, a fracdon of locatable double faults is
slowly decreasing with an increase in p.

e =

(49)

11:1‘.!‘:--“ 1)

0

7}'2:
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TABLE VII
FRACTIONS OF DOUBLE 5 AND TRIPLE 7113 FAULTS LOCATABLE BY
SPACE-TiME DIAGNQOSTIC IV A d-LEVEL BALANCED BEVARY TREES

For the d-level binary balanced tree, wée can constrict a
lower bound on 7 by estimating the number Ny = No{d} of
pairs {PE;, PE; } of PE’s such that PE; and PE; belong to the
same path in the tree. In this case,

22: ?d—

=0

=(d—2)2°+2 (52

and

AN 2d 1\~
?}22(2) Ng(d):( 2 ) ((d~2)2% +2). (53)

These formulas can be generalized to the case of p-ary d-level
trees. For p-ary trees,

f.ﬂ"_—ll -

\ 2/, 1 |
We note that Tower bounds (53} and (55) are rather weak for

large d. Exact values of 5 = 5s(d) for binary trees are given
in Table VII for d < 8.

For the 2-dim (d x n) rhombic meshes [Fig. 6(a)], the
number No(d, n) of pairs {PE;, PE;}, such that PE; and PE;
belong to the same path, Is

d—2d—3

No(d, n) = HZZJ'

1=0)=2

d-+1 d
=(( 2 )—1) dn—n) §(j - 1)
=2
o + 1 1
(( 2 )ml) dn—Edﬂ.{d+1)(2d+1]

(56)

and
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TABLE VIII
FRACTIONS OF DOUBLE 1o AND TRIPLE 773 FAULTS LOCATABLE
BY SPACE-TIME DIAGROSTIC IN (d X =)-RroMBIC MESHES

This lower bound is weak for 2 <« w. Exact values of
na = na(d, n} for d < 10 and » < 33 are given in Table
VIII,

The last array we are going (o consider in this section is
the triangular p-ary (Fig. 10). For these arrays, we have for
the number N(p) of pairs {PE;, PE; } such that PE; and PE;
belong to the same path

r
N(p}:N(p—1)+Z(i(p—i+1)—1)

r+1

P
=N{p-1+p| 2 —p—Zi(i—l)
i=1

p+2
=Np-D+| 2 |-p (58)
Solving (58) with N(1) = 0, we have
2 _
and
| ~ 6\p — 1
m=| 2 | Ngp =D

3{(p(p+1)—-2)

It follows from (60) that for large p, 172 ~ (.33 for triangular
p-ary arrays.

These results can be generalized for faults with multiplicity
! > 2. For most arrays, the fraction n; of locatable faults with
multiplicity { is decreasing exponentially with increase in {.
This fraction is close 10 one for hierarchical structures with
dfN ~ 1 (for exampie, for 1-dim array m = 1 for any {) and
close to zero if d/N ~ 0, The fractions s of locatable triple
faults for binary trees are presented in Table VII for d < 8,
and in Table VIII for rhombic meshes with d < 10, n < 33.

One can see from the results presented in this section that
for small { for many arrays, considerable fracaons of faults
with multiplicity { > 1 can be located by {-step sequential
space-time diagnostic procedures.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994

IV. CONCLUSIONS

We presented 2 new method for identification of faulty
processing elements. The method is based on compression of a
test response first in space and then in time using multiple input
LFSRs and hard decision decoding techniques. The overhead
analysis and the solution for the hardware minimization prob-
lem are presented for several important classes of systems. The
proposed method results in considerable hardware savings.
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Fig.3. Optimal Space Compression Marrix Hg and Em-
bedding of the Five-Lewe! Binary Tree into 6-Th-
mensional Binary Cobe
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