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Abstract—-A finite-field algebraic description
of a built-in self-test (BIST) design based
on primitive feedback shift registers
(LFSRs) implementing the test generator and
the signature amalyzer (SA) is presented. We
show that the BIST schemes that use the TG
and the SA with the same feedback polyno-
mial detect errors which distort the output
functions of the circuits-under-test for a set
of the input vectors forming a coset of a
subspace. We term this type of errors the
"single coset errors."” Signature schemes
which detects the coset errors of multiplicity
r are forther described, (r<n, where n is the
nomber of inputs). It is also shown that a
BIST scheme based on TG and SA with
feedback polynomials reciprocal of one
another will have a poor error detection
capability.

Index terms- Built-in self-test, signature
analysis, compaction of test responses
multiple-input shift registers, error aliasing,

I. INTRODUCTION

Built-in self-test (BIST) schemes have been widely
used in a design for test of VLSI circuits [1], [2]. One
of the ubiquitous scheme uses linear sequential circuits
(e.g., the linear feedback shift registers, LFSRs or the
cellular automata registers, CARs) with primitve
teedback polynomials implementing the pseudorandom
test pattern generator and the signature analyzer [1]-[3].
A test procedure for these schemes is to apply all
possible nonzero input vectors generated by an LFSR
with primitive polynomial in which the test responses
ar¢ compacted 1nto a signature using a multple-input
shift register, MISR (parallel-input LFSR).

The performance of a signature scheme is described in
terms of the aliasing probability which is the
probability that distorted test responses will be
compacted into a correct signature, Research on the
techniques that estimate the aliasing probability of the
MISRs signature analyzers (with primitive or
nonprimitive feedback polynomials) [4]-[6] have been

reported where different error models such as the

independent error model [5] and the 2M-ary symmetric
error model [6]. Since the MISR signature scheme is a
linear operation aliasing occurs if only if errors are
compacted into zero (signature of all zero), the
characteristics and the stanshcs of errors plays an
important factor in the estimation of the aliasing
probability, or, in the design of an optimal signature
scheme that minimizes the aliasing probability.

In this research a characteristic of errors which
emerged from a fault analysis of a two-level AND-OR
or a two-level AND-Exclusive-OR (AND-X0OR) circuits
called the “single product-term” errors is examined.
Single product-term errors are the distortion in the
output functons which can be expressed in terms of a
single product term {cube). Furthermore, if a single
cube eror does not cover the zero minterm we called
this type of errors the "single coset” errors smce m this
case the Boolean function is equal to one for a set of
input vectors forming a coset of a linear subspace.
Single product-term errors appear in two-level circuits
from the fact that single faults occurring at the input of
a product term either as a disappearance of an nput to
an AND gate (e.g., an mnput stuck-at one) or an addition
of an input {c.g., an addition crosspoint in an AND
array of a PLA) will result in an expansion or a
shrinkage of the product term by one dimension,
respectvely. More, a product term could disappear from
the output funcoons (e.g., due to a wordline stuck-at
zer0) or an additional product ferm could appear in the
function {e.g., due to crosspoint fault in the OR array of
a PLA). These types of defects will likely result in the
single product-term errors, for instance, single
crosspoint faults in a PLA with the exception that an
expansion of faulty product-terms or an addition of
product-term in an output function sometime results
multple product-term error function, However, for the
case of the two-level AND-XOR circuits (Reed-Muller
networks) [7] all single faults in the AND array and at
the XOR-gate will result in single product-termn errors.

We will show that the BIST schemes which are based
on the test generation and the MISR signature analysis
with the same feedback polynomial detect all single
coset errors, and, detect almost all cases of single
product-term errors, The single product-term error
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function also includes the case when the function is
equal to one for a set of input vectors forming a
coordinate linear subspace (coordinate subspace means
that certain coordinates of the vectors in the subspace
are hixed to a zero). In the next section an algebraic
description of the BIST scheme is given. Detection of
single coset error and, in general, single product-terms
errors is then analyzed in Section 3. In Section 4 a
signature scheme which detects multiple coset errors is
presented. In Section 5 we show that the BIST that is
based on the test generation and signature analysis in
which the feedback polynomials are reciprocal of cne
another will have a poor error detection.

II. FINITE FIELD ALGEBRA AND MISR

Consider a BIST scheme that uses an LFSR and an
MISR with the same primitive feedback polynomial,
and, the circuit-under-test with n input lines and m
output lines where n is assumed to be equal or greater
than m. The input vectors and the outpat vectors can be
considered as either n-dimensional vectors over {0, 1} or
clements in the Galois field of 21 elements GF(2M), (for
the case when m<n some components of the output
vectors are assumed to be equal to zero). In this BIST
scheme the input test vectors are applied to the circuit-
under-test in the sequence

(al, 1=0,1,...,20-2)

where «x is the primitive element of GF(21) defined by
the primitive feedback polynomial of the LFSR, and t
is the moment of time.

The state transition of MISR signature analyzer can
be described by a linear first order difference equation

over GF(2M) as

s(t+1) = as(t) + z(t), 0<t<2N.2; (1)

where s(t) 1s the content of the MISR and z(t) is the test
test response at moment t; the addition is defined in
GF(2™; s(t), s(t+1) (the next state) and z(t) are elements
in GF(2M).

The signature S, that is, the state of the MISR after

all 2U-1 responses were shifted into the MISR is given
by

S = 2™ L5(0)+0e2™22(0)+0 232 (1) 4.+
0z(20-3)+2(20-2); 2)

where s(0) is the initial state of the MISR which can be
pre-computed such that the expected fault-free signature
will be equal 10 zero [9].

Let AS be the signature of errors, that is, the
distortion in the expected signature, then, for errors
represented by a function

e(x): xe GF(2M — e(x)e GF(21)
we have,

AS= 112“‘2&(1}+u2"“3e(u}+a2“'4e(a2)+...+
ae(a2M-3) e (22

= o fe()+or le(o)+..+
u-(?“-—?:}e(aZ“-3)_'_“-(2“-2)6({12“- 2)], 3)

where o(2%-2) = -1 (the power of o is modulo 20-1).
Error e(x) is detected if and only if AS = 0.
Let us define a single coset error as

€; X€ {p+Vg}; pe Vg:
(): elsewhere:

e(X) = )

where €€ GF(2™) is a fixed error pattern (vector)
appearing at the outputs of the circurt-under-test and
{Va+p} denotes a coset of a d-dimensional subspace V4

with the coset leader p, pe GF(2™), (d<n).
III. SINGLE COSET ERROR DETECTION

Consider the coset errors defined in (4). Then, from
(3) these errors are detected by the BIST scheme where
the test generation and signature analyzer have the same
feedback polynomial if and only if the sum of the
inverses of the elements in the coset, denoted by
A{p+Vd), is not equal w zero. The single coset
detection property for the scheme will be stated 1n
Theorem 1. A proof of Theorem 1, however, requires
the following lemma.

Lemma I: Let V3 be a subset of GF(2M) (GF(2D) is also
an n-dimensional vector space over {0,1}, Vp), then

I1i+ [}li = [l (5)
ic{prVa)  ie(@Va)  ic {prarVy)
where the products are defined in GF(21).

In other words, (5) states that a set of the products of
all elements in every equivalent class of GF{2") induced
by V{4, (the coset partition) forms an (n-d)-dimensional
subspace in GF(21),

Proof: By induction:
Basis: d=1, V1={0, v}, p(p+v) + q(g+v) = (pH@}(p+a+v).
Hypothesis: Assume (5) holds we show for the case of
d+1. Since Vgy1 = Vg u{r+Vy}, where {r+Vqlisa

coset of Vg, r € Vg4, we have,

Tes+ [la = ]Je+2e+H

iEVd+1 EVd+] KEV4
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+ H(q+i)2(r+i)

i€V
= [Iora+i?e+y = J]w+a+i). QED.
eV 1€ Vi+1

1
Theorem 1: Let Vd denote the set of all nonzero

ITi

Alp+Va}) <V ©
p+Val) = )
IT:

elements in Vq, then,

i€ {p+Vg}
Since, AS for a single coset error is given by
AS = sarlA((p+Vg}) 7

therefore, these errors are always detected by the BIST
scheme,

Proof: By induction:

: 1 1 \i
Basis: d=1, A({p+V1]}) = — + b = @)D where
Vi={O,v}.
Hypothesis: Assume (6) holds we show for the case of
d+1. Since a coset of Vd+1 is a union of two distinct
cosets of Vg where V{4 is a subset of V41, we have,
A({p+Vd+1}) = A{g+VaD)+A({r+V4}). Substituting
A({q+Vg}) and A({r+V4})) by (6) and, using Lemma 1,
the hypothesis is shown for the case of d+1. Q.E.D.

The tollowing theorem gives an upper bound on the

e
probability that A({V cl)’ the sum of the inverses of the

nonzero elements 1n a coordinate subspace V{ is equal
to zero,

Theorem 2: Let Vd=span{yhi, i=0,...,d-1}, hje {0,...,
n-1}, be a coordinate subspace where y is an
indeterminate of the polynomial representation of

*
vectors, then, the probability that A(V d) = 0, is

1
upperbounded by nd+l -

Proof: Since Vig=Vg.1u{p+Vg-1} where VioVi-1,
E ¥
so that, A(V d) = A(V d-l) + A({p+Vd-1}). Moreover, if

A(V, =0, then, A(V )=A((p+Vq.1]}40, hence, A(V g

E
= ( if and only if A(V d_1)=A{{p+Vd_1}). Substituting

A{{p+Vq-1}) by (6), and if I the coset {p+V¥q-11}
satisfying AWZ_1}=A({1}+V¢1-1 }}, by Lemma 1, that
coset 15 unique. Therefore, there may exist at most one
coset such that A(v;)=ﬁ for a given VdoV4-1.

For V4 is a coordinate subspace, an upper bound on
*
the probability that A(V d}=0 is equal to the probability

that for any Yo V-1, for instance, V4.1 = span{yhi,

t=1,....d-1} J p=yh0, hpe {h1,...,hd-1}, such that
E |

AV U {p+Vd-1]) = 0. This upper bound is given by

1
del - Q.E.D.

Theorem 3: (A Lower Bound on Detection of Single
Produci-Term Error). Consider the single product-term
errors ¢(x) defined similarly to the single coset errors
{4), however, in this casc p of {p+Vg} may be an
element of V{4, that is, e(x) can now be described in
general as a single product-term Boolean function. The
detectton probability of a single product-term error is
lowerbounded by

Pde;t >1-

1
(n-d+1)20d

@)

Proof: The probability that a single product-term

|
error will be a subspace can be estimated as 2—11_3 and by
Theorem 2, (9) is shown. Q.E.D.

IVv. MULTIPLE COSET ERROR DETECTION

A signature scheme which is viable for detection of
coset errors with multiplicity r, r<n, can be constructed
similar to the check matrix of the Reed-Solomon codes
[8]. The scheme consists of r signatures {8, 1=0,1,
....t-1} obtained separately using r MISRs, The ith
MISR implements a first-order linear difference equation

over GF(2D) of the form

si(te1) = o 2%si(t) + z(1), 0<1<20-2.  (10)

An MISR which implements the above difference
equation can be constructed by writing out the present
states sj(t) in its polynomial form where the coefficients

are the contents of the MISR flip-ﬂups, then,
multiplying the polynomial by x2! modulo the
primitive polynomial used in defining the field GF(2).
The coetficients of the product determine the next states
for the correponding flip-flops.

The following theorem summarizes the required

condition for a detection of multiple coset errors which
is defined as
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reg; xe Cp;
e1: x€ Cy;

Il
..

e(x)

er-1: Xx€ Cr_1;
“(: elsewhere

where Cj denotes ith coset and Cj Cj=9, .

Theorem 4. Error e(x) defined in (12) is detected for
arbitrary values of {g(...., €r.1} if and only if the sum
of the inverses of the elements in each coset are different
for i=0,... r-1.

Proof: Since the sum of the inverses of the
elemenis where each raised to the power 21 O<i<n-1, is
equal to the sum of the inverses raised to the power 21
(321+ b21=(a+b}21; a,be GF(2M). The r signatures of
e(x) are then given by the system of linear equation

"Ag Al ..Api _Eo_l ASp
2 2
Ag A A ] g AS1

& [

=1 : ; (13)

91-1 or-1 or-1
Ay A A L1

which are linearly independent if and only if Aj#A;, i#j,
and the theorem is proved. Q.E.D,

ASp 1

Y. POOR ERROR DETECTION BY THE
RECIPROCAL POLYNOMIAL MISR

The state transition of the MISR in which the
feedback polynomial is the reciprocal polynomial,

1
xMf(, ), of the test generator feedback polynomial f(x) is
described by

s(t+1) = a-1s(® + z(1), 0<<2n-2; (14)

where s{t),z(t)e GF(2M) (the GF(2") constructed by the

primitive polynomial f(x)} [9]. The signature is then
expressed by

S= u'(zn'1)S(U}Hr(2“'233(0}{1‘(2"‘3)1(1}+. A+
o 12(20-3)+2(20-2), (15)

For the pre-computed initial state s((J) such that the
expected signature S will be equal o zero, we have the

signature of error e(x) expressed as

AS = afe(D+ae(c)+...+
23 (0231402 2e(o20-2y) (16)

(12)

Theorem 5: The BIST scheme which uses MISR
with the feedback polynomial reciprocal to the test
generation polynomial does not detect any error efx)
which contains only two or higher dimensional cubes in
its Reed-Muller canonical representation.,

Proof: Consider the Reed-Muller canonical form
[7], [8] of an error e(x), that is, the modulo-two sum of
the products (cubes), where without loss of generality,
using the variable in the direct form. Thus, e(x), is in
general, a multiple coset error where the cosets are
represented by the product terms of the expansion. From
(16) we see that the signature of e(x) is a sum of the
elements in the different cosets weighted with the
associated error magnitude g4. Since the sum of the
elements in a cosel containing two or more elements is
equal to zero, therefore, the signatures for the
components in the Reed-Muller expansion of e(x) are atl
equal to zero if e(x) contains only cubes of two or
higher dimension. Q.E.D.

Fault simulation had been conducted on the 7485 4-
bit Comparator (11 inputs, 3 outputs and 162 single
stuck-at taults), a 4-bif carry-lookahead adder (9 inputs,
3 outputs, 121 fanlts), and the 74187 4-bit ALU (14
mputs, 8 outputs, and 330 faults) to illustrate a poor
fanlt detection capability of the reciprocal MISR BIST
scheme. The results were that the scheme did not detect
any error (0% fault coverage) produced by the fauits
simulated in all three circuits. (For the case of BIST
scheme with the same feedback polynomials the fault
coverages were 75%, 93% and 99%, respectively).

VI. CONCLUSIONS

The notion of coset errors has been introduced which
is related to the Reed-Muller expansion of the error
function. With the analysis of MISR using finite field
algebra a formula expressing the sum of inverses of the
elements in the coset in terms of products was derived
which implies the detection of single coset errors. With
this algebraic analysts it also follows that the reciprocal
MISR BIST scheme will have a poor ermor detection.

Representation of errors in terms of the modulo-two
sum of cubes in error detection analysis based on
algebra can be extended into a construction of t-coset
error correcting scheme, The results reported in this
paper can be the ground work for a research and
development project of self-repaired Reed-Muller circuits
where single coset error can be 1dentified 1 the test
mode and corrected during the normal operating.
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