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Abstract—aAn analysis and design of a
pseudorandom pattern generator, PRPG,
(based on a linear recurrence) for
built-in self-test (BIST)} boundary scan
design is presented. We present for the
case when r2s, a design of an s-stage
PRPGs capable of producing 25-1 distin-

¢t r-bit patterns within 25-1 clock
pulses independent of the hardware
realization of the PRPG. Next, ve

present for the case when r<(s; the ex-
pected number N(T) of clock pulses,
(over an ensemble of different pseudo-
random sequences generated by different
.PRPGes and their initial states)}, such
that a PRPG will produce T=<2F r-bit
test patterns, and T(N} the expected
pumber of distinct patterns given the
number of <c¢lock pulses N. In this
analysis, N(T) and T(N) are derived
based on randomly drawing (without re-
placement) of test patterns and shown
tc be very cleose to the experimental
average number Ng..{T} of PRPG clock
pulses obtained for s = 24, r = 14, 18
and 22 (r<s). Thus, the value N{(T) or
T(N) can be used as a benchmark for
evaluating the efficiency of the test
genration with respect to minimal test
application time.

1 Introduction

Boundary-scan-design templates, (Fig.
1}, have been proposed in [1]-{3] as
standard components for design of test-
able VLSI chips. For these templates,
the test generation procedure for the
built-in self-test {BIST) mode can be
described as follows. The  boundary
input register is switched to function
as a pseudorandom test pattern genera-
tor {(PRPG}. The PRPG is implemented by
a praximal-length-sequence linear seque-
ntial circuit, f(431-[6), capable of
generating at most 2%-1 different s-bit

patterns where s is the number of flip-
flops in the PRPG. Furthermore, a test
pattern at any moment consists ¢f r = n
+ m bits in which n consecutive bits
are the contents of the PRPG flips-
flops connected to the primary inputs
{PIs) and other m consecutive bits are
obtained from scanning-in the content
of the last PRPG flip-flop to the m-bit
interior scan register via the scan
path, {see, Fig. 1).

Our goal is to provide for an effi-
cient test generation technigue for the
BIST boundary-scan design proposed 1n
[1]-[2}. With respect to test appli-
cation time, an efficient test genera-
tion implies that the PRPG produces
for every clock pulse, {state transi-
tion}), a test pattern which has not
previously appeared. Efficiency of the
test generation can be defined as the
number of distinct r-bit test patterns
generated divided by the number of
clock pulses applied.

In Section 2, we will show for the
case vwhen r2s, that an efficient test
generation 1is achieved if the connec-
tions for the PIs are from the last n
PRPG filp-flops, {e.g., see Fig. 1, 2,
3, and 4). In Section 3, we will
derived for the case when rd{(s, r = n+n,
the expected number of <c¢lock pulses
N{(T) for an s-stage PRPG producing T=2f
distinct r-bit patterns, and the ex-
pected number T{N)} of distinct patterns
generated within a given number N of
clock pulses. The derivation of N(T)
and T(N}) will be based on the
assumption that the test generation
procedure 1s a repeated experiment of
randomly drawing, without replacement,
an r-bit pattern out from the pool in-
itially containing 2% r-bit patterns
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Fig. 1. Built-in Self-test Boundary Scan Design
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Fig. 2. An example of Efficient Test Generation: {s,n,m}=(6,4,3),
r=n+mn=7, with External XOR-Gate LFSR Realization of the PRPG.
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Fig. 3. An example of Efficient Test Generation: (s,n.m)=(6,4,3},
r=n+m=7, with Internal XOR-Gate LFSR Realization of the PRPG.
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Fig. 4. An example of Efficient Test Generation: (s,n,m)={6,4,3), r=n+m=7
with Cellular Automata Register (CAR) Realization of the PRPG.



distributed uniformly {every r-bit
pattern has 257 copies). We will
further show that N{T} is close to the
experimental average Ngx{(T), {(obtained
by simulation}, for s = 24, r = 14, 18
and 22, {see Fig. 6).

The number of cleck pulses required
for an s-stage PRPG to generate Ts2I
distinct r-bit patterns is important
for design of built-in self-test chips
and boards ([7]. For a PRPG with a given
number of flip-flops s and £fixed
feedback taps, the test application
time can be ninimized by & proper
choice of the number of clock pulses
applied. Thus, the proposed N{T) and
T(N} can then serve as a benchmark on
minimal number of c¢lock pulses required
for test generation.

2 Efficient Test Patterns Generation
for the Case When r2s

In this section, we will show that, for
the <case when r2s, 25-1 distinct
nonzero r-bit test patterns can be
generated by shifting the PRPG at most
s-n+2%-1 times, provided that the con-
tents of the last n consecutive cells
in the PRPG are the test patterns to
PIs and the content of the rightmost
cell is scanned into the interior scan
register, {(e.g., see Fig. 2, 3 and 4).

Consider a general block diagram of
the proposed test generation for BIST
boundary scarn design {(Fig. b). The
system consists of an autonomous linear
sequential circuit (ALSC) without feed-
forward cascaded with a scan register,
(e.g., see Fig 2, 3 and 4, where the
ALSC is an LFSR and a CAR). We will
show that for such a system there
exists a one-to-one correspondence
between af{t-k), the states of the ALSC
at moments t-k (tzk), and y(t)}, the
contents of the first s consecutive
bits of the r-bit test pattern at
moments t2k, where r2s, r=n+m, and the
initial state of the ALSC is denctes as
a{0}).

More specifically,
theorem holds:

the following

[ad

By definition, y(2{t) = a(t).

Theorer 1. For any ALSC without feed-
forwards cascaded with a scan register

(1)

I{t'l'k} = Cg(t] ¢

vhere tzk, a(t),y{t) e Vg (Vg denotes
the s-dimensional vector space over

{0,1}), and C is an {(sxs) nonsingular
triangular Bmatrix over GF{(2), the
Galois Field of two elements (0,1}

where the addition is the exclusive OR.
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Fig. 5. Block Diagram of Test
Generation for Boundary Scan

Proof Denote by y(i}(t), ief0.1,....k]},
{1} (t)evs) the s-dimensional binary
vector formed by the contents of the s-
i last (rightmost} consecutive cells of
the ALSC and i first (leftmost) cells
of the scan register.

Let t be the initial moment of time.
It is
easy to see that for the moment of time
t+i the vector y(1){t+i) is uniquely
determined by the vector 1‘1'1}{t+i-1}.
Namely,

{1} (t+i) = ¢ty (i-1) (x4i-1), (2)
where {1} is a triangular matrix with
diagonal elements equal to one.

Indeed, denote by rj{i}{t+i] the jth
compcnent (from left to right) of the
vector y{i) (t+i). Then, because of the

absence of feedforwards, yjil}{t+i} is
determined only by the components
yg(}'1}{t+i'1} with g¢g2j. Moreover,

Yj{?'l}{t+i-1} always contributes to
yj (1) (t+i) for the ALSC considered.
Hence, by recursive substitution,



y(t+k) = y{kK) (t+k} = ca(t), (k=s-n), (3)

where € = c{kic(k-1}...c{1) and ¢ is
also a triangular matrix with ail the
diagonal elements equal to one. Thus, C
is a nonsingular matrix. Therefore,
a{t) is uniquely determined by y(t+k)

(4)

which implies that for different states
a(t) of the ALSC the corresponding s-
bit patterns y(t+k) are also different.

a{t) = Cly(e+k},

Since all the 23-1 successive states
of a PRPG with pnonzero initial state
(implemented as an ALSC) af(t), t=0,...,
25~2, are different, it follows from
Theorem 1 that all the 25-1 successive
r-bit patterns generated at the moments
of time t = k, k+1,..., k+23-2 are also
different. Thus, after k+25-1 clocks
the system will generate the maximum
possible number of 25-1 different test
patterns.

Example 1. Consider the case ({s.,n.m) =
(6,4,3), i.e., r=7 and k=2. Fig. 2, 3
and 4 show diagrams of three different
realizations of PRPGs. For the case of
the PRPG implemented by the external
XOR-gates LFSR (see Fig. 2), 1t 1s
obvious that the leftmost six-bit block
of the test pattern (29,...,zg)} is the
state of the PRPG delayed by k=2. This
relation esgstabiishes the one-to-one
correspondence.

For the PRPG being implemented by the
internal XOR-gate LFSR {see Fig. 3}, we
have, y{% (t) = a(t), and
yp {1 (te1)
ya (1) (41)
v3 it} (£41)
va {1t} (t+1)
y5 {1} (£+1)

as {t+1)
az{t+l)
ag{t+l)
ag{t+l)
ag{t+l)

¥%{‘}{t+1}, by (t+1)
y1(9) (£)}  (100000){a; (t))
y2 {9 (t) 010001 | |as (t)
001001 | |y3 {®) (¢) 001001 { [a3{t)
000100 | |lya ¢} (t) 000100 | |ag (t)
000011 | fyg (9) (t) 000011 | |a5{t)
LOOOOOllin{”}(t}, 000001  {ag (t)

i

vyt (t+1) =

(100000
010001

= cltly(o}(t) = c(a(r).
F-‘?l{ 2} {t+2} 1
yo {2} (t+2)
v3{2) (t+2)
yai2) (t+2)
yg {2) (t+2) by (t+2)
ve ') (t+2)] by (t+2)
100010 (y1 ¢ 1) (t+1))
0100101 [yo () (t+1)
(001000 | [y3{*) (t+1} {
000110 | fyq {1} (t+1)
000010 | {ys{ 1) (t+1)
000001 ] lyg {11 (t+1) ]

(5)
a3 (t+2)
1ag (t+2)
ag (t+2}

(2)
Yo (t+2) ag (t+2)

= cl2)y(1) (t41) = c(2elt)a(y).
For the PRPG implemented by
cellular automata register (C2AR),

(6)
the
{see

Fig. 4), we have,

1010007 (111000
0111400 010100

cl1) = 001010 cl2) = 001110
000111}’ 000100 |’
000010 000010
000001 , 000001,
101000 111000
011100 010000

cl2) = 001000 cl4) = 001000
000100 |’ 000100}"
000010 000010 |
000001, 000001
100000 100000
010000 010000

x 001000 sy _ [001000}

ctsh = lsoooo | €% = loooron[* (T)-
000010 000010
1000001, 000001 |

a1l c¢{%), (i=1,....6, in this example

k<6, s=6), are nonsingular over GF(2).

In contrast, if the connection points
to the PIs are taken from the first
four cells of the CAR the state-
dependence equation for the first s-bit

block of the r-bit test patterns (s=6,
r=7) 1s given by
Z1 1000001 (a1 )
Z3 010000 | |as
z3[] . 001000 laj (8)
Z4 000100 | |ag !’
4 111011 | jag
26 011111 ) {ag |
The above matrix over GF(2Z2) 1is
singular which implies that the 23-1



successive r-bit test patterns are not
guaranteed to be all distinct. In fact,
only 33% of the r-bit patterns gener-
ated by application of s-n+25-1 clock
pulses were distinct, {[1] and [2]}.

3 Efficient Test Generation for
the Case When r«<s

In the design of a specific chip, a
designer may have to use a pre-design
boundary-scan template in which the
number of PRPG flip-flops s 1s greater
than the number of bits r in the test
patterns. The problem arises as how to
efficiently generate, with a minimal
number N of clock pluses, a desired
number T=2f distinct r-bit patterns
using s-stage PRPG when r<s. (An 1in-
efficient techpique is to clock the
PRPG for N=25-1 times}. The efficiency
of a test generation (when s, r and T
are given) depends on the choice of the
initial state of the PRPG. For ramdomly
chogsen initial state, we can char-
acterize the efficiency in terms of

N(T), the expected number of clock
pulses {(over an ensemble of s-stage
PRPGs and their initial states} such
that a PRPG will generate T=2%¥ r-bit

patterns, and T(N), the expected number
of distinct r-bit patterns generated
within N clock pulses. We note also
that the problem of determining an
initial state that results in a minimal
nuprber of clock pulses for a given s-

stage PRPG generating T=<2I r-bit
patterns is still open.
The proposed probabilistic model

for the test generation procedure is a
repeated experiment of randonly
drawing, without replacement, an r-bit
pattern out from the pool 1initially
containing 25 r-bit patterns dis-
tributed uniformly. The assumption made
is that an r-bit pattern generated by
PRPG at any moment of clock pulse 1is
random (random draws). Moreover, since
the r-bit patterns are the r consecu-
tive bits of the s-bit patterns gener-
ated by the PRPG, it follows that, with
25-1 clock pulses every nonzero r-bit
pattern appears 237 times and the

(3}

pattern of r zero's appears 25°r-%
times, thus, the proposed model is
assumed as a drawing without-replace-
ment experiment. (The random without
replacement drawing model has been used

in f[8] for estimating the number of
pseudorandom  patterns needed to
achieve a given fault coverage for
pseudorandon testing).

In the proposed model, let v be a

random variable defined as the number
of draws {(analogous to the number of
clock pulses) and v be a randor vari-
able defined as the number of distinct
patterns appeared. We show in Theorenm
2, below, the expected number N(T) of
random draws such that T distinct pat-
terns will appear for the first time.
Moreover, the expected number T{N)} of
distinct patterns appeared in N draws
(v=N} is given below in Corollary 1.

Theorem 2. Let Q = 2%, M = 257 and 4
be a binary random variable defined as
follows; ¢§4=1 if the pattern appeared
at the ith draw has not previously
appeared (distinct) and §4=0 if the
pattern has previously appeared. The
conditional probability that exactly T
distinct patterns will appear within N
random draws satisfies the folowing
equation:

Prir=T|v=N} = Pr{r=T|v=N-1jPriy=01
+ Pr{r=T-1]{v=N-1iPr{fy=11, (9)

where Prify=0} = MT-N+1 and Prify=1} =

MO-N+1
M{Q0-T+1) .
MO-N+1
The solution of the above functional
equation is: '
Prir=T{y=N}| =
| T
3] 3 o)
k ] Y 1) [ "R ao
[ MQ] #=0
[

The conditional probability that N is
a number of draws such that T, 1=T=0,

distinct patterns will appear for the



first time {(minimal number of draws) is
given by

PriveN|r=Ti=
Pr{r=T-1|v=N-1{Pr{éy=1}, (11}

and the conditional expected value for
the nunber of draws given T, (15T=Q)}, is

Eiulr=Ti = N(T) =

(MQ+1)[ 1-

A good approximation for N(T) when
Q>>1 can be given by:

R(T) =
'{le)[l-{i_lfﬁexp( 1 -1) 114
! o-T 2K(0-T) 2MQ (13)

(MQ+1)[1 - @ M/¥ exp(-m1) 1 T=0;
rs0. 577 is the Fuler's constant, {9].

Proof. In (9), Pr{r=T|v=N} is expressed
as a sum of two probabilities:
Prir=T|v=N-1iPr{fy=0i., the probability
that T distinct patterns appear before
the Nth draw and Pr{r=T-1|v=N-1}
Prif&y=1} = Priv=N|z=T], the probability
that i1n N draws T distinct pattern
appear for the first time, (see, (11)).
It can be verified that Pri=T|v=N]
given in {10) satisfies (1) and the
initial condition Prir=l,v=0} = 0,
Prir=1,v=1} = 1.

The expected value N(T) given in (12)
is obtained from

MQ

N(T) = E N Prir=T-1|v=N-1} K(Q-T+1)
N MO-N+1

E {HQ+1][1 -

(14)

Q! T{O-T+1+1/N}) Jf
(Q-T) ! T{Q+1+1/M)

[{x} is the Euler Gamma-function, [9].

For Q>>1, the term, (see, (12)),
Q Q

(1+1 371 2 exp(-1 z_k'l)

k=g-T+1 1K M oy =0-T41

FR

= exp (-1 [p(Q+1l)-p(Q-T+1)1), (15)
M

where p(x) = dlnr(x)/Ax, [9]. Finally,

the approximations (13) are obtained

from (15) using a2 series expansion for

wix), [9]. 0
Corollary 1. The conrditicnal expected
value for the number of distinct

patterng given v = N, .
Bir|v=N} = T = g-of #] [“ﬁ'"].{1s}

Proof Let {»j, 1=1,...,Q} be a set of
random variables defined as the number
of times the patterns from the pool of

Q@ patterns will appear in N draws,
(vitvg+...+vg = N, vj20}, then, we
have,

Priviat) =1 - | EQ)_I[“E"“J. 17)

Further, let us define a set of binary
random variables, {{j: {j=1 iff vy21,

i=1l,...,Q}, then, the expected value,
E{{j} = Privijzi}. Finally, (16) is
obtained by
0 Q
T(M) =Bt ) i = ) Elg)
i=1 i=1

= g Privizil =0 - of 50]*1[“3""]. (18)

Note that, T(N)} can also be found by
taking the expectation of T,

miniN,Qj
T(N) = ) T Prie=T|v=Hi, (19)
P=0

where Pr{r=T{v=N} is given by (10). O

Fig. 6 shows a comparison of N(T)} and
the simulation results Nge(T) for s =
24, r = 14, 18 and 22, respectively,
where the characteristic polynomial of
the PRPGs is x24am’ax?ex®l. The average
values Ngx(T) have been cbtained from
20 randomly chosen initial states of
the PRPG and three different realiza-
tions of the PRPG: the external XOR-
gate LFSR, the internal XOR-gate LFSR,

and the cellular automata register
(CAR). The comparison of Ngg(T) and
N{(T} are shown in terms of the
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The experimental results, Nex(T)
indicate that, the proposed N(T}
provides a good theoretical estimate
for an average number of clock pulses
over randomly chosen the initial states
of the PRPG. We also observe that the
exhaustive test generation of all 2€ r-
bit patterns {i.e., T/2¥ = 1) can be
quite inefficient where as the cases of
"near" exhaustive test g¢generation



(e.g., T/2* = 0.95) are reasonable.

Conclusions

¥e presented a modified internal
connections of a BIST boundary scan
design which ensures an efficient test
generation for the case when r2s. The
modification from the original circui-
try 1is that, the connections for Pls
are from the last n consecutive cells.
It is important to note that, the
proposed modification is independent on
the choice of PRPG implementation.

For the case when r<s, the expected
number N(T) of PRPG clock pulses re-
quired for generating T=<2r distinct r-
bit patterns and the expected number
T(N} of distinct patterns given a
number N of <clock pulses were
presented. The proposed theoretical
average N(T) was shown to be close to
the experimental average values No.(T).
Hence, the value N{T) or T{N) can be
used as a benchmark for evaluating the
efficiency of a BIST boundary scan test
generation.
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