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Absiract

A number of methods have been proposed to study
aliasing in MISR compression. However, most of the
methoda can compute aliasing probability only for ape-
cific test Jengths and/or specific error models.

Recently, & QLFSR structure [15] was intro-
duced which admits coding theory formulation. The
conventional signature analyzers such as LFSR and
MISR form special cases of this GLFSR structure.
Using this formulation, a general result iz now pre-
senied which computes the exact aliasing probability
for MISRs with primitive feedback polynomiala, for
any test length and for any error model. The
framework is then extended to study the probability
of correct diagnosis when faulty signature is used to
identify the fanlty CUT in the STUMPS environment.

Specifically, the results in {7, 15, 16] are ex-
tended by proposing two new error models, a general
error model which subsumes all the commonly vsed
models, and a fixed magritnde error model which is
shown to be useful for fault diagnosis. It iz shown
how siatistical simulatior can be used to determine
the general error model, for & given CUT. Alasing for
some benchmark circuits, for vazious error models and
test lengths is studied.

1 Introduetion

Coding theory framework first proposed in [6] has
formed the basis of significant research [7, 15, 18].
Unlike Markov model techniques [3, 4, 19], coding
theory framework provides closed form expressions
for exact aliasing probability in LFSR [5, 15] and
MISR (7, 8, 15, 16}. Recently, & new structnre called
generalized LFSR (GLFSR) for signature analysis
and random pattern generation was proposed in [15].
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~ In (4], the Markov model has been nsed to study
asing in MISRa. Firatly, it was shown in [20] that for
¥ile independent errar model, the nliasing probability
'jrmptﬂtica]ly converges to 2™ (for m bit MISR).
Bin [4], the Markov model formulation has been ex-
fRicnided to study aliasing in MISR compression undet
&l independent error model. An expression for alias-
‘probability as a function of test lemgth has been
_i:ainc{l. However, this expression is not a closed form
pression and therefore, is computationally complex.
meequently, only an approximate expression for the
asing probabilily, as a function of test length, was
escnted.
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#  Recently, coding theory formulation proposed
[5] has been umed to study aliasing in MISR com-
esgion [T, 15, 16]. The advantage of the coding the-
'igr__furmula,tiun is that exact closed form expreasions
Ricr aliasing probability can be formulated under the
Igymimetric error model in {7, 16) for any test length,
and under the independent error model in {15] for cer-
n test lengths. (Closed form expressions for MISR
asing under the independent error model has been
open problem.) In the following, we briefly review
$prior results (15, 16] first, as they are useful later in
gihe paper.

Specifically, it was shown thal conventional LFSR
MISR and multiple MISR can be treated uniformly
as special cases of GLFSR. The other significance o
the GLFSR structure is that it not only admits con
ventional signature analyzers as special cases but also

allows formuiation of naw structures not studied ba-
fore.

In this paper, a general error model is developed
which subsumes the commonly used symmetric [7, 18]
and independent [15, 19] error models. A method for
determ.ining the parameters of the general error model
for a given circuit ig also presented, The applicability
of our approach is Uustrated by demonstrating how
aliaging probabilities for different benchmark circuits

g21 GLFSR Framework
under various error models can be computed.

el j[l!i], a new framewerk ie presented for shift-register-
Eboased teat respomse compressors, One unigue fea-
Frure of this framework is that it provides a uniform
fitchnique for the analysie of LFSR, MISR, multiple
SR, and multiple MISRs. Previous formulations
thad ‘treated these compressors separately [1, 8, 18).
RSuch a nniform treatment is possible using a coding
Fﬂ ieary model of the underlying mathematical relation-

Fault diagnosis is becoming increasingly impor-
tant. Signature analysis has significant applications
in diagnosis, nsing dictionaries of fauli signatures.
Proposed here is a new error model called the fized-
magnitude error model. This model is used to study
the probability of correct diagnosis whexn the faulty cir-
cuit signatures, along with fault dictionaries, are used
to diggnose the faylt,

The paper is divided into four main sections.
Section 2 reviews the coding theory framework devel
oped earlier [15, 16].. Section 3 presents various error
models. Then, in Section 4, the aliasing probability
expressions for any test length under the general, as
well as the fixed magniiude model proposed here, are
presented. The reavlts pertaining to diagnosis are then
presented in Section 5.

The circuit under test {(CUT) is assumed to
ve m outputs which aze inputs {0 the signature an-
gaveer. In the proposed GLFSR framework, the signa-
getute analyzer is a linear shift register designed over
EAT(2™). Al the elements in the shiff register are
biilt out of elements over GF(2™). These multipliers,
'._c_lers and storage elements are designed using con-
g¥entional binary elements. (As explained below, the
gmiltipliers in the circuit are simple and implemented
sing exor gaies,) Therefore, the inputs and outputs
e considerad m kit binary numbers which can be in-

erpreted as elements over GF(2™).
The structure of the GLFSR is shown in Fig-

2 HReview of Earlier Woark i
The+ﬁrst attempts to study MISRs were based on re-
placing the m input sequences by an equivalent se-
quence applied fo the first input [18]; this reduces the
structure to an equivalent LFSE.
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Figure 1: Generalized LFSR (GLFSR)
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Figure 2: GLFSR(m, n}

ure 1, The feedback polyncmial here i given as
P{e) = 2" + B 12"t By + By

The coeflicients of the polynomial are over GF(2™)
and represent the feedback connections. The ith eo-

efficient ®; defines the multiplier for the #h feedback
connection, as shown in Figure 2. Actually, these are
not genetal Galois field multipliers; instead they sim-
ply multiply the feedback input with a scalar which is
a constant P; over Galois feld. Therefore, thess are
realirable using only simple ex-or gates. As shown, the
GLFSR is agsumed io have m bit wide inputs/outpuis.
Also, it is assumed to have n stages where each siage
has m storage cells. Thus, each shift shifie rm bita
Trom one stage to the next. We denots this implemen-
tation of a GLFSR over GF(2) usirg binary logic as
GLFSR(m,n), where m is the number of inputs and
n is the number of stages.

The following presents those special cases of the
GLFSR. that represent the conventional shift registers
for signature analysis. These special cases are illus-
trated in Figure 3.

2.1,1 m=1,n=1: Parity Compression

This corresponds to the case when a single output of
the CUT is compressed to a single bit signature (which
is simply the parity of the output responge},

2.1.2 m=1,n>1 LFSR

This GLFSR simply corresponds to a n-stage LFSR
for compressing ihe response from a single putput of
the CUT. '
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FPigure 3: Special Cases of GLFSR

2.1.3 m>1, n=1: Conventional MISH

This case m > I and » = 1 corresponda to the con-
ventional MISR, shown in Figure 4. The response
of the CUT is commonly compressed by an m-siage
MISR witk a primitive feedback polynomial ¢(z) (Fig-
ure 4¢). The polynomial ¢(z) is usually a degree m
primitive polynomial over GF(2). This polynomial
has an equivalent representation [13, 16] as a degree-1
feedback polynomial, #{z) = 2 + a, over GF{2™), as
shown in Figure 5. Here, o is the primitive element in
the GF({2™) generated by using ¢(<} as the generator
(af £ o fori £ §;4,7 =0,1,...,2™ - 2).

2.1.4 m>1, 5> 1 Multi-MISR & MLFSR

Two special cases of multi-stage GLFSR are of in-
terest. One corresponds to the multiple MISR case.
Multi-stage GLFSRs (MLFSR) with primitive feed-
back polynomial over GF{2™} are new stractures not
stiidied before and are presented in [15].

In the following section, the basic concepts be-
hind signature analysis are introduced and the coding
theory framework developed in [15, 18] is reviewed.
With the aid of coding theory, the problem of alias-
ing has been shown [15, 16] to be equivalent to the
problem of finding the probability of undetected error
in the aliasing code (corresponding to the signature
analyser).

2.2 Signature Analysis

Consider a m-output CUT, Let N be the number of
tests applied to the CUT, Let

_ -2
R(z) = raoE L 4 P ARl PP S JER

be the polynomial representation [13] of the good cir-
cuit response where r; € GF(2™) (0 < ¢ < N) is the
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response of the goed circuit for thei;

() = rf_,2 "t 4ol 2V 15 5 B @ | eme
. Do o) B
be the pelynormal representation g :]‘_
response where r;-f e GF{2™) for-0: i iz Fonm1

E({z) = EN—li‘!N_l + EH—EE-H:._-.:.H::"..:;
be the error polynomial where ,13_,-:_-_
Note that E(z} = R(z) 4+ Rf(2)::
above relations s modulo fwo.).

For compression with a GLFSE!
polynomial ®(z), the good circuit:signat
given by: L vk '

R{z) = h{x)®(z) + 8

where the degtee of S(z) is less,

&(z2). Similarly, the faulty l:u'cui
given by: o

d by the MISR with a feedback polynomial
-+ 2 + 1 (Figure 6 (a)). (Note that this
be represented as a single stage MISR over
th &{z) = = + o (Figure 8 (b)), where « is
ive element in GF{2%) generated by ¢(z) =
., a?+a+1=0.) In this case, the fisld has

call this code the Aliasing Code, AC,Jol
sor [15, 16]. The following Lemma: -G}
the AC for MISR with a primitive ‘feec
mial, ref=a’=a+l.

“‘n be shawn that only those R/ (2} can caunse

“Which the error ¥ belongs to the following
d (4C).

Lemma 1 [16] Jf N tlest veciors A
CUT, snd the outpud is compressed ditrg
feedback polynomial ®B(z} = x + oW
itive element in GF2™), then aligits
only if the error polynomicl B{z) : .
(N, N = 1) Mazimum Distance Separgh . & = 4
code over GF(2™) with generstor & kO

000 10 F0a fol )
Ola g0 105 111

Gaf P10 182 aca |
L 081 201 ol ass |

This is becanse the aliasing
MISR is a distance 2 code over GE(2!
gree of @'[z] i 11, the aliaaing ﬂﬂ'dﬁlﬁl
tests are applied, then it is a {IV, N gy i
Thess codes correspond to the Heed:Soliy
when N = 2™ — 1 [13]. :

_is case, out of 4* — 1 = 63 possible nonzero
*0ra, there are 15 nonsero errors & such that
sAnd these errors will result in aliasing in the
Figure 8. |

Example 1 Consider a E-ﬂutPUt'_'-tj o
N — 3 tests are applied to it. Lse T

0=1(0,0) 1 =(0,1),& = (1,0), and § =

::ﬂ-.
T
Y
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Figure 8: MISR with (a) ¢(2) = 22 +2+1 over GF{2);
(b) ®(x) = = + o over GF{2%)

th-.f following, we present a very general error model.
It is shown that the commonly used independent and

symmetric error models can be interpreted as special
cases of this madel,

There are two important components of any
ercor model, temporal and sputial The fizst aspect,
temporal, madels the correlation between the errors
caused by different test vectors. For combinational
circuits, and combinational faults, errors can be as-
sumed to be independent tn time. That is, if E(z) =
ex—12Y¥ 14 ... fe,x +e, then & and e; are statisti-
cally independent of each other. This is a reasonable
assumption because in BIST, psendo-random vectors
are applied to the CUT. Since the test vectors for any
fault are randomly distributed in the input seguence,
there is no correlation between errors due to any two

test vectors, The following discusses various spetiel
models.

3.1 Spatial Modals

‘The other aspect of the error madel in muiti-output
CUTs is the manner in which the errors manifest them.
selves at the various outputs of the CUT at any given
moment, for randomly chosen test vectors. Let the
error valoe for the-test-i be a;, For an rm-output cir-
cuit, e; € GF{2™); hence, it ¢an take 2™ values and
e; = 0 = [0...0) indicates that the test-i did not de-
tect any fault. On the other hand, a non-zero vajue of

e; indicates that the test detected a fault and the ef
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fect was observed at one or more outpuis of the CUT.
The spatial model for the circunit is closely related to
the topology of the circuit.

3.1.1 General Error Model

Independent and symmetric error models have been
used in the literature. These models can be nzed ef-
ficiently for some circuits. However, in general, it
ia difficult to determine which error model is appro-
priate for a given circeit. Hence, in the following,
a general model is proposed. All ‘independent in
time’ error models are subsutned by this model. This
model assumes that the error e; can take any of its
2™ values, {0,1, &, ac%,...,a% —2}, with probabilities
POy P1y . Pam1, Tespectively.

4.1.2 2™-ary Symmetric Error Model

This nodel assnmes that the error, for any test vector,
e;, can take a value 0 with a probability 1 — p and can
take any of the 2™ — I non-0 (faulty) values witk a
probability p/(2™ - 1) [15, 16]. This model is useful
if the outputs of the circuit share logic and the effect
of faults can get propagated to any of the outputs.
Note that this can be cbtained as a special case of the
general error model by substituting po = 1 — p and
=p/(2™ - 1),1 <i<2™ 1.

3.1.3 Independent Error Model

This model assumes that a test can propagate the ef-
fect of a fanlt to any output of the CUT, independently
of ita propagation to any other output. That is, each
output bit of the CUT can be in error witk a prob-
ability p independent of the other cutputs. Hence, if
2; is seen as a hinary m-tuple (g; = o € GF(2™)),
then the probability that e; has a weight w (L.e., wis
the number of 1's in &) is ([)p¥{1 — p)™~¥. The re-
sults for this case can be found in [4, 15]. In this case,
the general error model parameter py = (I — p)™ and
= (3)p"{1 — p)™~*, where w is as defined above,

3.1.4 Errors of a Given Magnitude

Thia error model assurnes that if a test vecior detects
a fault, then the error e; is always equal to some fixed
value a € GF(2™). That is, the probability thate; = a
is p and the probability that &; = 0is L —z. This model
is appropriate for circuits where every fault affects only
a fixed set of outputa for all tests. Also, this model is
useful for appreaches such as STUMPS [1] {Figurs 7)
- where & fanlt within a single chip can affect only a
single input of MISE.

Papar 30,3

Ty

Random Pattern Generator - %3

'''''''

[ vl L= il ]
" Rk x|
—

o Rl ol
e o

43, JI,SI, 1sh, i

Is0y ko, [0, ﬁ

Figure T: Global Test nsing STUMPS [1]

It is significant to note that as seen br:]fhm
coding theory frarnework can be used io mmpu
probability of aliasing in MISE. compression fu
one of the proposed error models including- {:h
eral error model. To use the general error mod
& given CUT, one has to determine the valuﬂ:!
parameteis p;,t = 0,1,...,2™ — 1, In the fol
a statistical tnethod to detarmma precisely th

rameters is presented, Jr*
o3 ﬁ

3.2 Statistical Determination of the Ga
Error Model

. .'..: .':

One approach to compute the parameters p; ﬁ‘-ﬁT
to perform a farlt simulation on the circuit wu;l:
of random test vectors, Then, the resulting eirfﬂ
tors at the output of the CUT for the va.nmf
can be studied to compute p;s. Basically, Pi &
estimated to be equat to the number of i:mu:!iL
ticular ¢; oceurs, in the output, divided by f.H
number of errors at the output. This pmr.:edurh
computationally complex. Specifically, the comi)
of this procedure increases linearly with the riuitt
gates in the cirenit, linearly with the numbeg ﬂ'
vergent fan-out hnes and linearly with the nu
vectors applied.

The space complexity of storing the cﬂuﬂ
the possible error patterns ey, ey, . ,e=m,1_§ﬂ
on the number of outputs, H::rwever for any gt
cuit, & large number of these error patteras Ea'il"
occit. We present below an upper bound .:m

£
mal number of nonzero error patterns. i

MISR .

Consider & citcuit with » inputs 2, 22, ..., 7,

lf. auch that k; ontpuis are dependent on input =;. Then,

*'the number of exror patierns, XN, due to gingle stuck-

- at-fanlts, is bounded from a.buve by:

Ny < izh.

2 j=1
3
.

" For example, if the CUT has 32 inputs and 32 outpuis
. and if max; #; = 10, then N, <€ 32 x 210(%,. 233}

?{'_ This bound can be improved by a more detailed

tnpnlnglr.:al analysis of the CUT. Let ¥; be the set of
otputs that depend on the input z;, 0 < 7 < n. Let
Y =k (BNY |= ki, | KinY; 0T = Ky, ..
Then, by the pnnclple of inclusion and exclusion,

'
LN < E L Z b Y ok L
i v

The following shows how the parameters of the
i gem:ra.l error model can be directly used in computing
_J;aha.smg probability.

4 Computation of Aliasing Probability
by WElght Distribution of ﬂllﬂﬂmg
Codes

‘Consider an m-output circwit. For each test vector
'that is applied to the CUT, a m bit output is produced.
i Let ¥ be the number of tests applied to the CUT and
'flet the response be compressed using a MISR with a
‘degree m primitive feedback polynomial, as shown in
fﬁ'igure 4. This is analogous to compression wsing a sin-
‘gle stage GLFSR {15}, as shown in Figure 5. As noted
before, the feedback polynomial of this 13 $(2) = 2+
-‘Where o i3 & primitive element in the field GF(2™),
genemt:d using #(a}, the feedback polynomial of the
MISR., This equivalence holds when ¢(z) is primitive.
The aliasing code AC is the code over GF(2™), gener-
?s-:d by #{2) = 2 4+ « as the generator polynomial.

: Key to developing expressions for aliasing prob-
:abmty is the formulation of expressione for appropriate
Weight enumerators for the aliasing code {15]. ‘There
are different weight snumerators. The type of weight
enumerator to be nsed depends on the particular error
model. Specifically, the Hammmg weight enumerator
Was shown to be useful in computing MISR aliasing
pruhahdﬂy for any test length [16] wnder the symmet-
tic error model. In [15] the binary weight enumerator
Was developed to compute the MISR aliasing probabil-
1"3' for certain test lengths [15] under the independent
E:m: model. (The formulation of a closed form expres-
sion for MISR alinsing probability under independent

error model had been an open problem.) In the fol-
lowing, the complete weight enumerator is presented,
uged to compute the aliasing probability for the gen-
eral error model.

4.1 GComplete Weight Enumerator

The composition of a codeword over GF(2™) iz a 2™-
tuple whose entries represent the number of times
cach GF{2™) aymbol appears in the codeword. The
complete weight enumerator of a code contains in-
formation about the number of codewords which
have any given composition. [t is represented as
Welzo, 21,000, %2m 1), where z; are the parameters

corresponding to the symbols {0,1,e,..., o® %},
The following exampie illusirates the concept.

Example 2 Consider a degree-2 primitive polyno-
mial ¢(z) = @#? + z + 1. This polynomial genecates
the field GF(4) with elements {0, 1, &, &*} denoted as
{wﬂrwllwilwa}'

Consider code ' over GF(2%) with the genera-
tor pelynomial

g(z) = (2 + o)z + ®) = 2* + as + a?,

where o is the primitive clement of GF(2?). The code-
words of this code are

{(0,0,0), (1, &, &%), (&, &%, 1), (&%, 1, )}

(This is the distance three Reed-Solomon code,
R5(3,1) [13).) The CWE of this code is given by

Was3,1)(20, 21, 23, z3) = 2§ + 3212323,

The CWE of a code can be obtained from the
CWE of its dual using the MacWilliam’s identity for
CWE. A detaided discussion on CWE can be found
in [2, 13].

Let w = me}:wfllil_”w[m-ll}. 5 = [Em],
d, L, 6m-1) ¢ GR{2™) (w, a1 ¢ {0,1}), and
let 2y be the Walsh Transform [10, 11] of 2, where

A |

5, = Z {(—1)<wa>g, (1)
and,

m-l Fl Fl
< W, 8= Z wit) 50},

E=0
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‘Then, by the MacWilliam’s identity for CWE [13] we

have
W =1 oy 0 v s 3
c(xﬁ,--;:sﬂﬂ_ljﬂ— i_'CT'I'WcJ.{Hﬂ,rtijzzmnl}t

(2)

Enrlnputa.tiﬂn of the Walsh transform z, — Z, can
e tinplemented by the Fast Walsh Transform alge-

rithm [10} which requires m2™ additi
tions only. m2™ additions and subtrac-

Exam?le 8 Let us compute the CWE for the RS(3, 2)
cr::de' w1t.l1 ge:ner;atnr g(z) = £ + a, using the weig’,ht
dmtfll_mtmn detived in Example 2 for RS(3,1) =
R? (S,E}ﬁcnde, and the above identity. Note tthat. in
;]:13_':-3:::052 0+ 21+ 22+ 23, 1 = 2o — 3y + 23 — 23,
Hence, we h:we S

I

1
Whas(s,2) 1((0 + 21 + 23 + 23)°

+3(20 — 21 + 22 — 23) (20 + 21
~z2 — 23}(20 — 21 ~ 23 + 23]

5
0 + 33‘]313'1 + 33&3:33 - 35031-33

+3212923 + 25 + 22 -+ 25

T!.'u: proposed approach for computin

MISR aliasing probability under a given er:mr fnnf:.l!:
fcir the CUT consista of the following three steps. (i)
First, cnm_pute the appropriate weight enuwmerator
cnrﬁrenp:mdm; to the chosen error model, for the r:nd;
which is fiua.l of the MISR aliasing code. {ii} Next, use
MacWilliam's identity (Eq. 2} to determine the w;ight
enumerator of the alinging code itaelf. (iii) Finally, use

the weight epumerator of the aliasi
eigl e aliasing code to compute
the aliasing probability as shown next. °

4.2 Gnn-lputatiun of Alimsing Probability for
Various Error Models

:-:a wﬂl present in thin section a general solution for
e aliasing problem for arbitrary test length N for
the pmﬁpuued general error model. We show how the
expression for the general error model can be used for
other error models as well. First, the complete welght
enumerators of 2™-ary codes generated using the gen-
erator $(z) = z +a, are presented. (Note that for an
arbiirary block length N, these codes are not c:}'t:.].it:?“r
Hu'f.rgvcr, these are MDS codes for all values of N a.m:i
their Hamming weight enumerator is known [13] for all
block lengtha.) The following theorem gives the CWE
for these ches for arbitrary block length .

| P Y .

[E- -
-1

Theorem 1 [15] Let C = C(N, N % ST -"i-:.-_.'f 9 which follows from Theorem 1 and Eq. (2}

code generaied by $(z) = o+ o. The :i.;;"'. closed form expression. However, for symmet-

i independent error models, closed form expres-

g = [2m-2, 25 1.}% already been dewived and are given below,
- ['1 a” 7., et T Wally, ctosad form expression for fixed magnitude

' ' P model is now derived and presented here for the
ine. The proofs of all the theorems can be found

(where, a1 = a% ~2 -2 =

t may also be noted that the computation of
using Theerem 2 s not computetionally inten-

:’;f Symmetric Brror Model. The Hamming
t-enumerator for the distance-2 RS code [13] can
std to compute the aliasing probability for this

iipodel. This is given by ihe following theorem

test length.

given by

em 3 |7, 18] If N tesis are opplied to an m-
. CUT whose response is compressed using o
‘with & primitive feedback polynomzai, then the
¢ probability assuming ™ -ary symMmeiric errar
41 given by

i
= 1= a™{1—p)¥

Hence, the CWE of the dual code ¢
g ™y N
21.“ — 1 1 — -

. 3 i
Wei = zq + tizzs + 217583

‘ Theorem 1 shell now be us
in MISR for various error models, -

Hetendent Error Model:  This is the moat com-
sed exror model. The aliasing probability for
¢ can be computed using the weight enumer-
[RBoL the binary image of the aliasing code AC.
Eitis what was called the binary weight enumera-
Fac(z,y) of the AC(r(2™ - 1),7(2™ —1) - 1)
d ia derived in {15, BWyc(=, y) can be uaed
sute the aliasing probability for MISR compres-
| der the independent error model, as given by
fit (8] owing theorem.

General Error Model: The WE-IE
rived above can be used to compiie:
ability for any test length N, fot Axiyie
ag given by the following thmrﬁrﬁﬁ B

ing a primitive feedbuck pniynaminl}%
probabilily assuming generai error m

Pa = Wﬂ(Pﬂ;Fl;-u;Pzﬂ';

i-oulput OUT whose response is compressed us-

I
5=
%
+
N
—

Tﬂhﬂ'?‘ﬂ, Wcizﬂr Zla- ey 33""—-1] i+ 1ﬂ|’
C({N, N 1) code aver GF(2™ ) with z
ator polynomial, py, p1,.. ., 2~y lI-:I"ﬁ i
of errars in the general error model,
Walsh iransform of p,. o

em & [18) If N = r{2™ — 1) lesis are applied

MISR 1with primitive feedbuck polynomial, then

Errors of a Given Magnitude. The weight enn-
merator of binary Hamming cods [7] can be used to
compute the aliasing ptobability for this error model.

Theorem 5 Let N = 2™ — 1 lesis he applied lo an
m-output CUT whose response 18 compressed using a
MISR with primitive feedback polynomial. The clics-
ing probabslity, assuming that the errovrs have g fized
magnitude, {3 given by

P = zim [14 (2™ - 1)(1 ~ 20| - (1 - 2
(8)

4.3 Experimental Results Comparing Aliasing
Probabilities for Varions Error Models

I this section, aliasing probabilities will be compared
for certain benchmark circuits, for the error models
discussed here. First, the general error model is ob-
tained by statistical simulation of these circuits, Then,
the parameters for the other error models are com-
puted by approximating the parameters of the general
error model. Using these parameiers, aliasing proba-
bilities are computed under varioua error models, The
following example illustrates the process.

Example 5 Consider the ALY 181. This circuit has
14 inputs, m = 8 outputs and 197 Lines. Let the
outputs be conmected to a 8-bit MISR with primi-
tive feedback polynomial. The cirenit was simulated
using 2,000 pseundo-random vectors; the parameters
90, P1, - - -+ P2ss for the general error model were de-
termined statistically. The probability po that a ran- |
domly selected test vector would not detect any fautt
was found to be 0.74865. Similarly, p1,p2.-...P285
were determined. The aliasing probability of the B-hit
MISR with a primitive feedback polynomial for the
genctal error model is shown in Figure 8 for various
test lengths using Theorem 2.

Also shown in this figure is the aliasing for ALU
181 under othet error models. As discussed above, the
parameters for these other errer models were derived
hy approximating the general error model parameters,
ag discussed below,

2™.ary Symmetric Model: The parametet p for
this case was found by equating po in the general er-
tor model, to the zero error probability in the 2% ary
symmetric model, Thus, pn» = 1 =P and one has
p = 0.25135. This value of p was substituted directly
in Theorem 3, as it ia valid for any test length.
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Figuze 8: Aliasing probability for ALU 181

Independent Error Model: For this error modei,
pp for the general model was equated to the probability
that the test does not detect any fanlts. Thus, the bit-
eiror tate, p, was obtained by equating (1 —p)™ to po,
where m = 8. Hence, p = 0.035638. This value of p
was used in Theorem 2 as described earlier.

Errore of & Fixed Magnitude: In this case, there
are only two possible erroz values, 0 {error free} and
some flxed error value of. These occur with proba-
bilities 1 — p and p, respectively. p was computed by
equating po = 1 — p. Hence, p was determined to be
the same ag in the 2™-ary symmetric error model. This
was used in Theorem 2 as described earlier.

Similazly, the benchmark cizcuit C432 (m = 7)
was analysed; aliasing probabilities for various er-
ror models are shown in Figure 9. Additionally,
some benchmark PLAs (Table 1) were resynthesized as
multi-level circuits. These resynthesized cizeuita were
also apalyzed, as above. Figurea 10-13 present these
1esults,

It is interesting to note that for large tesi
lengths N, all the error models converge 1o the same
alinsing probability. However, for small ¥, the -
dependent error model predicts maxirmum aliasing,
whereas the symmetric error model predicia mimmum
aliasing. We conjecture that the symimetric ertor
model predicts aliasing more accurately than the other
error models. If our conjecture is true, then the pre-
diction of aliasing becomes trivial because closed form
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Therefore, it is crucial to minimize the probability of
misdiagnosis like the probability of aliasing,

Following presents results for estimaiing the
probability of misdiagnosis, Probability of misdiagno-
sis is defined as the probability that two fauits produce
the same faulty signature. This is therefore analogous
to the aliasing concept.

In the following, we assume the STUMPS orga-
nization, shown in Figure 7, Further, we assume only
one channel (Field Replaceable Unit (FRU)) is faulty.
Therefore, the question arises that given that errors
are confined to a single input of MISR, what is the
probability of correcily locating this fault?

Let the aliasing code for a sigrature analyzer be
AC = C(N, N — 1), and the good circuit signature be
&, The probability of misdiagnosis P4 is the proba-
bility that two fauits produce the same erroneous sig-
nature 57, Let ng{zg,zl, .v.yZam—1) be the weight
entumerators of the coset (N, N — 1)+ 5 + 5 of the
code C{N,N ~ 1}. The following theorem gives the
probability of misdiagnosia, Note that for the special
case when §7 = §, this reduces to aliasing probability
Pa.

Theorem 8 Let N be the number of lesls applied to
an m-outpul circuil, and let the good circuil signaiure
be &. The probabiiily of mirdiegnosis when the faully
circuil signalure is S, Ppa, i given by

Pond = W-g!{mipll'*'lpszll (9’]

where, Wcsf{zﬂ,zl,.“,&m_ﬂ s the complele weighi
enumeralor of the coset C(N, N — 1} + S + 5 of the
aliesing code C(N, N ~ 1).

In the following, we will present an example
of application of Theorem 5 to obtain a closed form
expression for P given ¥ # 5. We assume that the
number of tests applied ¥ = 2™ — 1. The error model
used here is appropriaiely the fixed magnitude error
model. In a multi-chip environment, the global test is
usually conducted asing STUMPS [1] (Figure 7). In
that case, this error model 1s accurate aa a faulty chip
can produce erroneous resuits only at a single input to
the MISR. Diagnosis can then be performed to identify
the faulty chip.

[n Thecrem 5, the weight enmumerator of the
(2™ — 1,2™ — m — 1) binary Hamming code wag used
to comprie the aliasing probability Py, for the fixed
error magnitude. Similarly, the weight enumerator of

Papar 20.3
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ihe coset of the Hamming code can be used to mmgﬁj

tq The coding theory Bamework ia then extended
the probability of misdiagnosis.

to study the probability o misdiagnosis, when the
faulty signatures are vsed telocate the fanlty FRU in
a STUMPS environment. ltis shown that the proba-
bility of misdiagnosis in 8 STUMPS environment can

be quite low.

The weight distribution of the coset §* # §
the (2™ —1,2™ —m— 1) binary Hamming code is gives

by [13]:
s 1 am — 1
@ (70 -4)

for any 5* = §f + 5 and A; Is the weight distzibuti
of the binary Hamming code. "

Acknowledgement

The authora would like to thank Dr. L.B. Levitin of
Boaton Uﬂi‘l"ﬂrﬂitf, Boston Mﬂ' for many hglpful dia-
cussions.

References

(1] Bardell, P.H., McAuney, WH, and Savir, J.,
Beitt-Tn Test for VUSL: Pgeudorandom ‘Tech-
nigues, John Wiley & Sons, 1987,

Theorem T For N = 3™ — 1, we fave for the proka
bility of misdiagnosis for any 57 # 0, for errors of'c
given magntiude, -

n

(1 - 27"l 4 (2™ - 1)(1 - Zp]zm-l});*

1
am ]

Pt =
[2] Blake, LF. and Kith, K., “0y the complete weight
enumerator of Reed-Sebmoy codes,” Proceedings
X of the Conference on Information Sciences and

Note that for MISRs of size m > &, this valus Syatems, Princeton, N, 1050,
is of the order of 2=™. Hence, thin theorem uh
that if a STUMPS approach is used, the probability
that two faults will lead to the same fanlty signafiirs
is quite low. This indicates tkat fault dictionaries ¢
be quite effective as there is little chance of locati
the faalt to the wrong FRU, ‘

[3] Damiani, M. et a.'l... "*fﬂi Analytical Medel for the
Aliaging probability it Signature Analysis Test-
ing,” IEEE Trans. CAD, yql, 8, no. 11, November
1989, pp. 1133-1144

(4] Damiani, M. et al,, "Alising in Signature Analy-
sis Testing with Multiple Input Shift Registers,”
IEEE Transactions i CATY Vol, 9, No. 12, pp.
1344-1353, December 1505, |

8 Conclusions

In the paper, a framework is developed which -'.:a.nb
used to analyze aliasing in the compression of tes! .
sponses, uasing MISRs with primitive feedback pi:r'_f_
nomials. The two limitations that the eatlier tech:
niques suffered from were their lack of generality with
respect to the test length, and error models, This p
per presentes a method which can compute the aliz

ing probability for any test length for any err
model.

niques: Computatior of Alirsing Probability,”

329-341, 1988.

A number of commonly used error models ¢
giudied. A very general error maodel is presented whi

puting, Tokyo, Japan, 1988,
subsumes all these models,

Cloaed form sclutions have been derived for d
ferent error models and test lengths. These indica
that the aliasing probability for a m bit MISR ia &
seme no matter whick primitive feedback polynom
is used, Aliasing probability is computed for vario
error models for seme benchmark circuita. For ma
benchmark circuits, the independent error model pi
vides mezimum estimation of aliasing, and the 2™-at}
symmetric model provides minimum estimations. -

pp. 427-438, April 1690,

1980.

5] Gupta, 5.X. and Pradhen, D K,, “A New Frame-
work for Designing & Analysing BIST Tech-

Proceedinga of Intemations] Test Conference, pi.

8] Ivanov, I and AEE_““L V.K., “An [terative Tech-
nique for Calenlating Aliasing Probability of Lin-
ear Feedback Shiit R:‘-'Eilters,“ Proc. of the 18th
International Sympwinm on Fault Tolerant Com-

[7] Iwasaki, K. and ﬂlﬂiﬂwa, F., “An Analysis of
the Aliasing Probabilly of Multiple Input Signa-
ture Registers in the Case of 2 2™-ary Symmetric
Chkannel® IEEE Tam. on CAD, Vel. 9, No. 4,

[8] twasaki, K. and ¥amaguchi, N., “Design of Sig-
nature Circuits Based on Weight Distributions of
Etror-Correcting Coles,” Proc, Int. Test Conf.

(9] Kasami, T. and Lin, 5., “The Binary Weight Dis-
ttibution of the Extended {2™,2™ — 4) Code of
the Reed-Solomon Code over GF(2™) with Gen-
erator Polynomial (2 —a)(z - o?)(z —?)," Jou-
nal of Linear Algebra and Its Applications, vol.
08, 1088, pp. 291-307.

[10] Karpovsky, M.G., Finite Orthogonal Series in the
Design of Digital Devices, Academic Press, 1976,

[1.1] Karpoveky, M.G. (Ed.), Spectral Techniques and
Fault Detection, Academic Press, 19835,

(12] Karpovsky, M.G., Gupta, % K. and Pradhan,

D.X., “Aliasing and Diagnosis Probability in

. MISR and STUMPS Using a General Error

Model,” Techunical Report TR-91-CSE-42, Elec.

and Comp. Enrgg Dept., University of Mas-
sachusetts, Amherat, Jul. 1991,

[13) MacWilliame, F.J. and Sloane, N.J.A., Theory of
Etror-Correcting Codes, North-Holland Publish-

ing, 1978.

[14] Pradhan, D.K. (ed.), Fault Tolerant Computing:
Theory and Techniques, Prentice Hall, NI, 1988,

[15] Pradhan, I}.K. and Gupta, S.K., “A Framework
for Designing and Analyzing New BIST ‘Tech-
niques and Zero Alinsing Compression,” 1EEE
Teans. on Computers, Vol. 40, no. 6, pp. 743-783,

Juane 1881,

[t6] Pradhan, D.K., Gupta, 3.K. and Karpovsky,
M.G., “Aliasing Probability for Multiple Input
Signature Analyzer,” IEEE Trans. on Computers,
April 1990, vol. 39, no. 4, pp. 536-591.

[17] Robinson, J.P. and Saxena, N.R, "A Unified View
of Test Compression Methods,” IEEE Trans. on
Computers, Vol. C-38, No. 1, pp. §4-99, Jan
1987.

[18] Sridhar, T. et al, “Analysis and Simulation of
" Parallel Signature Analyzers,” Procesdings of In-
ternational Test Conference, pp. 8568-681, 1882.

(19] Williams, T.W., Dashn, A., Gruetzner, M. and
Starke, C.W., “Alasing, Errors in Signature Anal-
yais Registers,” JEEE Design & Test of Comput-
ers, Vol C-38, No. 4, pp. 39-45, Apr 1987.

[20) Williams, T.W. and Dzehn, W., “Aliasing Eztors
in Multiple Input Signature Analysis Regiaters,”
'Proceeding of the European Test Conference, pp.
338-345, 1988.

Paper 30,2
239



