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1. INTRODUCTION,

Fast Fourier Transforms (FFT) are well known to play an important role 1in
many application fields such as spectral analysis, digital filtering, image
nrocessing, video transmission, etc. Increasing demands for high speed in many
real-time applications have stimulated, in recent years, the development of a
number of new very fast FT algorithms with the reduced number of multiplica-
tions [1?,18,20,33—35]. However, the decrease in the number of multiplications
in a very fast FT algorithm involves in most cases an increase in the number of
additions and/or preprocessing cperations. From the viewpoint of a further
advance as to speed increase of FFTs, and with a progress in VLSI technology,
multiprocessor highly parallel systems (in particular, systolic array
architectures) become an attractive alternative compared te uniprocessor

systems.
In recent time, there has been increasing interest in implementing different

types of algorithms with systolic and semi-systolic array structures since
these architectures are extremely suitable for VLSI technology (e.g.[2-8,10,14-
17,24,25,2?-28,30,50—54]). with increasing demands for high speed computations,
the development of 3-D VLSI chips has created a challenge to speed up algorithm
computations by going beyend 1-B and 2-D systolic networks. In some cases, 3-D
systolic arrays turn out to be faster, and the 3-D VLSI technology presents
additional advantages like shorter and more systematic wire routing as well as
the higher density of the circuit. To derive maximal benefits from the 3-D VLSI
technology, the existing algorithms must be transformed, to allow easy mapping
to multidimensional systolic architectures.

Many authors suggested various formal transformation methods for mapping
atgorithms onto systolic structures[2—8,11-13,25,28]. A detailed classification
of different approaches to the design of algorithmically specified systolic
arrays can be found in [13].

The topic of our interest is the efficient systolic implementation of two-
and multidimensional DFTs. It is well known that the 1-D FFT is faster than the
1-D DFT, and there are powerful 1-D FFT chips avajlable in the market (e.g.
[45,46]). However, as it was shown with convincing examples in [ol, there are
certain problems in signal processing when the 1-D DFT, if properly implemen-—
ted, turns out to be more efficient than the 1-D FFT within a wide range of
transform sizes. In [9], the authors compare the computation of the DFT algo-
rithm on an MISD machine (multiple instruction single data) to the computation
of the FFT algorithms on an SIMD machine (single instruction multiple data); in
certain cases, the comparison is in favor of the DFT.

The 2-D (N x N) FFT can be computed as a sequence of two 1-D FFT transforms
{well-known approach "FFT by rows and after that FFT by columns™; all rows are
processed in parallel as well as all columns). However, between the two steps,
the matrix of the intermediate spectrum is to be transposed, and this step
significantly reduces the efficiency of FFT that can be reached in each stage.
For a Targe transform size, the matrix can exceed the computer memory which
presents another difficulty. Various methods of matrix partitiuning{BT-SQ] were
proposed as well as other approaches [15,40-44] to maintain the efficiency of
FFT in case of two or more dimensions. As shown e.g. in [23,15], the Tower
bound on a complexity for an M-dimensional k-paint FFT s
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2. THE TRANSFORMATION OF THE MULTIDIMENSIONAL DFT ALGORITHM TO A COMPLETELY
SYSTOLIZED FORM.

Consider k-point DFT where k = NM. By definition, an M—dimensional DFT 1is
catculated as follows:

N—1 N-1 .. : .
1 J +.I-+ 1 J
8670 M-1"M-1
. 1 : i .'.]‘- w
J((1H_1,..., 10) Z Z x{JH_1, JU} N
j =0 j =0 (3)
M- ‘o
.2 ..
where W, = exp(~29Ci/N), i = -1, and 0£ 1p,3§..ﬂ—1, 0<£ pé M-1.

Algorithm (3) can be rewritten in the form corresponding to M steps of spectrum
computation (for M=2, DFT by rows, then DFT by columns of the intermediate
spectrum ). Each step is a 1-D DFT by one of the variables J ., P = 1,2,...,M:

A p=1’
PD(JH_TII"]JU) - X(JH"".I,."'JGJ;
' censy J i , 1 yos vyl =
PP(JH-T’ Jp 1p—1 p—-2 ’ U)
N-1 i J
: . : . p-1 -1
- R, ] censl W
:Z: Pp_1(JM_1, Jp Jp_1, D=2’ ﬂ) q ,
) -0
Jﬁ_1
P = 1,..., M;
. AL .
PH{TH_1,1..,TU) = X (IM_1,...,10), (4)
=1,..., M-1, are the intermediate spectra.

Pp(*,-*-,*) , P

Algorithm (4) can be written in the form of a high-level language program
that consists of M parts and each part has (M+1) nested DO-loops, since one
variable is introduced as the accumutation step number. For example, for M = 2
there are two parts of the algorithm, each containing three nested DO-loops.
For each participating variable, the leftmost M arguments can be considered
“coordinates” of a point in the M-dimensional array of data, and the rightmost
argument stands for the accumulation step number.

It will be more convenient to denote the loop indices in each part by the same

index set mi, i=z0,1,...,M1. Using a loose notation, we assume that Puis ini-

tialized as input data and that Pp, 1£ €M, is initialized as 0, for the accu-

mulation step number “-1." The algorithm of (4) can be written as follows:

Part p, 1SpSM : Comments
DG 10 = 0, N-1 m =
"M-p-1 T 7 M-p-1_ Jp
= 0, N~1 m, =i
0 10m =0, wp = 1o

(no-change index for Pp_1)
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M~D+1 M-p+1 p=2
G = — =
00 1 mH_1 0, N-1 mH_1 10
DO 10 m = 0, N-1 m = 3 (accumulation index
H ¥ p-1 for Pp)
P - ) b | 1 =
L T N N R L Yo
= y 1 7 y - 1 y
Pom1 (M7 e+ oMy g Py Myopag? - Py My 1)
: = : - 1) +
P (mD, ,mH) P (mﬂ, ; My 1) .
+P (M ..M, mm yw, P (5)

M-p—17 "M "M=p+ 17T =17 "M=p” N

Note that the algorithm in its original form (5) does not allow application of
the well-known mapping technique (e.gq. 0f[5—7]) onto a systolic structure since
the algorithm cannot be characterized by a single dependence matrix (the same
one for all steps). We suggest the formal transformation of the algorithm index
space (equivalent to different index space rotations in different steps of the
algorithm, cf. geometric transformations in [12,2?]) which results in the
“completely systolized" form of the algorithm for any number of dimensions. The
transformed index space allows application of the mapping technigue and map-
ping the algorithm onto a pipeline of systolic/semi-systolic arrays.

The method of the original algorithm transformation has been developed for
any number of dimensions. To obtain in general case the form of the “"completely
systolized" DFT algorithm, certain permutations of loop index order are needed.
As a result, the algoritm will be transformed to the form thaﬁ could be
described by a single (M+1)x(M+1) dependence matrix for the N DFT. The rules
of transformation are as follows.

tet (i,j) dencte the permutation of rn_i and mj in the index set:

:I‘Il,m.

Im-lm-
J=1" 1

3+1,...,mH).

fyd o = (MM eyl MM,
(1,3, . ..my) = (mgum,.ee,me ,msm,

To systolize the dlgorithm (5}, the following permutations are needed.

In Part 1: no permutations.

In Part 2: apply (M,M-2) to the index set of Part 2.

In Part p, 3Sp<M: apply (M-3,M-2)...(M-p,M-p+1}(M,M-p)} (starting from the
rightmost permutation) teo the index set of Part p.

Example 1. For 3-D DFT (M=3), the permutations to be applied are as shown:

Part 1 Part 2 (p=2) Ppart 3 (p=3)

3,7 g™ Ay 3,7 My M=y 1= M M 3= Mg
J = m1: n, 11= m, m3=n1 T1= m1 m, my= n,
i;=m=n, i,z m, m, =1, 1,2 m, m, m,= n,
Jg= ™ Py Jg® M= B, =0, 37 My T M= My
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M . .
We will describe now the implementation of the N DFTs with cascaded systolic
and semi-systolic arrays for M = 2, 3. The approach can be extended tc any M.

. ) 2
Consider 2-D k-peoint DFT ( k = N7) .
— 1 N-1 i, 3, + 1.3
. 11 0¥ aQ
X (i,1,) = > 2. X(3;23,) W, (8)
j1:ﬂ jU:D

where HM = exp(-2T i/N); j2= -1. Formula (8) can be rewritten in the form
corresponding to the two steps of the spectrum computation (DOFT by rows, then

DFT by columns of the intermediate spectrum P(j1,in) ):

N-1 1Ujﬂ N-1 ‘i1j1
P = 2 xWpadgd Wy 5 XULi = 25 Pl Wy
JU:U 31:0
(7

Algorithm (7) can be presented in the form of a FORTRAN-1ike program. (For each
participating variable, the leftmost argument is the row number, the middle one
is the column number, and the rightmost argument stands for the accumulation
step number). Note that the algorithm in its original form dees not allow us to
apply the mapping technique (e.g of [5,6]) onto a systolic structure (as in the
case of 2-D FFT, the matrix of the intermediate spectrum is to be transposed).
In other words, the algorithm of (4) (and consequently of (7)}) cannot be
described by a single dependence matrix for all steps.

For 2-D DFT, the transformation needed is a single permutation of indices
(2,8) in the second part of the algorithm, The algorithm of completely systo-
1ized 2-D DFT (NxN points) can be written as follows:

Comments
oo 10 n0 = O0,N - 1 nO = mG
Do 10 n1 = O,N -1 n1 = m1
P(n ,n1,—1) =0 (initialize)
Do 10 n2 = O,N-1 n2 = m2
x(nﬂ,n1,n2} = x(no,n1—1,n2)
14
= ~1) +
P(no,n1,n2) P(ne,nT,n2 1) x(nn,nT,nZ)‘HN

10 CONTINUE

DG 20 n0 = 0,N-1 nn = m2
DC 20 n1 = O,N-1 n1 = m1
DG 20 n2 = N,2N-1 n2 = mﬂ
P(nz,n1,nﬂ} = P(nz,n1,nn-1)
"o
X(nﬂ—ﬂ,n1,n2) = X(nU-N,ni,nz—t) + P(nz,n1,n0)wN

UE
20 CONTIN (8)
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The DFT algorithm in the form (8) can be characterized by a singTe dependence
matrix {(variable P appears in the loops labeled 10 and 20 in the same form).
The form (8) does not follow from (7) in a straightforward manner; we have
applied an intermediate transformation of the locop index set, to make the
approach of [5,6] applicable. Note that in (8) cne lcop index has the shifted
range (N,2N-1); this is done to obtain the correct timing in the final version
of the algorithm, after the mapping onto a systolic structure. The general rule
found by us is that the range of the index used as an accumulation index in one
of the parts of the completely systolized algorithm must become (N,2N-1) 1in the
following parts.

The dependence matrix O for (8) is

0 @ n (x formally varies by n_,

1 & 1
b = 1 c 0 n‘I P varies by n2,
c 1 0 n X varies by n_ ).
2 0
x P X

A non-singular transform (given by a 3x3 matrix T ) of the index set (no,n1,n2)

to the time-space "new” index set (t,sﬂ,silcan be found, to map the algerithm

onto a systolic structure. In the new index set, t is the integer-valued time,

and SU’ 51 are the space coordinates of the processing element 1n the 2-D

systelic array. The transfnrmat1nn T can be Tound if one selects a priori thefh
hew dependence matrix D TD. We accept certain limitations as to the form of D
that follow the reguirements 115ted below.
Our criteria for the choice of D were as Tollows:
- to have no idle processors %g any macropipeline c¢lock (which implies
all 1’s in the upper row of D );
- to have communications only between adjacent cells in the array(s):
- to minimize the number of input/output pins (that is, the data are to
move through constituent arrays in two directions only);
- to minimize the computation time (i.e., toc have the maximum throughpui
dependent on the size of one dimension only).
In 2-D case, there are three possibilities Tor the choice of D which corres—
ponds to three different efficient systolic designs for k-point DFT, k = Nz.

Since there are only two space coordinates (50,51) in the transformed {"new )

index set, and we have three variables x, P, and X to move along the new coor-
dinate axes, each of the three possible designs corresponds to the case when
one of the variables Xx,P, or X does not move in the array(s) of the processing
elements (PEs).This restriction implies semi-systolic features of the chosen

design options:
a) Variable x (input data) does not move: this means data preload into the

first array of the macropipeline that consists of two cascaded N X N
arrays of processing cells .(Note that data preload does not need all the
data set simultanecusiy: on each array clock, one data value is fed into
one of the celis in the f1rst array so that one input bus for each column

is needed ).
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b) Variable X (output spectrum)} does not move, i.e. X is accumulated 1n the
cells of the second array. Therefore, each processing cell of the second
array must have communication with the cutside world. However, at any
pipeline clock only one cell in each array column generates an output value
so that for N x N array N output bus lines can be used .

¢c) Variabhle P (intermediate spectrum) dogs not move, i.e. P is being accumyla-
ted inside the processing cells. In this case, the 2-D DFT can be impliemen-
ted with a single array of N x N processing cells,

Example 2. To illustrate the results, consider the case of a two-dimensional

d-point DFT {(N=M=2, k = NM = 4),

Figure 1 shows the three designs ("a","b",and "c") :
a) x is preloaded (does not move}; P moves by 50, and X moves by s

two cascaded arrays of the size N x N are needed .

bB) x moves by Sy P moves by Sy and X is accumulated in the PEs);

two cascaded arrays of the size N x N are needed.
c} X moves by Sy P accumulates in the PEs, and X moves by s

.1;

.
One N x N array (with cells of double complexity} is needed.

Basically, the processing elements (processing cells) in the arrays of the
macropipeline are multiply-add cells. However, at least in one of the arrays

the twiddle factors (powers of NN } depend on time. Note that for the 2-0 DFT,

one of the variables in the transformed index set (t, 56’51 ) is the time (in

0,51 are respectively the row and column number of

a processing cell . For example, for the design "a", T = nU+ n1+ s So° Ny

macropipeline clocks), and s

and s = n_.
1 2 NN

1 .
To calculate the factor HM 2fur the first part of the algorithm (10) (i.e
(t-s -51)51

0 .
for the cells of the first array), one must calculate W . However,with

N
the increase of the local time t© - (50+51) by 1, the previcus multiplication
S |
1 . : :
factor is to be multiplied by HN , which is a constant value for all cells in

column 51. Huwever,that would require an additional multiplier to generate the

needed powers of HH inside the cells of the first array; another option is to

generate the twiddle factors outside the array cells. In the last case, extra
nins would be required for each cell of the first array. '
5051 nﬂn2
For the second array of the design "a", the factor HN = HN depends on row
and column number of the processing celil. Therefore, the twiddle factors can be

prestored in the cells of the second array.

. . 3 .
Example 3, Fig. 2 shows the time/space performance of a 3-D 2 -point DFT (N=2,

F )
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M=3} by 2 x 23 = 16 processing elements in two 3-D systolic arrays. The design
objective is similar to that of Design “c" for the 2-D DFT where the intermedi-
ate spectrum values are accumulated in the PEs of the first (semi-systolic)
array.

A guestion of interest is the number of the communication links (for M>2)
among the processing cells inside the systolic stages. Since the processing
in the systolic array of stage k occurs using two variables only (BFT by k-th
index, 05k$M-1 ), obviously not all the edges of the M-dimensional cube (with
the PEs as vertices) are needed for the processor communication.

3. COMPLEXITY ESTIMATION OF THE SYSTOLIC MACROPIPELINE

For the complexity estimation, we shall use the methods of [23,51,19]. To
avoid misunderstanding, we repeat below Thompson’s derivation of the lower
bound on area x (squared throughput) complexity for one-dimensional FT. (The
lower bound on complexity is attained for FFT). One possible layout for k-point
FFT is shown in Fig.4 (taken from [23\). The array has k Togk muitiply-add
cells (k/2 rows of logk cells each of the 0(log k) area as shown in Fig. "4
for k = 8). A vertical chord (say between two lefimost columns) crosses O(N)
wire tracks which means [51,19]that the apea complexity is at least of the
order 0(k) (and not of the order Q(k log k) which might be concluded if the
wires’ complexity is not taken into account). Note that each wire track is
counted as one wire (Thompson[23]) though evidently the lines are the multibit
ones. The array (FFT-butterfly) of Fig.4 generates one set cf k specirum values
each array clock. Assume that the usual multipliers with area 0(Togk) and
calculation time T = O(lecgk) are used for the cells,

The FET network of Fig.4 can be considered composed of the cells which are

O(Togk) units wide and 0(1)} units tall [23]. The entire network will fit into
a rectangular area that is 0(k) units wide and 0(k} units tall. The width of
the logk columns is asymptotically negligible [23]‘ The FFT network generates

one set of k spectrum values every T = 0(logk) units of time. Then the AT -
complexity of the FFT—-network 1is

2
aT? = QK Tog k) (9)
which is the well-known lower bound on the ATZ- complexity of FT attained for

2
the EFT. The estimate 0(k ) for the area complexity dominates the estimate

0(logk) x (number of cells) = O(k 1n92k).
Similarly, we can estimate the complexity of the 2-D systolic arrays for

K = N2 DFT described in Secticon 2 . A vertical or horizontal chord crosses

N wires (again, we count a multibit Tine as one wire following [25]). The area
complexity due to wires is at lTeast of the order N2 hut the area complexity

'. 2 . .
estimated as the area taken by N° multiply-add cells each of O(TogN) complexity

. 2 . 2 .
is O(N"togN); therefore, the entire OFT array needs the area O(N loghN). (Wire
connecticn for the DFT systolic array is simple compared to FrT network). One
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Fig.3. The 3-D 23*puint DFT by three cascaded systolic arrays;

0 1? and X moves by 52. The numbers

in the parentheses denote the time of computation in array clocks.

X is preloaded, P moves by s_, @ moves by s
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can also consider multiply-add cells as rectangular areas, 0({1)} units t§11 and
0{TogN) units wide; the total array area estimated by the method nf[?3191ves

the same restult D(N21ugﬂ). The systoclic arrays presented 1in saction 2 generate

che spectrum set (N2 values) every N array clocks, therefore T = 0{NTogN) and

T2 - 0(N21092N). Thus the AT2 - complexity of the proposed systolic macropipe-
2 .
line for N DFT 1S
' 3
AT = D(N41ug N) | . (10)
' 2. 2.

which is within a logN factor of the lower bound f})(k log k) = {{(N Tog N), for
k = N2 (2-D Hz.—puint FT).

a7 - 1,(0 -};D'-"' I

X2 N M

|

I - xl xa - -
*1*3 _] ———] x2 —YEF- n{{r}l |

v b4

—-ilﬂ(lug k)i—-—-—

L

e q:-t
& &
"-F

I
o (k) -i

SR L N N o S O
|
I
SO
4t

Fig. 4. The FFT network for k = 8 [23] .

3
For the 3-dimensional systolic macropipeline (for k-point DFT where k = N ),
one can consider a planar layout of a 3-D array. It 1is rather evident that the

3
wire complexity of the cells’ connection dominates the complexity of N loghN -

area taken by N3 multipiy-add cells. The chord 1 shown in Fig. 6 (for the
- planar layout of a 3-D 64-cell array} crosses 28 wires and chord 2 crosses 16

wires (D(Nz) wires in general) and the chip area must be at least ‘of the order

of H4. A more accurate estimation (again, with the multiply-add cells taken
as rectangles O(1) units tall and O(TogN) units wide) resuits in the chip area

2
of the order G(N41ugﬂ). The throughput T equals O(NlogN) and the AT - complex-

ity for Na-puint DFT is

a2 = o(R*Tog™N) = 0K Tog k) C11)
6 2

which is again a factor of logN of the lower buund_ﬂLkZTngzk) =J1(H Tog N)

. _ 3
for any Fourier transform of the size k, K= N .
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layout for a 3—dimensional systolic array for N DFT; N = 4.
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It can be expected that for the higher number of dimensions, the complexity
of the systolic macropipeline with multiply-add cells is of the order

O(N2H1093N) where M is the number of dimensions (NM-puint DFT).

In conclusion, return to the area—efficient "stingy” architecture suggested
in [53] for the implementation of convolution. The design of [53] (the pipelined
version) uses 0(k) adders and O(k) multipliers for 1-D k-point convolution;
with minor modifications, it can be used to implement 1~D DFT. It seems at
first that the design can implement a 2-D DFT in two stages (DFT by rows and
DFT by columns of intermediate spectrum), and that the architecture would

outperform our 2-D macropipeline 1in ATz—cnmp]exity. However, between the two
stages (each performing 1-D DFT), the matrix of the intermediate spectrum is to
be transposed, and the area complexity of the routing network will dominate
over the area of the rest of the circuit. A crossbar network or demultiplexing/
multiplexing circuit would be needed to feed the intermediate spectrum in the
proper order into the second stage. In any case, the complexity of the routing

network is at least of the order of N4 , therefore there is no gain in total
area.

4. DISCUSSION
Te summarize, the proposed design has the following advantages:
1) The smaller number of pins needed for one processing cell compared to the

cell of [25]. For example, for M = 3 (3-D N> - DFT) and r-bit data Tines, the
macropipeline consists of three 3-D arrays. A cell needs no more than six
input and output data lines (6r pins for the data). Note that in the case of
data preload, only 5r pins are needed for data lines (the control lines are not

taken inte account). -
For the comparison, the cell of the systolic array of [éslrequires more than

12r pins for r-bit data 1ines.

2} Simple processing cells, basically of multiply-add type.

3) Simple connections hetween the arrays of the macropipeline; no inter-
mediate networks for data reshuffling or routing between the constituent one-
dimensional transforms are needed.

4) The time X (area)zcumplexity of the macropipeline is within log k factor
of the Tower bound if the usual multipliers with area 0(log k) and time complex-
ity O0(log k) are used in the pipeline cells.

5) The input of data is "word-serial” (that is, the macropipeline does

M _
not require the parallel input of the complete set of k = N data values).
6} At the expense of the increase in area complexity, the throughput
of the macropipeline is held constant for any number of dimensiocns M; for

k-point ODFT (k = NM), one spectrum set of NM values is completed every N
pipeline clocks: N is the size of one dimension. Compared to the throughput of
6N+1 for the 3-D N x N x N DFT obtained in [25], our design presents an
essential gain in speed. {Note that the throughput is to be squared for the
complexity evaluation [57]).
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7) The large area complexity of the proposed design { Mk cells for k-point
M~dimensional BFT) seems to be a deficiency of the proposed method. (The design
of [25] requires k cells only but it is about 2M times slower than the proposed

design}. The linear (as to the number of the dimensicns M ) Joss in area com-

: o . 2
plexity resuits in the linear gain in speed (throughput) Tp‘ and since Tp -

- the squared value of the throughput - participates in the total complexity.
estimation, the systolic macropipeline has an advantage for real-time applica-
tions where the high speed is the main criteria.

Note that we implement k-point DFT with O(k) multipliy-add cells (both for

2
k = N and k ='N3). For our design, AT2 = B(kzlngak} white the DFT of [Ed]men—
tioned in [23] atso uses 0(k) multiply-add cells for k-point transform but
3 .

results in complexity ATE: O(k 1093k), with area A = O(klogk) and T = O(klogk).
2

For 2-D DFT, j.e for kK = Nz, cur design needs same area A=0{klogk) = O(N TogN)

while the time performance (throughput) is T = O(Vk logk) = O(N logN), i.e. our

design is faster compared toc the k-point DFFT with 0(k) cells of [23,54] .

In general, the k-point DFT (for k= NH ) can be implemented by a segquence of
cascaded M-dimensional cubes of PEs ( Mk cells as in Designs "a" and "b" for
M=2, or {(M-1)k PEs as in Design "c¢" for M=2, instead of k PEs in the implemen-
tation of [25] when the 1~D DFT of the size k is computed using a two- or three-
dimensional array. For 2-D systolic design, the macrepipeline proposed by us
needs twice as large an area (2k PEs) compared to the k-cell array of [ﬁS] :
however, for Mz=2 the throughput of our design is four times higher than that of
[25]. 1t should be kept in mind that in [25] the 1-D DFT is calculated while we

consider multidimensional DFT .
It is assumed that the multipliers inside the array cells have area complex-—

: . : M :
ity O(logk) = O(TogN) and time complexity 0{logk) = 0(logN) for k= N —point DFT
(1ike the multipliers typically used in processor design,[b4,2§]). As a resuit,

the AT2 complexity of our design is within a logN factor of the lower bound.
Theoretically,it is possible to realize a mesh mu]tiplier[ﬁﬁ] with area 0(Jogk)
and time complexity 0(Vlegk), to multiply two binary numbers of O0(Togk) bits
each; such a multiplier attains the Tower bound on multiplier complexity.

With the use of minimal complexity multipliers, our design would attain the

-
lower bound on the complexity. Another multiplier with area x (time) compliex-

ity of the order Dflngzk Tugstlngk)) (in our notations) is developed 1in [54].
However, both multipliers of [Bé]and [54] are too complicated for the practical
use in systolic array cells; in these multipliers, the FFT and the convolution

theorem are used.
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