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Abstract

We propose a new approach for identification of a faulty
processing element based on an analysis of the compressed
response of the system. The test response is compressed first
in space and then in time and a faulty processing element 1s
identified by a hard decision decoding of the corzesponding
space-time signature. The approach results in considerable
savings in hardware required for diagnostics.

1 Diagnosis by Space~Time Com-
pression of Test Responses

Let us consider the diagnosis problem for a system of {not
necessatily identical) processing elements (e.g., systolic az-
ray). The system is represented by a directed graph G whose
nodes correspond to processing elements (PEs) and directed
edges corresponds to commumnication links. We assume that
at most one PE in the system may be faulty. Our approach
to the diagnosis problem is based on signature analysis of
test responses. Signature analysis has been widely used for
chip and board level testing and diagnoesis [1-12].

The straightforward approach to diagnostics by signature
analysis is illusirated with Fig. 1. Tesl responses y{t} =
(31(¢), - .., ¥n(¢)) 2t moment ¢ {y;(1) is a b-bit binary vector)
are transferred via system bus into a redundant chip in such
a way that the test response y;(t) st the output i is com-
pressed in time by Linear Feedback Shift Register (LFSR)
t. After all test responses y(1},...,%(T) (T is the number
of test responses) have been compressed by the LFSRs, the
corresponding signatures s;,...,9, are compared with the
precomputed reference signatures &9,...,s%, and the error
vector e = {ey,...,en) Is computed, where

1This work has been partially supported by NSF under Grant MIP
RB13748
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The identification of a faulty PE is implemented by the
n X N decoder (V is the total number of PEs in the system)
with the input e = (e;,...,€,). We assume that a number of
test responses T' is sufficiently large, so tha{ a fault in a PE
will manifest itself by distortions of signatures corresponding
{o all output PEs connecied with the faulty PE.

For exampie, if the original array is a binary balanced
tree (Fig. 2), a fault in PPy will result in error vector
(11110000} (we assume that the fault is not masked in any
one of the 8-bit LFSRs compressing in time y;(1),...,%:(T}
(: =1,...,8). The probability of masking is very small for
large b). The relation between faulty PEs and error vectors
for the binary tree of Fig. 2 is given in the first two columns
of Table 1.

The system is diagnosable iff all the n-hit error vectors
are different and not equal to {0,...,0). An example of a
nondiagnosable system is given at Fig. 3. In this case faults
in PFE,; and P E5 cannot be distingunished, since in both cases
e = {011). Thus, we have the following lower bound on a
number of outputs n of a diagnosable system

n > [logo(N +1)], (2)

where N is the total number of PEs in the system.

Note that the lower bound in (2) is attainable. To demon-
strate this, let us consider an array which is the n-dimensional
binary cube with one node being deleted (¥ = 2" — 1}. In
this case PEs are numbered by nonzero n-bit binary vee-
tors and there is a direcied edge from z = (uy,...,u,} to
v = (v1,...,7,) iff the Hamming distance between 4 and v
is equal {o one and w; > »; (f = 1,...,»;u;,wm € {0,1}).
Let us assurne that outputs of the system are taken from the
PEs numbered by n-bit vectors of weight 1 {i.e., having one
nonzero component) (Fig. 4 shows the system for n = 3).
Then, n = [log,{/N +1)], and it is clear that the number of a
faulty PE can be computed as (100...0)-¢; V(01...0) €2 V
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...V (00..,1} - e,, where V stands for the component-wise
OR operation.

It is worth to note also that the reason for considering
single faults only is that by analyzing error vectors e we can-
not distinguish between single and some double faults. For
example, for the binary tree of Fig. 2 one cannot distingnish
between a double fault in PE; and PEg and a single fault
in P Ez-

For the straightforward approach to diagnosiics repre-
sented at Fig, 1, the required hardware overhead Ly, in terms
of 2 number of equivalent two-input gates, is of the order of
L = O{bn). For example, for the eight-leve] binary iree with
b =32 we haven = 128, N = 255 and L, ~ 110,000 (assum-
ing that one flipflop is equivalent to 8 gates). In this paper
another approach to diagnostics will be suggested which re-
sults in a considerable reduction of the required overhead
while the probability of missing a fault remains small. We
will see below that in many cases the overhead can be de-
creased to Ly = O(blog, n).

To 1ilustrate this approach let us return back to the ex-
ample of three-level binary tree with n = 8, N = 15 (Fig. 2).
Instead of compressing in time the sequence y(1},...,y(T)
(where y(t) = (yi(£), ..., ¥s(£)) and 3:(¢) is b-bit binary vec-
tor) by 8 LFSRs, we first compute z(£) = Hy{t)}, where

{ 01800100 \

10100000

H = 00010001 |, (3)
00001010

\ 00100111

and all the computations are made modulo two (this is the
space compression step). Then z(t) = (z(t),...,25(t)). Now,
we will compress in time the sequence z(1},...,2(T) using
only & L¥5Rs. The resulting 5 signatures &1,...,#5 are com-
pared with the precomputed 5 reference values s7,...,53, and
the identification of a faulty PE is made by analyzing the er-
ror syndrome (the compressed error vector) e® = (e§,...,e§),
where ef = 1 iff 8; # s and ef = 0, otherwise. For exam-
ple, if PEs is fauliy (see Fig. 2}, then one can see that
e° = {01101). Error syndromes e° for different faults are pre-
sented in the rightmost column of Table 1. Since different
faulis results in different nonzero syndromes e°, identification
of a faulty PE can be implemented by decoding . Thus we
have been able to reduce an overhead {using only 5 LFSR
and 5 reference values, instead of 8 for the original approach)
and still we can identify a faulty PE.

The block-diagram for the proposed diagnostic approach
with space-tlme compression is given at Fig. 5. The ont-
put response vector ¥{t) = (y1(£),...,¥a(t)) is compressed in
space into z(¢) = (21(t),..., z.(¢)) where y(t) and z;(t) are
binary vectors, and z(t) = Hy(t) and H is a binary (r x n)-
matrix (¢ < n). This space compression is implemented by
an H-counter modulo n. The sequence of ouiput vectors for

this counter is the sequence of r-bit columns of matrix H.

Table 1: Relation Between Faulty PE’s, Error Vectors and
Errer Syndromes For the Three-Level Binary Tree

Faulty PE | Error Vector e | Error Syndrome &°
1 11111111 ill111
2 11110600 11101
3 00001111 10111
4 11000000 11000
5 00110000 01101
6 000601100 104011
(] 00000011 00111
8 10000000 01000
9 01000000 10000
10 00100000 01001
11 00010000 00140
12 000010400 0010
13 00000100 10001
14 40000010 00011
i5 000600001 00101

Space signatums-z{t} = (zl(t}, . .”,z,.(t)) are compressed in

time by r LFSRs. Final space-time signatures s4,..., s, are
compared with the precomputed reference values sJ,..., s?,
and the resulting error syndrome e® = (e§,...,ef) (ef = 1

iff 5; = 5)) is decoded to indicate the faulty processor. This
identification is possible iff there is & one-to-one mapping be-
tween PEs and error vectors e¢ = (ef,...,ef)(ef € {0,1}).
This mapping means an embedding of the graph G repre-
senting original system of PEs into the r-dimensional binary
cube. The set of vertices of the r-dimensional binary cube
(i.e. the set of all r-bit binary vectors) is a partially ordered
set: we consider vector ¥ to be a descendant of vector =z,
if ¥ can be obtained from z by replacing some ¢f the com-
ponents equal to 1 by zeros. ( It is said also that z covers
¥.} The embedding of graph G into the r-dimensional cube
must preserve the partial ordering on G defined by the di-
rected edges. The embedding of the three-level binary tree
into 5-dimensional binary cube is given by the rightmost col-
umn of Table 1.

An overhead for the space-time compression is of the or-
der of Ly = O(br) and comparing with the overhead L, for
the straightforward approach we have

Ly n
Since r < n the space-time compression technique is more
efficient than the straightforward approach. To minimize the
overhead one have to minimize the length r of syndromes e°.

Since all error syndromes must be diflerent and not equal
to (0,...,0) we have the following attainable bounds

loga(N +1)] <7 <. (5)

The overhead minimization problem for the space-time
signature diagnostics can be reduced to constructing an (rxn)
matrix H with minimal # such that the system remains di-
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agnosable after the space compression z(t) = Hy(t) of its
output y{t).

It 18 easy to show, that the relation between the error
vectors e in the original system and the error syndrome e° is
given by the following formula:

e*=HQe (6)

where @ stands for multiplication of an (r x n) binary matrix
H by an n-bit binary vector e with addition being replaced
by OR. For example, for the binary tree of Fig. 2 with PE;
being faulty we have from (3) e = {00110000) and

()

(owoot00 y | | [0
10100000 ; 1
ec={ 00010001 |® | [=11[, (7
00001010 o 0
\ 00100111 ) o \ 1/

\ 0

which corresponds to the fifth row in Table 1.

Thus , the overhead minimization problem can be formu-
lated in the following way: construct a space compression
matrix H with a minimal number of rows such that for any
two error vectors ¢ and &'

H@e#H@e HQe£0,HQe £0, (8)

The set of error veciors e 1s defined by the topology of
interconnections in ihe original system, and the number of
error vectors is equal to N,

The solution for the overhead minimization problem for
several important classes of systems is given in the next sec-
tion.

The proposed space-time signature approach to diagnos-
tics is based on the “hard decision” decoding of signatures
3 = (814.+.,8;), when we can identify a faulty PE by analyz-
ing binary vector e® which indicates the distorted component
in 8. The magnaitudes of distortions are not important for
the hard decislon preocedure. One can use a “soft decision
decoding” of 8 = (s1,...,9,} for the space-time signature di-
agnosis. In this case the identification of a fanlty PE is based
on the analysis of magnitudes of distortions in components
of s.

Soft decision techniques have béen developed in [11,12]
for board-level space-time signature diagnosis and in [15] for
space-time diagnosis of multiprocessor systems. In [11-12]
and [13] the assumption have been made that components
of the system are disconnected in the testing mode.

In this paper we will consider only hard decision space-
time techniques, but we will not require that PEs are dis-
connected in the testing mode.

2 Hardware Minimization for Space-

Time Signature Diagnosis

It was shown in the previous section that the problem of
hardware minimization can be reduced to the design of an
optimal space compression matrix H with a minimal number
of rows »r, satisfying (8).

Let us start with a low bound for ». Suppose the maxi-
mumn number of PEs in a path from input PE to an output

PE {depth of the system) is d. Then for embedding the
system of PEs into 1-cube,

r > d. (9)

This is an attainable lower bound, which can be illustrated

by examples of a line array (Fig. 6a} and of the two-dimensional

near-neighbour mesh (Fig. 6b).

We will present below several nearly optimal construc-
tions for space compression matrices i and lower bounds on
minimal rumbers of rows r in H for two important classes of
systems: balanced binary tree withn = 291, N = 2¢ 1 (see
Fig. 2 for n = 8) and rhombic meshes {see Fig. 7). These ar-
rays as well as n-cubes, lines and 2-d near-neighbour meshes
have been widely used [14].

2.1 Space-Time Diagnosis for Balanced Bi-

nary Trees

For the d-level binary tree Ty (d is the number of PEs on the
the path from the input to any output, n = 2941, ¥ = 29—1)
we denote by r(d) the minimal number of signatures to be
stored, i.e. r{d) is minimal dimension of binary cube C, (5
such that Ty can be embedded in C,(y with preserving the
pariial ordering in 4. For example, from Table 1 we have
r(4) < 5.

Let us derive a lower bound for »(d) which is better than
the general bounds (5} and (89). Since in Ty there are n =
29-1 paths from the input to n outputs, for embedding T;
into C,¢y the outpui PEs should be encoded by different

nonzero x{d)-dimensional binary vectors of weight at most
r(d) —d + 1. Thus

r{dlfﬂ (1-{:1}) > gé-1, (0)

=1

Solving (10) for large d we have

r{d) > 1.29(d — 1). (11)

To comstruct ©» X n spa.:_:e 'cnmprﬁssinn matnx H; for T,
(which yields an embedding of the Ty into C, and provides an
upper bound for r{d)) we will use the recursive construction
for balanced binary tree T; represented in Fig. 8. Here
d=p+qg-—1and qu, T:,...,T&F (P = 27~} are identical
trees T, of depth g and Q = 227! ouiputs.
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Suppose that space compression matrices for T}, and 7,
are Hy = [Ajhl -« k1] and H, = [ALAZ...AQ], respectively,
where &} and A7 are columns of H, and H,. Then it is easy
{0 show that H; can be constructed as

h:h;-..h; hﬁhi...h: . h:hf'“h;
- . (12
He (f*ihi-“h? h;hﬁ*”hﬂ : héhg...hg? (12)

g
Thus, we have

r(d) =r(p+q—1) <r(p) +r(q). (13)

An example of this construction for d = 6, p = 4 and
g = 3 is shown at Fig 9.

Matrix H, is given by (3) and the corzresponding embed-
ding of Ty into Cj 1s given by the righimost column of Table
1. From (3) an (10) we have r(4) = 5, which shows that the
lower bound given by {10) is attainable.

Matrix Hy and the corresponding embedding of Ts into
Cy is given in Fig. 10. By Fig.10 and (10), »(5}) = 6. Using
this result and (13) we obtain:

r(d) <6 [E—zﬂ , (14)

which is close to lower bounds (10) and (11). Some exact
values of r{d) and upper and lower bounds are given in Table.
2.

Table 2: Minimal Numbers of Signatures r(d) Required for

Diagnostics of d-Level Binary Trees
d ||2131415]|6]| 7 8

rd) | 2|4[5]6]81{9-10] 10-11

d " 9 10 13 12

r(d) [ 12 | 13-14 | 14-16 | 16-17

Table 2 illusirates considerable savings in hardware for
the proposed space-fime signature diagnostics approach over
the straightforward diagnostic for binary trees. For example,
for the binary tree with N = 255 processing elements (d = 8,
n = 128) and b = 32 output lines for every PE, assuming
(8} = 11 (see Table 2), we have & reduction in hardware
(measured in equivalent two-input gates) from L, = 110,000
to L, = 10, 000.

Error vectors for n=4:
(1111), (0111), (0011}, (0001)

I=d=n=N

Fig.6a. Line of PEs

Error vectors for h=W=3:
(11111), (01111), (GO111)
(11110), (01110}, (CO11D)

(11100), (01100}, (00160)
W
N
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r=d=n=b+W+1, N=hW

Fig.ob. (hXW) Near-Neighbour Mesh of PEs

To conclude this section we note that lower bounds (10),

{11), upperbounds {13), {14) and construction (12) for Hy
can be generalized for non-binary trees.

2.2 Space-Time Signature Diagnosis for
Rhombic Mesh Arrays

The cylindrical rhombic mesh is shown in Fig. 7. Denote
by #(n,d) the minimem number of rows in the H matrix
that performs the space compression of test responses for

this mesh. Obviously, the array is not diagnosable for d > n.
The lower bounds for »(n, d) following from (5) and (9) are

r{n,d) > d and {(15)
rn,d) 2 [logy(nd + 1)]. (16)

A more specific lower bound can be obtained by the fol-
lowing reasoning. In a rhombic mesh of dimensions 4 and n
one can find n paths from the nodes of the top level to the
nodes of the bottom level which do not have any nodes in
common.

Let our array be embedded into an r-dimensional binary
cube. Then each path includes d nodes and the binary -
dimensional vector corresponding to a node is a descendant
of the vector corresponding to the previous node in the path.
Thus, each path contains vectors of d different weights, and

the difference between the weights of the endpoints of each
path is af least d — 1.
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Error vectors for h=3 and W=3; ‘3
(11001), (11100), (01110),(00111), (10011) 1‘~'1
(10001), (11000}, (01100), (00110), (00011) 1
(10000), (31000), (00100), (00010), (00001)

W
P .
-~ I]. I 3 I 3 .- b
1 2 3
W+l
2W1 2¥W+2
h B &k &
Ew_w + hW.- Wil hW—W+3
}'1 yz ya LI

n=wW, d=h, N=hW

Fig.7. Cylindrical (hxW) Rhombic Mesh of PEs
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Consider now two “polar zones” in the cube: the vectors
of weight w > [*£%] and of weight w < 12221, It is easy to
see that at least one of the endpoints of each of the above-
mentioned paths belongs to one of the polar zones. Therefore

=4 .
R Y (r) + E (:)
i=1 i._.r#'l

; (17)
The minimum value of » that satisfies (17) is the lower
bound for r{n,d). The lower bound given by (17) always
superseeds the bound (15), but (¥6) still provides a better
lower bound for very large values of n (log, n 3> &2).
The construction of a matrix H for a rhombic mesh can

be obtained in the following way. Consider two matrices H,
and Hy each of order (d -+ 3) x 3{d + 3) shown below:

o I y £ TR fat1
H =1 00---0 00...0 11---1
00-..9 11+..1 Q0---0
FTY fa41 Ta41
11-++1 00---0 O00Q---0 7,

0.--0 1i---1 09Q---0

IIE==

where I;.; is the (d + 1)-dimensional identity matrix.

Now let n = 3{(d -+ 1)m and k = [log, m|, where m =
1,2,.... Let g be the codeword for the integer { (0 < ¢ <
2% — 1) in the k-bit Gray (reflexive) code. Denote by 4 a
kx3{d+1) matrix which consists of identical columns g;. Let
B; be the (k+ d+ 3) % 3(d 4 1} matrix which is obtained by
vertical concatenation {writing one matrix under the other)
of matrices Hy and A; for an even [ and Hy and A4; for odd
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Then the space compression matrix H of order r X n,
where r = k 4+ d+ 3 and n = 3(d + 1)m, is obtained by

the concatenation of matrices B; in the order of increasing {

(I=10,1,...

by

L

Thus, the number of rows in & 1s given

1).

y =

Fig.8. Recursive Construction for d-level Binary
Tree T4
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An example of matrix i for n = 18, d = 2 is given below:

100
010
001
000
000
111

{ 100
010
001
000
000
\ 000

100
010
001
000
111
000

100
010
001
111
000
Q00

100
010
001
i1l
000
111

149
010
001
000
111
111

It can be readily shown, that all the syndromes obiained
by H designed above are different. Indeed, two errors within
the same block b; are distinguished by matrices H; or Hs.
Two errors within different blocks B;, and B;, are distin-
guished by the matrices 4;, and A;,, since OR of two con-
secutive codewords of the Gray code gives always one of these
words.

If two errors belong to two disjoint pair of blocks By,
By, +1 and By, By, .y, respectively, their syndromes will differ
in some of the last k digits. The last possible case is when
two errors belong to overlapping pairs of blocks By, By, and
Byi1, Biya, respectively, Then their syndromes will differ in
the (d + 2)th digit.

Mairices H for n # 3(d + 1)m can be obtained by slight
modifications of the construction given above. We note also
that formula (19) remain valid for n = d+ 1, and H = Iz;.

The lower bounds given by (15) and (16} are attainable
and sometimes coinside with the upper bound for »(n,d)
" given by the above construction, which provides the exact
value of 7(n, d).

In particular, for n = 3{d 4- 1)m:

r(n,2) = [logym|+5 = [log,n —2log,3] + 5, (20)
r{n,3) = [logym]+6=[log,n—log,3] +4, (21)
flogym] +6 < r(n,4) < [logym] +7,  (22)
[logam] +7 < 7(n,5) < [logam]| + 8, (23)
d+3 < r(6(d+1).d)<d+4,  (24)
r(3(d+1),d) = d+3, (25)
r(d+1,d} = d+1, (26)
r{d+2,d} = d+2. (27)

The lower bound (L) based on {15), (16) and (17) and the
uppet bound (/) based on (19) for #(n,d) are presented in
Table 3. for some n < 2000 and d < 20. Results for small n
and d are shown in Table 4. o

Expression (19] shows that space- time slgnature diagnos-

tics provides considerable hardware savings as compared to

the straightforward approach (tlme compression only). For
example, for a rhombic array with n = 108, d = 8 and
b = 32 the straightforward approach requires approximately
L; ~ 10° equivalent two-inpul gates, while the suggested
method requires only L3 ~ 12 x 10° gates.

Table 3: Bounds on the Minimal Numbers »{n, d} of Signa-
tures for Rhombic (n x d)-Meshes.

d =2 d=13 d=4 d=25
n L U|la L Ula L Uia L U
9 5 & 12 & 6 | 15 T T | 18 8 8
18 6 6 | 24 T T | 30 7 8|3 8 9
36 7 T |48 8 8|60 B 9|72 9 10
2 8 8|9 9 91120 9 10144 10 11
144 9 9 1192 10 10240 10 11{288 11 12
288 10 10 ;:384 11 111|480 11 121|576 12 13
d= d=7 d=28 d=29
n L Ul a L Uin L Uln L U
21 9 9 (24 10 W02y 11 111{ 30 12 12
42 9 10} 48 10 11| 54 11 12| 60 12 13
84 10 11 98 11 12 108 12 13 |3120 13 14
168 11 12 13192 12 131216 13 14 | 240 14 15
336 12 13 | 384 13 141432 13 15480 14 18
672 13 14 | 768 14 15,864 14 16 !960 15 17
d = 10 d=11 | d=12 d= 13
i} L U n L U n L U I L U
33 13 13 36 14 14| 39 15 15| 42 16 18
66 13 14 T2 14 15 T8 15 16 84 16 17
132 14 15 144 15 16| 156 16 17| 168 17 18
264 15 16§ 288 16 17| 312 17 18| 338 18 19
528 15 17| 576 16 181 624 17 19| 672 18 20
1056 16 18 | 1152 17 191248 18 201344 19 71
d=14 d = 15 d=16 | d=17 |
n L U| n L U| n L U| n L U
46 17T 17} 48 18 18| 51 19 19| 54 20 20
90 17 18 96 18 19 102 19 20| 108 =20 21
180 18 19 192 19 20| 204 319 21, 216 20 22
360 19 20 384 20 21| 408 20 22 432 21 93
720 19 21| Y68 20 22 816 321 23] 864 22 24
1440 20 2211536 20 23 |1632 21 24 | 1728 22 25
d=18 d =19 d = 20
n L U n L U n L U
&7 21 21 60 22 22| B3 23 22
114 21 22 120 22 23| 126 23 24
228 21 23 240 22 24| 252 23 25
456 22 24| 480 23 25 504 24 26
912 23 2b | 960 24 26 | 1008 25 27T
1824 23 26 | 1920 24 27 |2016 25 28

Table 4: Minimal Numbers of Slgnatures r{n, d) {for Rhumbn:
(2 x d)-Meshes with Small n and d.

d 2 | 3] 456 ] 7 8 9 16
2 |LU|LU|LU|LU|LU| LU | LU | LU | LU
3 31 - | -] -[- : - n -

6l 415 |8 |6 | - ; . ; i

ol 5 (5667|7888 ]| 8 9 - -

12 5 | 6 |87 |78 89| 910 (10111112 12

15[ 56 67| 7 | 7889|910 1011|1112} 1213
18 6 [67 |78 8 {89 | 910 [10-11 | 11-12 | 12-13
21| 6 |67 | 78|88 9 | 10 |10-11]11-12]1213
o467 | 7 | 78180 o0l 10 | 11 | 12 1213
2767|7878 |89 |910ft0-12] 11 | 12 | 13
3067 |78) 8 [89 |910|1021 1012 12 | 13
33! 7 | 78189 |89 91010111122 ]12-13] 13
36 T 78 | 8-9 | 8-9 | 9-10 | 10-11 | 11-12 | 12-13 7 13-14
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[12] Karpovsky M. G. and Nagvajara P., “Design of Self-

We presented a new method for identification of faulty pro-

cessing elements. The method is based on compression of a
test responge first in space and then in time using LFSRs
and hard decision decoding techniques. The overhead analy-
s1s and the solution for the hardware mnimization problem -
are presented for several important classes of systems. The
proposed method results in considerable hardware savings.
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