Multiple Fault Detection in a Network of
Functions ! =~ T

T. Raju Damarla, Mem. IEEE. ? and M. Karpovsky, Sr. Mem. IEEE. ®

ABSTRACT: In this paper we analyze the prubiem of multiple fault detection

in a network of functions (cells implementing functions). It is shown that all
multiple stuck-at-faults (s-a-fs) and all single bridging faults are detected by a
test set which detects all multiple faults in every cell. In general it is shown that
a number of test patterns is proportional t{o the number of lines in a network. For
homogeneous trees the number of test patterns is shown to be linear with number

of input variables. Upper bounds on number of test patterns is presented.

1 Introduction :

In this article we will investigate detection of multiple faults in a network of
functions. It has become a common trend for implementing a system of complex
Boolean function(s) in a single chip and then interconnecting various chips im-
plementing different functions in order to realize a larger function or functions
(see fig 1.). In the event, each cell representing a single gate, the network may

be veiwed as a conventional implementation of a function f.

1This work was supported by the National Science Foundation under the Grant DCR-8317763.
2Dept. of Electrical Engineering, Univ. of Kentucky, Lexington, K'Y 40506.
SECS Dept., Boston University, 110 Cammington st., Boston, MA 02215,

!

Several authors have investigated the problem of fault detection [1-7| in com-
binational logic networks. Some have investigated multiple fault detection in
combinational networks [2-4]. In analyzing the fault detection probelm, differ-
ent topologies have been studied by various authors for networks implementing
a single Boolean function. Hayes [1] has considered fault detection in Uniform
NAND trees. Gault and et all [2] have investigated multple fault detection in
special classes of trees with input fancut. It was shown [2] that if a tree consists
of AND and OR gates in alternate levels, then all multiple stuck-at-faults (s-a-fs)
are detected by a test set which detects all single s-a-fs. It is also shown that
any Boolean function can be realized as a tree with input fanout. Kohavi, et all
[6] have investigated fault diagnosis in combinational tree networks.

In this paper we will consider a much general fault model which is given below.
We will show that an upper bound on a number of test patterns which detect
all multiple s-a-fs is proportinal to the number of cells. If each cell implements

a single cell, then a number of test patterns is shown to be proportional to the

number of lines in the network.
It will be assumed that the number of input lines to a cell ¢; is m;. We assume
that any function f; is implemented by combinational logic only, and each cell

implements only one function. The fault model considered for testing a network

is given below.
Fault Model: A fault may occur in any single cell and fault can be a single
or multiple stuck-at-fault (s-a-f) and single bridging fault. It is assumed that a
fault does not result in sequential behaviour. Multiple s-a-fs may occur in the
inter connecting lines.

Since the fault model is very general, in order to detect the faults in any

cell, one has o apply all 2™ different input vectors to a cell ¢;, ¢ € {1,2,...}

CH 'PH ' ‘J?

Figure 1: Network of Functions.

(exhaustive testing of each cell) and at the same time the conditions should be
such that a fault in any cell propagates to the primary output line, which is the

only observation point in the whole network.

2 Network of Functions :

In this section, we will consider a network of functions. General structure of a
netowrk of functions is shown in fig 1. Through out this paper it will be assumed
that a network is irredundant and hence all single s-a-fs can be detected.

Now, if k; is a line in a network implementing a function f{X) = f(21, Z3, ..., Zn),
then a stuck-at-0 (s-a-0) fault at h; (denoted as k;/0) can be detected {7] by any
vector X such that

hi gy = L (1)

Similarly, a stuck-at-1 (s-a-1) fault at h; (denoted as h;/1) can be detected by

another vector X', where

. df
hi g = 1. (2)

If ﬁ? = 1, then the line A; is said to be sensitized, in other words, a s-a-f at A;

would propagate {o the output f.

2.1 Generation _nf Test Patterns :

It is well known [8] that test pattern generation for general combinational net-
works is a NP-compiete problem. We will not give actual algorithm for generat-
ing test patterns, but we will formulate the conditions for fault propagation that
must be met by any test pattern if it has to test certain faults that may occur
in a network.

Let f(zy,z2,...,Z,) be a function that is implemented by a network (fig 1.),
and let f; = fi(za,%:,..., Tim,} be a function implemented by a cell ¢; in the
network. Let us consider a subset of test patterns {I;} which detect all faults in

a cell ¢;, where
T = {ti,tizgy oo}

and
t.‘j — (:i:l,:i:g,...,:'i:n), :

where ; € {0,1} and |T;| indicates the number of test patterns in {7;}. Then

T; must satisfy the following conditions :

1. If a test pattern ¢;; detects a single s-a-f at input line z;;, then

i

dz.; = 1, eand

4 _

i - 1.

The first condition ensures that a s-a-f at z;; would propagate to the cell’s
output f; and the second condition propagates the fault to the final output point
J. It is clear that if a s-a-f at z;; is detectable then the above conditions must
be satisfied by a test pattern. Such a test pattern must exist in 2" possible input
vectors which would detect a fault if the fault is detectable in the cell ¢;. Now
consider the following heuristic algorithm :

ALGORITHM-I:

e Step 1: Consider a cell ¢; and generate an exhaustive test set T; which
satisfy the conditions mentioned above regarding the propagation of fauits.
Note that, due to fanout nature of a network it may not be possible to

generate all 2™ number of test patterns for a cell ¢; .

o Step 2: If ¢; is in the path of ¢; and if ¢;;, € {T;} sensitizes ¢;, then consider
tix as one of the elements of test set T; for the cell ¢;. While generating
test set for a cell ¢;, assignment of the input variables should be such that
as many cells ofher than ¢; as possible should be desensitized {optimal

desensitization [1}).
e Step 3: Repeat Step 1 and 2 for all 1.

At this juncture, it is worth while discussing the fault detection capabilities
of the test set constructed according to the above algorithm. The faults in a

network may be catagorized as :
e i. Input and Internal Faults in a cell ¢;, for all z.
¢ ii, Faults at Inter Connecting Lines.

i. Input and Internal Faults in a cell ¢;.

Since, every cell ¢; is tested exhaustively by applying zll the possible 2™ test
patterns, all the input and internal faults are detected. If only fewer test patterns

than 2™ are generated, due to fanout nature of a network, and if this test set T;

is not sufficient to detect all possible faults, then those faults are undetectable
faults, since only |T;| test patterns out of 2" can be applied to ¢;. In otherwords,
even the test set which tests the whole network exhaustively by applying all 2"
test patterns will not detect those faults.
ii. Faults at Inter Connecting Lines.

All single s-a-fs at input line of a cell ¢;, 1 = (1,2,..., M), are detected by a
test set {I;}, since the network is irredundant.

Now, consider multiple s-a-fs at lines z;, and z;;. While testing cell ¢;, the
following cases may happen.

Case 1: If test patterns which detect s-a-fs at z;, sensitizes only z;n (that is

dj{“ = 1} but not zy then only single fault is effective and the fault will be
detected by one of the test patterns in {T}}.
Case 2: If both lines =z,,, and z; are sensitized by a test pattern then the multiple

fault may not be detected by a test pattern which sensitizes both the lines, since

the multiple faults may mask each other. However, we will show that there
exists a test pattern in a test set generated by Algorithm-1 which would detect
the multiple fault.

Let z;, be an input to a cell ¢; and zy input to ¢. If ¢; and ¢; are entirely
independent, then Case-1 is applicable and all multiple faults are detectable. If
¢; and ¢z are in the fanout paths of some cell then one of the two possibilities
may happen.

Case 2i: T; and z;; may be different fanout lines of a cell’s ontput (see fig 2.1a.).

If this is the case, and due to irredundant nature of the network, when ¢; is tested

Figure 2: Multiple s-a-fs at x;, and .

exhaustively, there exists test patterns which sensitize either ¢; or ¢; but not both.
Then, depending on which one of the cells sensitized only z;, or zy is sensitized
and fault is detected, since all s-a-fs are detectable in an irredundant network.
Note that generalization for more than two fanouts from ¢; is trivial.

Case 2ii: Let z;, and z;; are not the fanout lines of an output of a cell ¢; as
shown in fig 2.1b. If a multiple fault at z;,, and zy is detectable then there exists
a test which sensitizes ¢, but not ¢;. It is also evident that there exists at least
one input z,, to the cell ¢; which is not input to ¢;. Hence, the test patterns
which detect z,,/0 or z,,/1 would detect the s-a-fs at xy, which is the output of
the cell ¢,.

If the fault is at the input of ¢; but not at the output of ¢, still the fault is
similarly detected during exhaustive testing of ¢; while ¢; is not sensitized.

The above results are presented in the following theorem.

Theorem 1 : In a network constructed wsth cell smplementing functions

Fil&iry Tizy ooes Tim;), ¢ = (1,2,..., M), all the single and multiple faulls sn any cell

7

and all mulliple s-a-fs at the inter connecting lines are detected by a test set T,
and
M
7| < >, 2™ -2, (3)

=1

number of test palterns, where M 1s the number of cells in a network.

Proof: Detection of faults is discussed above. In order to test a cell ¢; exhaus-
tively one would require 2™ test patterns. However, while testing ¢;, some of
the cells which are in the path between ¢; and the final output are also tested.
So for these intermediate cells some test patterns need not be repeated. In the
worst case, if there are no cells in between except the final output cell; for this
output cell at least two of the test patterns which produce output 0 and 1 need

not be applied. And hence the number of test patterns is upper bounded by
221 2“"? - 2-

Q.E.D.

It is interesting to note that all bridging faults among the inter connecting
lines are also detected. This is true since any test set which detects all multiple
s-a~fs should indeed detect the bridging faults. The reason being that a bridging
fault may be veiwed as a special case of s-a-fs. For example, if lines z;, and
zy are bridged, then that fault can be detected by a test pattern which detects
multiple s-a-fs z;,/0 and zu/1 {or z;n/1 and z/0).

From the above discussion, we may conclude that for almost all practical
purposes, almost all faults in a network can be detected by a test set which
exhaustively tests individual cells in a network. One can acheive the same results
by testing the whole network exhaustively by applying all 2 test patterns, where
n is the number of input variables to a network. The following example would

illustrate the difference between [T} and 2",

Example 1 : Let n = 20,M = 1000 and let us assume that every cell has 8

input lines. Then

Ezhaustive testing requires 2" = 1048580 test paiterns

[T} = 1000.2° — 2 = 255998.

The above example and (3) have illustrated the dependency of [T} on M and the
number of inpﬁts to a cell. While the dependency on the former is linear, the
number of test patierns grow exponentiaily with number of inputs to a cell. In
Section 4, we will present techniques to reduce the number of test patterns by

redesigning each cell as a combination of cells with fewer inputs.

2.2 Networks with Multiple Outputs:

In this section we will consider networks with multiple outputs. Once again we
assume every cell in a network is a single output cell. The general structure of a
multiple output network is shown in fig 3. It is worth noting that programmable
logic array structures are a special case of networks considered here with only
two levels.

Generation of test patterns is done for the networks with multiple outputs
as per Algorithm-1 by considering one output at a time. Clearly, if some cells
are covered by a function O;, then they need not be considered while generating
test patterns with another function Oyy;. Test generation procedure ends when
exhaustive test sets for all the cells in a network are generated. Once again the
number of test patterns which would detect all multiple s-a-fs and single bridging
faults is upper bounded by

M
IT| < > 2™ —2.

t=1

9

e weesss -hile— — E——

0, Oz Ok
Figure 3: General Structure of a Multiple Qutput Network.

Multiple s-a-f and single bridging fault detection in multiple output networks is
simnilar to the case of detection of multiple s-a-fs in a single output network. Single
bridging faults among the output lines is done by a test pattern which assigns
O; = 1 and O = 0 and such a test pattern always exists if O;{X) # O,{X), VX,

which is the case for an irredundant network.

3 General Trees :

In this section, general trees constructed using cells implementing functions
fi, 1 € {1,2,...} will be considered. The general structure of a tree is shown
in fig 4.

Suppose if the network consists of only two levels then any fault in a cell ¢;
in the second level would manifests at its output which is connected to the input

of the output cell (see fig 5). Without loss of generality let this input be z. A

10

leeedl 3

S~}
1
|
&
A
‘o
Figure 4: General Structure of a Tree of Functions.
-!-‘ Jl?;: -_—— '?‘-'?r 1 i % :J

devol !

Figure 5: A Two-level Tree.

11

change in the input z would propagate to the output F if [Sellers, et all

af
g _ 4 4
rrlial (4)
If a vector Z is such that 3; ﬁ% = 1, then #/1 (2 stuck-at-1) fault can be
detected, similarly if Z satisfies z ﬁ‘ = 1, then z /0 (z stuck-at-0) fault can
be detected. However if a vector Z is such that
df _ _df _
d_z,- = &4 le =1 (5)

then both z/0 and 2;/0 can be detected by Z. While maintaining the condition
(5) one can apply the input set of vectors to the cells ¢; and ¢; (with output lines
% and z;) which results in a ‘1’ at their outputs (ie., z = 1 and z; = 1). So if
there is a fault in either ¢; or ¢;, then a fault manifests itself as either 2 /0 or
2; /0 and hence the output F would change detecting the fault.

The testing methodology for a mulitilevel tree, presented subsequently will be
based on testing one cell at a time exhaustively rather than testing multiple cells
at a time. The following definition would be useful.

Definition: Let

F;!- = {X|f;{X) =4}, i€{0,1}.

Clearly |F?| + |F}]| = 2™, where m; is the number of input variables to a cell ¢;.

Test generation procedure will now be described for a two level tree.

3.1 Test Pattern Generation For A Two Level Tree:

Firs{ test patterns which test the cells in the second level will be generated and
then the test patterns required to test the output cell will be generated.
Algorithm-2:

12

Step 1: Select a vector Z such that zld—{;’f = 1, (see fig 5), apply one

of the vectors in F} to cell ¢; in the second level and any vector from to

F}F}), § #1,if z = 1(0).

Step 2: Repeat step 1, till all the vectors from F} are applied to cell ¢; in

second level, for the same Z.

Step 3: Repeat steps 1 and 2 with Z such that z, ﬁ:‘: =1 {note that this
Z differs from the previous one only in z;), and apply one of the vectors in

F? to cell ¢;.
Step 4: Step 1 to 3 are repeated for all z, ¢ € {1,..., ¢}

Step 5: Ouly cell for which exhaustive testing is not done is the cell ¢;4;.
However some of the test patterns are already applied while testing the

cells in the second level. Apply the remaining test patterns to cell ¢ 4;.

Let the total number of test patterns thus generated is given by N;

N = T |F +X28 [F?] + |Faya| + Fpal — 2 =
Tt omi _ g,

=1

(6)

where the subscript in N, indicates the number of levels, and -2 is due to the fact

that at least one of the vectors from |F,,,| and |F?,,| should have been applied

while testing the cells in second ievel.

The above test pattern generation process can be extended for test pattern

genertion for a s-level network, in a straight forward fashion as shown in fig 6.

Definition: A tree is called homogeneous if all the cells have same number of

input lines.

Definition: A cell is called a primary cell if the inputs to this cell are all primary

inpuf variables, all other cells are called secondary cells.

13

L |

S -1 Crvel s-t fevel 5-1 level
Lnee tnoe T tree

Figure 6: An s-level Tree represented as a Two-level Tree.

In a homogeneous tree, if every cell has m-inputs, and if the number of levels

in the tree is s, then a recursive formula for N, is given by
N,=mN,, + 2™ -2, s>1, N, = 2™, (7)

Solving equation {7) one would obtain

m*—1 m*>~1 —1
m -2 . 8
m—1 m—1 ()

N, =2

It is interesting to know that the first number in (8) represents total number
of cells in a tree of s-levels and the second part corresponds to the number of
secondary cells. This equation (8} is exactly same as equation (3) but for the

second part.

Lemma 1 : Test patterns generated by the above algorithm would detect all

multiple s-a-fs at the inter connecting lines and all faults inside a cell.

Proof: Multiple s-a-fs at the input of any single cell are detected since each cell

is tested exhaustively.

14

Case-i: Let z; and z; are faulty, where z; is an input to a cell ¢; and z; is input
to ¢;.

i) If Z (which is used for generating test paatterns for ¢;) is such that z‘%f"—‘ =
z; ¥t == 1 and the fault distorts either z or z; but not both, then fault is

dzy
detected, since fault propagates to the output.

it} If the fault distorts both z and z;, then test patterns generated by 2’ (Z'
and Z differ in only in z;) for ¢; where E.d—z'_;j_ﬂ = zf%g—‘ = 1 resuits in distorting
of only z; and hence fault is detected.

Case-ii: If 2 and z; are fault, then this fault can be detected while testing
¢q+1 exhaustively, since the fault amounts to single or multiple faults at the input
of the cell ¢,4;.

Case-iii: Faults inside a cell are always detected because each cell is tested

exhaustively.

Q.E.D.

The above lemma holds for any tree with arbitrary number of levels since any
multi level tree can be represented as a two level tree as shown in fig 6.

At this point it is in order to mention that the number of test patterns
generated by Algorithm-2 is not minimal. One can generate optimal number
of test patterns by choosing a vector Z with maximum number of variables

Zils %2y -eey Zity Such that

e dfyn

1 e = 2
dz dz;

= 1,

and generating test patterns which would simultaneously test cells Cily »eey Cil,
unlike testing one cell at a time as in the case of Algorithm-2. However, if we
adopt optimal test pattern generation, it will not guarantee detection of multiple

s-a-fs at inter connecting lines.

15

Even though, Algorithm-2 does not generate optimal test set, the number of

test patterns is

N, < Cun, {9)

where C is a constant and »n is the number of primary input lines, if s is large
and my, V1, is small (as can be evidenced by (8) when m; = m = const, s —»

).

]

4 Minimization of Number of Test Patterns:

Consider equations (3) and (8). In both the cases, the number of test patterns
grow exponentially with a number of input lines to a cell. Consider a case where
a function is implemented by a single cell with nine input lines as shown in fig 4a.
In order to test this network exhaustively one would require 512 test patterns.
However, if the same function can be implemented as two level network as shown
in fig 4b, with 3 input cells, then from (8) the number of test patterns required
will be 30 << 512.

Now, it is appropriate to ask and find out what should be the distribution of
inputs to the cells in the second level. For example, the network with 9 inputs may
be implemented in two levels with two cells in the second level one with 4 inputs
and the other with 5 inputs. It is quite possible to have other configurations, for
example some of the possible configurations for a 9 input network are 3,3,3; 4,5;
2,7 and etc. It is possible to have multi level netwoork with s > 2, then we would
like to know what should be the optimal number of levels in the neﬁr design.

It can be easily shown that, if we restrict the number of levels in the new

network to be s = 2, then from (8) one would obtain minimum number of test

16

X1

N
1

(V) - &)

Figure 7: Different Implementations of a Network
patterns, if each cell in the second level has
m; < |logn] (10)

where | K| is the integer part of K, and n is the number of input variables to a
network. If m; > 2, then once again (10) can be applied to the individual cells
and each cell can be implemented as a two level network. This proceedure can
be carried out, if possible, till every cell iﬁ a network is a two input cell. This can
certainly be done if each cell in the original network is a single gate. In other-
words, the number of test pafterns required will be minimized by implementing
a network with two input cells {gates).

Now, let us return back to trees where each cell is a 2 input cell and the

number of levels in the tree is s, then by (8)
N, =32 -2 =3n — 2

Hence, the number of test patterns which would detect all multiple s-a~fs and

single briging faults in a tree is upper bounded by 3.n — 2. Hayes [1| has shown

17

that the number of test patterns required to detect all single s-a-fs in a tree is
upper bounded by n 4 1.

If the gates used in a tree are limited to NAND, NOR, AND and OR gates
only, then it can be shown that for a m-input gate all single and multiple s-a-fs
can be detected by at most m + 1 {est patierns. So, it is not necessary to apply
all 2™ input vectors to every m-input gate. Then for a netwrk with s-levels, the

equations (7) and (8} would become

N,=mN,; + (m+1) — 2, Ny =m+ 1L

nt 20— — 2, (11)
m

N, =m*+ 2m*! -1
where n is the number oof input variables to a tree. If m = 2, then
N, =2n — 1, 8> 1,

which is not very far from the single s-a-f test sef.
If a network is constructed with NAND, AND, OR and NOR gates only, then

equation {3) can be written as

g==]

M M
T} <D (mi+1)—2=)> m+ M- 2, (12)
=1

where M is the number of cells in a network. The first term 33, m; is nothing
but the number of lines in a network. Hence, the total number of test patterns

is linearly proportional to the number of lines a network.

Example 2 : Consider a neiwork with 16 outputs, 20 sinpui variables and 50
product terms, where each product term is a function of 8 variables and each

output O; 18 a function of 16 product terms.

The number of test pattens computed by (12) is 464.

18

REFERENCES:

[1].

2.

[51-

Hayes, J.P., “On Realization of Boolean Functions Requiring a Minimal or

Near Minimal Number of Tests,” IEEE Trans. on Computers, Vol. C-20,
Dec. 1971, pp. 1506-1513.

Gault, J.W_, Robinson, J.P., and Reddy, S.M., “Multiple Fault Detection

in Combinational Networks,” IEEE Trans. on Computers, Vol. C-21, Jan.

1972, pp. 31-37.

. Kohavi, I., and Kohavi, Z., “Detection of Multiple Faults in Combinational

Logic Networks,” IEEE Trans. on Computers, Vol. C-21, June 1972, pp.
556-568.

. Yau, S.8., and Yang, S.C., “Multiple Fault Detection for Combinational

Logic Circuits,” IEEE Trans. on Computers, Vol. C-24, Mar. 1975, pp.

233-241.

Karpovsky, M., and Su, S.Y.H., “Detection and Location of Input and
Feedback Bridging Faults among Input and Output lines,” IEEE Trans.
on Computers, Vol. C-29, June 1980, pp. 523-527.

. Kohavi, Z., and Berger, 1., “Fault Diagnosis in Combinational Tree Nt-

works,” IEEE Trans. on Computers, Vol. C-24, Dec. 1975, pp. 1161-1167.

. Sellers, E.F., Hsiao, M.Y., and Bearson, L.W., “Analyzing Errors with

Boolean Difference,” IEEE Trans. on Computers, Vol. C-l_'?, 1968, pp.
676-683.

. Ibarra, O.H., and Sahni, S.K., “Polynomially Complete Fault Detection

Problems,” IEEE Trans. on Computers, Vol. C-24, Mar. 1975, pp. 242-

- 249.

19

