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Aliasing Probability for Multiple Input Signature Analyzer

DHIRAJ K. PRADHAN, SANDEEP K. GUPTA., Axp
MARK G. KARPOVSKY .. -

Abstract—Formulation of closed form expressions for computing
MISR zliasing probability exactly had remained an unselved problem.
This paper presents single and multiple MISR sliasing probability expres-
sions for arbitrary test lengths. A framework, based on algebraic codes,
is developed for the analysis and synthesis of MISR-based test TESpONse
compressors for BIST. This framework is used 1o deveiop closed form
expressions for ajiasing probahility of MISR for achitrary test length
(50 far only bounds have been formulaled). A new error model, based
or g-ary symmetric channel, is proposed using more realistic assump-
tions. Results are presented that provide the weight distributions for
g-ary codes {g = 27, where the circuit under test has rm outputs),
These results are used to compute the 2liasing probahility for the MISR
compression technique for arditrary test lengths. This result is extended

to compression using two different MISR’s. It is shown that significant

improvements ¢an be obtained by using two 5|gnature analyzers instead
of one. This paper makes a contribution tu coding theery as well. It
provides the weight distribution of a class of codes of arbitrary length.
Also formulated is an expression bounding from a?ﬁ_}vﬂ the probabiiity of
undetected error for these codes. The distance-3 Reed-Solomon codes
over GF(27) become a special case of our yesults, -~ -

- -

Index Terms— Algebraic codes, aliasing probability, BIST, BIT, error

model, MISR, Reed-Solomon codes, shift register, weight distribution.
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I. INTRODUCETION

The multiple input mgnamre register compression (MISR) is the
primary technique uvsed in signature analysis. The outputs of the
cireutt under test (CUT) arecconnected to the inputs of the MISR
while the test panterns are applied to the CUT. The final conterts of
the MISR are compared to that expected for a fault-free Circuit to
determine whether the CUT is faulty, . S

Deriving closed form expressions for computing %IISR zliasing
probability exactly for arbirrary test length had remained an un-
solved problem. The chief contribution of this paper 1s to provide
precisely such an Eipl’;balﬂ"l The results obtained from earlier in-
vestigations for the single input LFSR [2] are extended to multiple
input MISR using the relationship between coding theory and shift-
register theory., Spemf‘ cally, we formulate ex;:raszmns for estimating
the aliasing probability for MISR using & more reaiistic error model
by relating the analysis of an MISR o the analvsis of g- ary codes
where ¢ = 27 for an m-ouwtput CUT. Also presented are aliasing
pmbabllm cxpressions for multiple MISR's.

Also, this paper makes two new contributions to codi mg theorv.
First, a counting technique is developed for cmmputmﬂ the we:vht
distribution of a certain class of codes of arbitrary length which
are not necassarily maxirmurm distance separable (MDS) [8]. (Weight
distriputinns for MDS codes are known.) Also, the probability of
undetected error for this class of codes is bounded from above.
{Certain known results for MDS codes [18) becoma special cases of
QUT rasitiis.)

[ summary, proposed here is a new approaca for estimating aliag-
g pmbﬂmrlm tor MISR compression. In the paper, we present alizs-
ing probability expressions for m output circuits for any arbitrary test
sequence of length n. We also present a multipie-MISR compression
technigue which reduces aliasing. .

The paper 15 organized imo thres mzior seciions. Sectian 1T
presents the basic framework of the analvsis of MISR technigusz
using coding theory. The apalvsis of MISR technigues is then pre-
sented 1n Section II1. In this section, both single aad multiple MISR
schemes are analyzed. Fipally, we conclude in Section IV.

II. Coni~e THeorY Pravizwory

Below w2 present a coding theory framework [10] for analysis 3‘1{1
synthesis of MISR compressors. It is shown that for an m output 2ir-
cuit, the design and analysis of MISR-based compression te chnIQuUes
can be formulated using algebraic coding theory of g-2rv arror cor-
recting codes (g = 2™M).

A. Algebraic Codes

et ¢ be an m-tuple {c,_\Cr_2---C¢) where c, ={GF{g). Let

clx) =c,—x" 7" +... £, x + ¢y be the polynomial representasion
of the n-uple. |

In the follawing discussion, the vector and polynomial represen-

‘tations shall be used interchangeably. All polynomial representations
~and operations will be assumed 1o be over GF(g) where g = 27.

Thus, all additions and mu]tiplicalimns 10 this section will be assume=d
to be over GF(27). In this field + 6 = —4; therefora, the 1erms of
the polynomials can be represented as only positive tarms.
Definition 1: The generator pal}fnnm;al 2(x) of a2 code € 15 that
polynomial g{x) which divides every codsword polynomial in C.
The degree of g{x) is equal to n — k where n is the length of the
code and & is the number of information symbols. - -
Two I-.h,y observations should be made here, First, wnen g(.u d1-

vides x” - 1, only then does the Code become a c}'chc code of length
‘n. On the other hand, when g(x) does not divide x* =1, then the

--------

" code is not cyclic. The results df:nved here are apphcable m cyclic
' a.nd noncyelic codes, 2705

" In the following; ‘the Galms ﬁeId eIaments {l ('[] D} and 1
{IZI 1) are denotad b}' buldface o distinguish from the bmar}r D 1.
Emmp:’e I Ccmsu:ier a c;'chc {3 2} Reed Sﬂlmmmn Eﬂdﬂ QVET
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. The llowing is a st of codewords in the code €. = 232, the”Ochet Band, fef the input sequénce be {eaf) Which B Aot 5.
I R ﬁm‘...-ﬁ;sEegﬁjgg‘%iﬂ;;ﬁi;—j.?;-r;~._---:r-_=:_-‘-. =72 codeword in the ‘code in Exaniple 1. Therefore, the final state 6f -
i S I ooy ) B SR b e MISR for this fnput Sequence is ndt &ual 0°0 dnd is instead
s cr o a0 108 Cany | Do (T equal i the remainder 1 = (0, 1) in the bisary This Is the result of
e N e T T il e A a B by x ba T
IR 0B 2810 _18c Caaa| - iy- e p IR e ' ~
e T e e N — e - "o Dt TRt S T DT L - : B
e i SIS T e e —= iR e Ed E S State of MISR
= ‘_" i “ﬁl ;ﬂﬂl EIB H-ﬁﬁﬁ e ::E_ Tt e el T TR T Il.l-‘pg--' Wil - -
s, e REE_EIT Rlea e SR e L DT T e D e ' - -
fr-Here 0, 1, &, and 8 afe clements of GF(22) where 0 = (0, O, - dary T Binary 4-ary - Binary
gL =0 D, &= (1,0, and § = (1, 1). Here « is the primitive = ——————> e
. clement [8] and § ='e”. It can be seen that the generator polynomial .. ™ =T e Vg — 0 ©, 0)
s for this code is x +« which divides all the 16 codeword polynomials. i@ - T, 0) & {1, 0
geexFor exampie, the codeword 18« = 1x2 +8x +¢ is divisible by (x 4o} .. @ T (1, 0 1 0, )
i _J;Fl.icj.-__-‘?_i-_ﬁx;ﬁc_r =({x 4 a)(x +1). The above codewords can aiso g -, 1) 1 0, 1)

a -

T TR e ey e _ - -
= m -

= - — .

B he m;d in bma]:'y form as -

- - {©.000,00,0 @, 11,00, 0
o) 0.00.00,0 (1,00, 10,0
(0, O)(1, 01, 1) (‘1_."1)_{6, (@, 0
Lo, 00, no, 1 1, 0, 0, 1
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.:AH the codewords in the code C are inultiples of its generator
= polynomial g(x). This fact is used in detecting errors in the code-
b words, - .
& Definition 2: The remainder s(x) obtained by dividing a word
We~ r{x) by the generator polynomial g{x) is referred to as the syn-
R - drome, corresponding 0 r(x) in the code generated by g(x).
That is, syndrome 5(x) of r(x) is glven by . i -
P T T X)) = a(X)g(x) +5(x) -
: where s{x)} is the remainder of the
QRS degree of n —k = 1 or less. @ . .
M- In the following, we Hlustrate the use of MISR in computing s(x).
o Lirst, it may be noted that an MISR can b viewed as 2 divider
RS Given 2 sequence of parallel input to the MISR, the final state of the
- MISR given the initial state 0 is the remainder obtained by dividing
- the input sequence, ioterpreted as a polynomial, with (x +¢), where
= o is an element in GF (27} and m is the number of inputs to MISR.
PR : The clement « is determined from the feedback polynomial defining
SRas=-the MISR. In particular, if the feedback polynemial is a primitive
;;f'ﬁnlynnmiai over G£ (2} then « is the primitive element over the field
ISR G F(2™y which is defined by the given primitive feedback polyno-
< Mial. (Every GF(2™) field is defined by a primitive polynomial of
L;;_'.' = degree m, over GF(2).) In the following, the feedback polynomiai
.;.1:1"31;rese:_71tatinns over GF(2) and GF(2™} shall be used interchange-
Example 2: Consider the MISR shown in Fig. 1. The feedback
g¥~> Polynomial here is given as x> + x +1. If & is 2 primitive element
Ry over GF(22) defined by (x® +x 4+ 1), one can see that the final state
== 0f the MISR corrésponds to the remainder resulting from dividing
et I‘%_Lhe input sequence by (x + &). Consider the input sequence (q13),
=¥ == This in polynomial form is (ax? + x + B). This is a codeword in the
@ = RS code in Example 1. Therefore, ax® +x + 8 must be divisible by
pafy =7 (X + ). The following shows that the remainder, as expected, will
-beequal to 0 = (0,0). ' e
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It may also be noted that the sequence of states of MISR forms
the quotienrs. For example, in dividing ax® +ax +8 by x + «, one
has cox -+ 1 as the quotient and 2 remainder of 1. This is given by o
foltlowed by 1's, as shown 2hove.

Lemma I: Let R(x) and R™(x) be potynomial representations
of wo different vectors R and R* of length n. Then both Rix)
and R*(x) will produce the same syndrome with respect to g(x) if
and only if R{x) + R*(x) is a codeword polynomial in the code €
generated by g(x).

Example 3: Given code  shown above generatzd by g(x)
x + a. Consider R(x) = x? + Ix + 1 and R*(x) = 1x? + 1x «
«. Now R(x) and R*(x) will not produce the same syndrome as
R(x) + R*(x) = ax? + 8¢C. On the other hand, R**(x) = ax?
will yield the same syndrome as R(x), as shown in Table [, since
the sum R*™(x) + R(x) = 1x? + 1x + 1is a codaword in C.

This is fllustrated in Table I. The final register emres marked
with *. These represent the remainder after division by (x + «).
The final register entries in Table Ka) and I{c) are the same and
the entry in Table Kb) is different. In the following, we relate the

‘above observations to MISR and identify the conditions that result in
aliasing. '

B. MISR C’amﬁre;_:rfan o

-Let N be the circuit under test (CUT) with m ourputs, Thus, any
cutput of & can be interpreted as a symbol in GF{g), g =2™.
Let n be the number of tests applied. | -
Fo={/1, fr.---, fu ), set of faults considered for the CUT
T ={th i tys, -1, 1y 1, set of input vectors applied
R ={ra_y,Tn_2,---,r1, rot the good circuit response corre-
- Sponding to the input sequence T, r; € GF(2™)
R ={rr e jii-ourt,rf) the fauly circuit T2SpONse  ¢or-
responding to the input sequence 7 for a fault f & F,
r; € GF(2™) and where 7, is the response w0 £,. - .
If & €T is a test partern for a fault f € F, then the response
Ty 7 ry when CUT is faulty with fault £, _' o
- The symbol by symbol addition of R and R~ over GF(2™) will
be denoted as E, and is referred to as the error vector due to a fault.
" -Let R(x) and R*{x} be the polynomial representations of the test

responses R and R*, respectively. -

| #-Let E(x) = R{x) + R*(x) be the polynomial representation of the
“error vector £, If £g s test for a faylt
. - ":_;_-1..____,;-__(1’ 'DJ .-_.__,.-__,‘-1,‘.: .

| J € F, then the term epx* i

must appear in E{x), where e, =r, +rf.
Let the output response be comprassed by, using an MISR, with

.2 feedback polynomial ¢(x}. First it may be noted that any binary
- - polynomial of

degree m can be presented as x + o over GF(27). RS

L
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(a) Goop Cmcurr Resronese. (b) Faurty CircuiT Reseonse-1.
“{c) FauLty Circurr Response-2.

Test |R(z) | Register Values |
{0, 0)
fl JB {11 1}
£y 1 (0, 0}
£ 1 (Q, 1)*
(a)
Test 1R'(z) | Register Vvaiues
(0, 0}
5, | 1 {0, 1)
11 1 1,1
e | a (1, *
)
Test iR ™"(2) | Regisier Values
{0, 0)
Ly A (1, 0)
oy 0 | (1. 1)
th | O | (o, 13"
(c)
BIST Coding Theory -
Cutput response Recerved message
MISH Syndrome Generater
Signature Syndrome
Ahumg Updetected Error
A]Ja.stng Prnhabﬂﬂ.y Probability of
. undetected error

Fig. 2. BIST and ceding theory equivalence,

Therefore, the MISR feedback polynormual which is of degree n7 can
be represented as ¢{x) = x + o for some o € GF(2™). Thus, the
compressed signature S(x) of the response R{x) is given by

R{x) = h(x)p(x) + S(x)

where the polynomials R{x), k{x}, and S(x} are also polynomials
over GF(27). The degres of S(x} is less than the degree of ¢(x) =
x -+ e which is of degree 1. This implies S(x) has to be of degree
0. Thus, S(x) = f, where § € GF(2™),

Similarly, the signature of the faulty circuit rﬂspunsut is given by

R (x) = h*{x)f#(I]*S'{I)

Ahasmg occurs when the faulty response R*(x) is not equal to

 good circunt respoase R(x) but fﬂl.lll}" cireuit SIgnan:.re S*(x}is equal

to the good circuit signatee S(x). -

- This happens if and only if £(x) = R(.r} +R {I) :s l:h‘r"ISIhlE by
$(x). Consequently £{x) has to be a codeword in the code generated
' by g(x) = x + . This establishes the reiauﬂnshjp between t:odmg
. theory and MISR s:gnaturz ana]ysm [21, [4],-[10] as. ﬂlustral;e:d in

=" =
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Fig. 3.

g-ary symmetric channel.

The following example fllustrates the result in Theorem 1.

Example 4: Let us consider a wr'n—autput CUT. Let the good
circuit response be r{x) = 8x% + 1¢ + 1. The MISR COMpreassion
for the good circuit will yield 2 signamre S(x) = (0, 1). Now if
the outpat of the CUT is R*(x) = 1x? + 1x ~ &. For the code
constructed in Example 1, with g(x) = ¢(x} = x + «, as E{xy =
R(xX)+R*(x)€C, the syndrome is 5=(x) = (1, 1. The contents c}f B
the MISR fnr these two sequences are shown in Table I, -

JI[ ALLASING PROBABILITY

Techmques for allﬂ.l"'-"SlS of ahasmfr probabilities for single input fin-
ear feedback shift registers have bf:en discussed in [2]- [4} [10]-[12].

No exact expression for aliasing probability for MISRs is avail- -

able that admits E'.I'hltl';il'jr length test response. In the fn::an:me,ch
present the expressions for ahasma probability of an MISR for any™

test length, We also present bounds on aliasing probabilities when '_:-:'_

1
-+r -.lpr-ﬂl'-'—.-p-'-ﬂ-lfr-ﬂ-l--q T e,

=hec st 7 C = N G by e ks ey
1 -

-r P

d-_.... :

using two MISR's for any arbitrary test length n < 2 — 1. Forthe -

particular case where the MISR’s are designed using the geperator. &

polynomials of Reed-Solomon codes, then Lha aliasing probability .-

expressions are presented for # = 2™ -1, for any number of MISR’s. _

Aliasing probability depends on error distributions. In the follow-
1ng, W& propose a new error model for multiple output circuits that
1s more realistic than the traditional model used prevmusly [13].

A. Error Model for Multiple Outpur Circuits

The error model used in previous work in aliasing {13] assumes the
erTors at each output are independent. This model therefore makes
the implicit assumption that there is no sharing of logic berween the
outputs. However, most real world VLSI circuits have considerable
sharimg of logic between outputs. Therefore, any fault 15_likely to
cause multiple correlated errors. This is precrsel}' the reason we
propose to use the g-ary (g = 27} symmetric channel shown in
Fig. 3. Here p mrrespnnds to the probability thal: fﬂl‘ any ﬂwen" a3
test the output is in error. Note that p depends oa the test VeCtors
that are being applied to the CUT, e.s., if the tésts applied are "
EfﬁCIEI'It then p will be high. Here it is assumed that all (272 1) 7
ErTor paterns pﬂSSIhlE at tha rm-QuIpUt circuit are’ f:quaﬂy hka:l}'
However, the errors aré considered mdependﬂnt nﬁéripmf: se:quencﬂ
(as in the prevmus ‘models). In other words, errors ﬁus?d by two
consecutive tests are not curralatcd But for a particular teEt the' :rmrs )
at different outputs may be correlated. Hence, the errors. 1::1 the CuT
are modeled as shown in F:g 3. With this model one can ID[ﬂI'PI'l‘-'t o

L e Ll

1;-_-

-— -

e

S _Elgs 2and 3, . R Y e iy FLES the faulty circuit rtspnnse as the recewad 5equence cnrrespundlﬂg 9 ;_
oI miThe fnﬂawmg re:sult 15 a tiue:ct cnnsequencc nf the above: rr:lannu- tnmsmmmg good circuit respﬂn.r;e R over a noisy ! ::ha:mf:l as sh_nwn ;_ g
e sh.lps' SR s AT A e o8 FET R in Fig. 4. _Thus, the good circuit response is modified by tt the. errors - EETiS
:_:,';;:j_—;’j:,,??:mrem I3 An :rmr pnl;.rnumui E{:} causes_aliasing iff £ (x) due to faul: in the CUT. Thc _vector R* currcspunds mﬁtﬂﬂaﬂltj’ "*' i
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-~ where ¢ o is the pmmﬂyc root of the mrrespﬂndmg feedback pnlyne—  of estimating ahas:ng pmhahﬂ;ty is therefore eqmvalqnt to dﬁtﬂmmg
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Fig. 4. Errors in CUT modeled as erri_:nrs in a channel.

(Corollary 1). Thus, the problem of computing aliasing probability is
exactly equivalent to the problem of computing probability of arrors
as described below. |

The weight of a vector refers to the number of tonzero terms in
it. Thus, the weight of (o018} is 3. .

Let £(/) be the pumber of error patterns of weight { that causes

aliasing in a sequence of n tests. Using the above model one has
aliasing probability

L) !
P, = ZE(I} (q—f—l) (1~p)y™ (2)
i=1

where p is the probability that the output vector will be in error when
one test pattern is applied 1o the CUT.

From Theorem 1, one has E() = 4{{) where A{}) is the number
of codewords of weight [ in the code generated by g(x) = ¢ix).

Thus,
f f
— b - =
Pn-;ﬂjaurl(——q_l)(l Py,

Consequently, the aliasing probability in an MISR technique is
the same as the probability of undetected error in the corresponding
g-ary code generated by g{x) = x + . We now derive aliasmg
probability expressions for MISR’s using the above g-ary Symmetric
channel error model. {However, if an independent error model is to
be used, then one could also use the same framework and use the
binary weight distributions instead §{5].)

{3)

B. Aliasing Probability—Single MISR

In this subsection, we present aliasing probability expression for
single MISR. We assume ¢(x) = x + @ where « is the primitive
element over GF(2™). First it may be noted that when &(x} = x —
a this corresponds 1o the distance 2 maximum distance separable
{MDS} code whose weight distribution is known {8] and is gjven as

g-1y =2 [ |
A =[" XU )T e
.- r'z I

{These codes correspond 1o MDS because for any block length they
have a minimum distance of 2 with one check symbol ) Using (4}

in (3) one¢ has the aliasing probability P, for 2 m-bit MISR for any
test length n as

2[0S ()

. (qf"‘f—i)] (E‘i—l) (1-p)y". (5)

In the following, we derive the expressions for aliasing probability
for any test sequence length using an alternate formulation. As shall
be seen later, the expression obtained is simpler than the one obtained
above. o |

Let N (m, [) be the number of erTor vectors that ¢can cause aliasing
given any fixed / positions in which errors occur in a test response
of length n. Thus, N (m, {) represents grror vectors of weight { and
length n where the errors are confined to some fixad / positions

ﬂhly. Thus, E(f) =

f N\ (m, I} tepresents total number of error
vectors of length # and weight 7 that can cause aliasing.
Lemma 2: N\{m, N =2""{(2" — 1) +(-1¥(2" —1)).

J0Y

Proof: Latiy, i3,---,1; be some { positions in which errors can
occur. By definition of Ny(m,[) and Corollary ! one can see that
Ny(m, D) is the number of solutions (e, e;,---,¢€;), (&; £ 0), for
the following linear equation over GF (2™)

e +ea? +-- e =0, (i) <ix < ---ip)

(6)

where a € GF(2™) is the primitive root of the feedback polynomial.
Now consider (6) rewritten as follows

e’ -I'llE'zu‘:A‘.'Jl2 R 2 - BT+ sl :E‘;O.'“+

(7)

From (6} and (7) we have the following recursive formula for
N l{mr ‘l‘}

Nim,h=02" -1 —N(m, -1 (8)

This is obtained from the following observatioms. The oumber of
nonzero &; combinations that saasly {7) 15 equal to the oumber of
combinations of ¢;’s with all nonzero e; s that resuit in left-hand side
of (7) being nonzero. There are (2™ — 1¥ ! possible combinations
of aonzera ¢;’s for the left-hand side of (7). Of these combinations,
by definition there are precisely NV {m, [ — 1) combinations which
make the left-hand side of (7) zero. Thus, there are precisely (27 —
1Y — N, I — 1) combinations of ,, &,,---,&, for which the
left-hand side is nonzero and hence e; must also be nonzero. Solving
(8) with the initial condition Ny{m, 13 =0 we have

Nym, D =2""(2" — 1Y +(-1Y@™ — 1), (9)

Lemma 2 is a generalization of the result presented in (4). To
show this, we note that for the [, n — 1, 2] Read-Soicmon code

with n = 2™ — 1 {8]. The weight distribution of this code is given
in {4). This can be seen 10 be a special casa of (9) as shown below.

From (4), one has
! _
[EMH—I—;} _ 1}
;

n
A(D =
{
n f—=2 _ f—1 o
Q7" -1 (-1 a2
[ p J

'
= ( )(2”‘ Vi (A DAY S
: _

n . .
= PR (AR RS (R I gy 5!
[

H
- N(m, D.
I

Thegrem 2: For any m-bit MISR with a primitive feadback poly-
nomial and any test langth #, (g = 2™)

=2
> -1y

;=0

(10)

n--

27 p 5
L fLL
2”*-1) ‘ (11

( ’:) Ny(m, ) for all

Pu=2" [1 =2"(1—p)" + (27 = 1) (1 -

Proof: From (1)) we see that A(]) =
n. Using this in (3} one has

=3 (7) (35)

A =-p 27" -+ (-10Rm -1, g=27

—rm m n moo- 'i_ Zmp "
=2 [1—2 (1-pY +{2 —1)(1 2‘"-1)}'

Q.E.D.
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3 : . TABLE II linear eauations over GF(27) - Sl ;

_ H.,LL!.S.IHG PROEABILITY FOR SINGLE MISR ' SR
o m _ o N T
- v . - Py ) E"1ﬂ?' +E1E£ -+ - -:-E’;l:r“ 0 ;_ -.._ ;
- 32 Tesls- 15 Tests R Tests SRRl 2 T [13} ;:‘;‘:i £
0.01 | 2694 x 10~2 | 6.401 = 10-* | 1.791 = 10-* s et +E?B‘ c+eft =0 R |
0.05 E-lu‘rx lu:: 1.124 x 1[1:: 3.791 x lu*: 'whr:re (i <iy< --- <§) and o and 8 are pnrmtwe roots fﬂf _:: ‘ ;
. 01015353 x 107 | 2.926 x 107" | 1.229 x 10° the feedback puiynnmlals of the MISR’s (o # .::J Bt # .6-'(:1 ;z Bt M

0.20 | 6214 x 107 | 5.295 = 10~7 [ 3.223 = }10-7 0, mo__- SR |
Lje{0,1,---,27 -2, -'":"'uf‘i-'
Lemma 3: D 5

cu Np(m, )= (@7 -1+ p7N@" -1 +a) as
el e 4

whera _ h N

1 r-bits (=D@HDDm _ 1y [ odd: - PESTat

= ", - ST (15 ~ !

- (=D — 13, { even. : 1

MISR-1 MISR-2 Froof: One can select f —2 of the coefficients e, @4, -, ¢/ :

— _ arbitrarily. One can rewrite (13) as follows:
P1(z) (m-bits) ¢+{z} (m-bits} _ ST
Fig. 5. Using two MISR's for signatre analysis. e’ feja? £ gt = ' g )
B texft kb it =g 3 Fef. o (16)

C'amﬂﬂr:y 2: hmm_.m‘,,_,m(P., —2_‘“) = (. (12)

Table H shows the aliasing probability for a 4-0I.1tput (m = 4)
circmt. It may be observed that finding an optimal number of tests is
a two-dimensional optimization problem. For a given fault coverage,
an efficient set of tests will atempt 10 maximize p. However, in
general smaller values of p lead to lower aliasing as well as fewer tests
lead to lower aliasing. Therefore, one needs to find the combination
of p and number of tests that leads to the lowest possible aliasing
pmbabﬂlty P,. For ﬂxample for a given CUT if

Test Set Test Set Size

P
T, 32 0.01
T, 16 0.05
T - 8 0.20

one may select the test set with 16 tests because it produces the
lowest aliasing.

C. Midiiple Signatures

Consider the use of two MISR’s to obtain twa independent sig-
nature§ concitrrently. Below we present the aliasing probabilities for
the case of two mi-bit MISR’s with feedback polynomuals ¢,(x) and
P2 (X1 (x) 7 $2(x)) of degree m (Fig. 5). Let ¢ (x) and $y(x)
both be primitive pﬂljrnurmals with rocts o and 8, respectively. In
the following we shall assume the 8 = o where 5—1and 2™ —1
are mutually prime,

First, it may be noted that for # = 27 =1, {x +a)x +§) divides
x" — 1. However, this 15 not necessarily true for any 7 < 27 - 1.
Hence, for any o, 8, and n the cﬂrrespundmg codes are neither
cyclic, nor Reed-Solomon. Also, since « and £ are as defined ahﬂve
thé codes are not necessarily MDS, The weight distribution for ﬂ'lf:Sf:
cod€s cannot be obtained as a direct consequence of well-known
results about MDS [8]. Cnnsequenﬂ}' the aliasing probability P, in
this case is not unpl:clt in the known coding theory work. Coding
‘theory results can be used only whea n = 2™ .= 1 and specific «
and '8 so that one has a MDS code to derive an exact expression
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This can be done in {27 — 1)‘r ~2 ways. The:n er_yand ¢ needtobe .-
selected such that they satisfy (16). As we have assuried that A=a

where s —1 and 2% — 1 are routually prime, ¢,_, and e, have unigue

IJ__'_

o't

ﬁif —1 ﬁh‘
m:-nsmﬂfular when the abnve cnndumn 15 satisfied. By definition one
has n,{m, ! — 2} solutions to (13) were ¢, ) = ¢; = 0. Let 6(/) be
the number of solutions where cither ¢,_, = 0 or e; = { bur not
both . Hence, we have |

values This follows fr{:-m the fact that the matrix

na(m, 1) = (i‘“' S - m(m, = 2) - 5{'15' .
This follows from the observation that n,(m, /) represents the num-
ber of solutions in which all g;, 1 < <{, are nonzero in (13) and

6! 2 0. Substinuing for n-.(m ! —2) one has

ma(m, ) = (27 — 1f ™2 = (2" — 1) ~ (30) — 8¢/ ~ 2)).

Now, &{f —2) < &({). Hence, 8({) —&(/ —2) > 0. Therefore, one can
drop the term 6(/) from the recurrence to get the upper bound
Na(m, ) = (27 =1 — Na(m, T —2). (17)

Note that the above recurrence holds due to the special structure of
8(1). Since Ny(m, 1) = Na{m, 2) = 0, solving (17) we have (14)
where A is as given by (13). |

Theorem 3: Letthe CUT have m output lines and the compression
of test responses is implemented by two primitive m-bit MISR’s.
Then for any test of ]E.n'ﬂ'th n<2”™ — 1 we have fur LhE ahasmg

probability
!
— n—f
( 1) (1 -5}

Py < Z
{{2’“ '—i) + n'em —1)1 +a] {18)
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- ..sponse of a 4-output ¢ircuit. The aliasing probabilites EI‘E ﬁi{en for

-§ " two different test lengths. it may be noted that the’ aliasing proba-
§ - bilides are lower than in Table IT when only one 4-bit MISR was
'} - used (see Fig. 6). Note that the allasing probability for two MISR s
is greater than the square of that for the single MISR case. This is
due 1o the fact that the second MISR produces nonzérd signatire for
a number of errér vectors which zre alréady detected with the first

a

et
X

b B - = - 1
- E

—=""Now Comparing the two sépafate MISR scheiies to 4 single MISR
- scheme of twice the size the following may be noted. First, the single
T MISR producing 2m-bit signamre will require longer feedback paths
-than required in two separate m-bit long MISRs. S¢cond, errorg of
. small multiplicity may case aliasing in the single MISR schemé but
© . not in the two separate MISR schemes. For example, Ni{m, 2) =0
" whereas Ny(m, 2) =0. Thus, all errors of multiplicity two ‘will not
~ cause aliasing in two MISR schemes whereas some may alias in any
__single MISR scheme. - - ot A
m1) Mudtiple MISR’s and Reed-Solomon Codes: 'We note that
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“This result can’be fé'_itéﬁ&;g .@:rl_'nuki‘ﬁie‘ MISR’s &éé;l-glﬁﬂhﬁﬁhj
sponding to Reed-Solomon codes “Thealiasing” probability in this

MISR’s."It may be thas noted that {20) is upper bounded by ‘our -
Theorem 3. Thus, Theorem 3 also provides a coniribution o cading

frby LS

NP R DL TaTTomE T e T eyt e Pt ST Tk
>=MISE alone. e 0.5 e N e e et L S ) T e T
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i ) N2mi 1) is the weight distribation ‘of the

‘erated for n = 2™ — ] is the maximum distance ‘separable and its .

.ol L. T .y, R b e b= S s = ol S S —tm
case for' n = 27 =1 can be cofputed eXactly for any numbér of -

-~

; ~~ Closed form txpr:r;_sinﬂE'qu‘@SR aliasing probability for arbi- -
%3~ trary test lengths had not been available. This paper presents single
~ . and multiple MISR aliasing probability expressioas for arbitrary test

lengths. A framework, based on ‘alsebraic codes, is developed for
the analysis and synthesis of MISR-hased test response compressors

- for BIST. This framework is used to develop closed form expres- " -

sions for aliasing probability of MISR for arbitrary test length (so far

~ only bounds have been forranlated). A new error model. based on

g-ary symmetric channel, is proposed using more realistic assuimp-
tions. Results are presented that provide the weight distributions for
g-ary codes (g = 2™, where the circuit under test has m outputs),
These results are used to compute the aliasing probability far the
MISR compression technique for arbitrary test lengths. This result
1s extended 10 compression using two different MISR. It is shown
that significant improvements can be obtained by using two signature
analyzers instead of one. This paper makes a contribution to coding

 theory as well. It provides techniques for finding the weight distri-
bution of a class of codes of arbitrary Tength. Also formulared is an
expression bounding from above the probability of undetected error
for these codes. The known results for the distance-3 Reed-Solomon

. ¢odes over GF(2™) become a special case of our results. Further
results and 2 general model for LFSR and MISR compression witl
appear in [10]. - s Ehe i
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