COMPUTATION OF DISCRETE FOURIER TRANSFORMS QOVER FINITE ABELIAN
GROUPS USING PIPELINED AND SYSTOLIC ARRAY ARCHITECTURES*

M. G. KARPOVSKY®** E. A. TRACHTENBERG,*** T. ROZINER **

** BOSTON UNIVERSITY, COLLEGE OF ENGINEERING, BOSTON, MA 02215
*** DREXEL UNIVERSITY, DEPT. OF ELECTRICAL AND COMPUTER ENGINEERING,
PHILADEI PHIA, PA 19104

ABSTRACT

The paper discusses two methods for computation of Generalized Discrete Fourier
Transforms (GDFT's) over finite groups in a multiprocessor environment. We note that GDFT is
simply the multidimensional DFT if the underlying group is Abelian. We use a precise algorithm
for GDFT computation by a multiprocessor SIMD systemn with local non-shared memory.
Tradeoffs between hardware complexity and computation time are established for unibus and
complete communication networks. Bounds on the number of operations, data transfers and
comrmunication links are presented. The GDFT algorithm is then implemented using a pipelined
architecture. Bounds are given for numbers of opetations, data transfers, delay of the whole
pipeline and clock period for unibus and compleie communication networks, In order to use
standard systolic arrays for GDFT computation, it is necessary 10 consider its direct computation
instead of the sequential FFT-like algorithm used for the pipelined architecture. In case of Abelian
groups we discuss such efficient systolic array implementations of GDFT which can be made

adoptable to the structure of the underlying group, and we estimate their overall speed and
hardware complexity, |

1. INTRODUCTION

Recently, there has been an increasing interest in implementing different types of algorithms
on systolic array structures, because these architectures are extremely suitable for VSLI technology
[4-6]. Discrete Fourier Transform (DFT) is widely used in signal and image processing in the
analysis, synthesis and optimization of linear time invariant systems {1-3]. H_nwever, the
corresponding fast buterfly-like algorithm is inherently sequental. That restricts full niilization of
parallel computations and systolic aray architectures for real time applications. In [1] 2 method
was presented for an optimal implementation of Generalized Discrete Fourier Tranform (GDFT)
algorithms over finite groups in a multiprocessor environment. A SIMD muttiprocesor systern
with local non-shared memory was used and tradeofs were established between computation time
and hardware complexity for unibus and complete communication networks. In the next section
we present that algorithm together with bounds on the number of operations, data transfers and
commurication links. It is shown that using non-Abelian (e.g. quatermion) groups resulis in the
optimal (i.e. fastest) GDFT performance. In section 3 the GDFT algorithm is implemented using a
pipelined architecture. Bounds are given for numbers of operations, daia ransfers, the delay of the
whole pipeline and the clock period for unibus and complete communication networks. In section
4 we discuss implementation of two-dimensional GDFT (when the underlying group is a direct
product of two cyclic groups) by a systolic array. Such an array consists of identical processing
elements (PEs), where only the neighboring PEs are allowed to communicate with each other. The
PEs are identical in the numnber of input/output lines as well as in their intemal structure. In order 10
use standard systolic arrays, it is necessary o consider direct GDFT computation instead of the
sequential FFT-like algorithm used for the pipelined architecture. Also in that section we consider
an approach to efficient systolic array implementations of GDFT which can be made adoptabie 10
the strucutre of the underlying group G=GxG5, where G,,G are arbitrary Abelian groups.

* The work was supported by the Office of Naval Research Under Naval Research Contract
N0OO014-87-K-0735 and by the Nationai Science Foundation under Grant ECS-8512748,

2]

Mo

2. COMPUTATION OF GENERALIZED DISCRETE FOURTER TRANSFORM {GDFET).

Given a set {0,1,...,N-1} of N integers, let G be an arbirary finite group of order N imposed on

it. Let Ry, be the 't irreducible vnitary representation of G of dimensional d,, The set { Ryl =G
of all these representations is called the dual object of G and its elemenis constitute an orthogonat

basis in the space {f: G—C), where € is the field of complex numbers, The direct and inverse
Fourier transform over G are defined as follows

?(m1=1~r'dm%fci)nmci“:n. RoeG; r-:i}=é;rramc?(m1 R, ().ie G; (1)
¥ G

where { (@) is a (d_ x d) - matrix over C.

The transform (1) has the usual properties of ltnearity, group transalation, convolution,
Plancherel and Poisson theorems, etc., [7). Without loss of generality, consider the computation
of the direct transform only. We note that the algorithm described in [7] computes (1) in at

m-§
most Ny T, computer operations using N memory Jocations for intermediate data storage

=i
in case when G is a direct product of groups Gj {(of order nj}, G= H Gj, 0<j<m-1,

i
N=n,n, I . Weare going to consider a precise fast algorithm [1] for computing (1).
Naturally, (see Table 2) it is always much faster than the upper bound discussed above.,
i m=}

Let x = (xgXppeenky,) € G, x,€ G, 05jS1. For R,e G we have R (x) = 2 R, (),

where R, € 6j . & stands for Kronecker product of matrices and @ = (mn, W5.0 5003,
J

In that case we have by (1):

A d m-
f (@) = B0 Oy e es B 3) = T % ;Z f(xo.x,,---,xm_l)gl Rﬂ,j(ljl)
n)

d

-2 Y [,_.g[gﬂxo,xl,_..,xm_l)ﬁkn{xal}3--.]E*Rm_l (x;il)m . (2)

mrl

The calculation of spectrum f(m} is performed in m steps (Step j over
Gp Osj<m-1). For Step ji £, (00,0 @X,,)X)= E;" fj(mo,ml,...,mj_I,xj...,xml)@p_mj xh.
3

The algorithm, described in [1] is based on that m-step procedure. In step j, ij subsets of
which contain n; elements of input data f(0), £(1),....f(N-1) are used for the butterfly algorithm of
the constituent group G;- Denote the numnber of operations needed to perform the algorithm of G;

on a single input data set (one out of Ninp as L (Gp. (In general, the algorithm is characterized by
a pair of numbers - the number of additions/subtractions and the number of muliiplications. We
shall assume L((3;) is the equivalent number of additions). A variety of examples of butierfly
algorithms is given in [1]. The numbers L{G) for some groups are given in Table 1, where Cy
stands for the cyclic group of order N with respect to addition mod N, S; denotes the symmetric
of order 6, and Q, denotes the quaternion group of order 8,

Groups Co Ca Cs Cg 33 Q& |
Additions 2 7 8 24 14 20 ;
muluplications . 4 - i0 4 . :

Table 1: Computation of Fourier transform, Single Processor

To perform the spectrum calculation over G=GgxGx...xG,,.; by a single processor, L(G)
operations are needed:

I nx-1 1 LAG.)
uﬁj=iucj)ﬂ n.=N ’
¥0 =0
1)

7 N,

(3}

In Table 2 bejow we-

summarize and compare computation of the

Fourier Transform (1), (2)

using the direct method, the upper bound algorithe [7] and the precise fast algorithm [1],
Chroup
c 2
Algoritm 3 t:! 53 < s3 * Q, R, = Q,
- e 64 &4 36 64 2304 4056
mulipl.
54 0 | 36 0 2304 0
NEa ol 48 48 n.a. n.a 6712 | 1024
11 myuip,
48 a n.a. T.L. <8)
L(G) ndd 24 24 14 20 334 IR4
by (3)
mulpl,
10 0 4 o 32 0

Table 2: Comparison of Fourier Traasform Algorithms Single Processor

Consider > 1 processor working simultaneously on the ordered data {0, £(1),....f(N-1),
x€ G, x=(X0. X1, X 1), xi€ Gj; , 05jSm-1. The order is established by the following rule: xqis
the most significant position and Xm-1 18 the least significant position and the Carry Over in position
J 18 modulo ny, where I; is the order of Gj. In that case, by (3)

@)
3+ L (G,
N g (%)
70 j
However, for the number of processors n>1, the data transfers among the processors are needed

(at Jeast in one of the algorithm steps}. Therefore, the total time T¢0) (G) needed for spectrum
caiculation over G with n processors is:

™ ©)=1" ©.u + M” ©).1. ©)
where t, is the time needed for one addition/subtraction, tc 1s the time needed for one data transfer,
and M®) (G) is the total number of transfers needed for spectrum calculation. The value of M)
(G) is not only a function of n and of the group structure for a fixed N; it depends also on the type
of the processor communication network. We will consider two “extreme” communication
nerworks: the taxi and unibus connections. In a taxi network, each processor is allowed to

commmnicate {0 any other processor during the communication fime te. The network requires a
large number of links and M®) (G) is, of course, minimized. In a ynjbus network al] ProCessors
cornmunicate through a single bus. Hence during the communication time t_ only one data transfer
I5 allowed between two selected processors. We assume that:

(1) Each processor has Jocal memory but there is no global shared memory.

(11) There are no idle processors at any step je {0,1,....m-1) of the algorithm which means

that n.n; divides N for alt j's.

(iii) The ordered input data f(Q), f(1},....f(N-1) are entered inio Jocal memories of 1

processors in blocks: the first N/, elements are given 1o the 15 processor, the next N,!n

elements 1o the 2M_etc,

1.7 (G) = LG) _

TL

(iv) At any stage j of the algorithm, any set of nj elements is delivered 10 a single processor,

: : ing the

je¢ {0,1,..., m-1), Even though that requirement is Tot necessary for executing

'ngc{:rithm it maybe shown (1} that its violation resulls in drastic increase in both the number

of transfers and the number of total computations. ‘ _
Under these assurnptions, (5) was evaluated analytically for an arbitrary group in [1] and tj}'u:
decrease in execution time was calculated due 10 use of n processors as ¢ oasingle
processor. The relative speed-up due to n processors depends on the ratio L/t, which charactenzes
the speed of 1he bus, It was shown in [1] that the bus must be sufficiently fast (1.<<i,) 10 have an

affect on the increase in the number of processors. For example, for G=Q5 x (; and for a unibus

connect i in only about 18%
ection, for k=15 doubling the number of processors (from 4 1o 8) results in
of overall execution time dacregase. Sirmnilar results were obtained for any other group,

3. PIPELINED IMPLEMENTATION OF FOURIER TRANSFORM

Consider a pipelined impiemention of the Fourier transform on G = Gox Gy x..x G.; by
multiple processors. The algorithm (2) is implemented under the assumptions (i) - (iv). The
pipeline is an array of n=m+N processors depicted below. The "width” of the array is N and N
data poinis f{0),...f(N-1) are entered simulianeously from the left into the 15 stage of N

processors that compute the Fourier Transform over Gp. The "length” of the array is m since there
are m stages in the algorithm.
Siage 0 1 esevnese ml \
-

)
/ *. o snonas -\
1(1) ® ®sret0e 49— QCES50TS g
g]ﬂl:;;jl : "Wiﬁﬂ]"=N ® Py 0uss a ./ . {}ulplﬂ:
N g?ﬁ:ﬂ ® @eservs @ . zﬂnﬂnls
. L
EJEII]EHIS{ ® ®rsovrns @ : >§£nerahzed
nt S4B SO BEGIIDR SR * Spectrum
»
L
fN-1) ‘,' LI -
‘ HI Eng:h“ = 1m h‘/

or number of columns (stages)
Figure I: Array pipeline for group G=GxG1x..Gp.1

At the stage j (0<j<m-1), the intermediate spectrum on G; is computed by the jth column of
processors. Each processor in column j adds nj numbers. It also may have to do some
multiplications, depending on the Gj, sec e.g, Table 1. Since Rmﬂ (X)=lforanyxe Gj, the

number of multiplications is not larger than 1;-1 for each processor. It can therefore be shown
that the total number of operations (both additions and muttiplications) and of transfers satisfies
1

m-]

. -1 R m- :
D, m-1)< L™ (G2 > (n-1), M™? Gy =N >n (6) 3

The delay of the whole array pipeline (i.e. time from the moment of mput of N elements of data up
Lo the moment of obraining the N elements of the Spectrum output) 1s given for the unibus
CONMNeCtion as:

m) {m+N)

m-] m-1
D {G}zTuihu (G)= ; (nj-I)- (t‘+tm}+Nz n;~t, {7
JI

where t, is one addition time, try 1S ONE multiplication time and t, is the communication time. Jn
case of a taxi connection, when all processors can communicate simultaneously, the number of
transfers for stage j is nj, 15j=m-1 because each of the N processors at that stage transfers its

output to n; different processors of the next stage. No transfers are needed at stage 0. The delay is
gvaluated as follows:

m-1 ol
Dt @ =T, @S 3 Dt 1 + [gnj) .. @
]

account the normalization of the spectrum which can be done after the last Stage,
Example: G = C41C4, m=2, N=16, n,=n,=4. The number of processors n = 32. It follows

by (1) that for C, we have: 1(0) = HO)+H()+(2)+(3); 1) = fOX+if(1)-£(2)-if(3);
12) = {O)-H(1)+£(2)-£(3); 13) = f(0)-i(1)-f(2)+if(3),i = ¥-1. At Stage 0, the data (0) 10 1(3)

is broadcast to processors § 1o 3, data 1(4) o 1(7) is broadcast to processors 4 10 7, data f(12)
io £(15) is broadcast to processors 1210 15. Also, at Stage @ three additions/subtractions are
performed simultaneously in each of the 16 processors {we do not take into account muliiplication
by) as follows:

in Processor 0: ;‘0} = K(O)+F(1)+(2)+(3); in Processor 1: 1(1) = (OME(1)-F2)3);...

in Processor 4: 1(4) = fd+f{(5)+{6}+i(7);...; it Processor 15: ?(15} = f(12)-if(13}-F(14)+if(15). :
At stage 1, the input data for each processor are chosen "skipping over ng=4" that is, each of the 3
16 processors from stage O performs four transfers. |

Fm-ﬁ
“'Fl lﬁ LR 19 m P E a4 e 23 31

ers from
at -
ge 0 048102 |°°° | osm12 | 1,59.35) 777 | 1,591 T1LIS fees | 3,2,IL,15

In each Processor of Stage 1, the number of additions/substractions is also ny-1=3. The total

1
number of operations 1s Z(nj-l} = 3+2 = 6 and the {otal number of commumcations
3=0
is 16+4 = 64 = Nen, for a unibus and 4=n, for a taxi comnection. The pipeline delay is
6t,+64t_ for the unibus and 6t,+4t_ for the taxi connection. The number of required
communicaion inks for the taxi connection is Nen, =64.

In conclusion, we note that the ¢clock period of the array pipeline is:

T b S max { (nj =13 (L +t)+ H-nj-tc). T, = max { {“j"l}'(‘;""m} + 0 et - (%)
J A

To avoid having bottlenecks in the pipeline, it is reasonable to form G as a direct product of groups
of the same type.

4. TITMPLEMENTATION OF TWO-DIMENSIONAL DFT BY A SYSTOLIC ARRAY.

iillﬁﬂil
Let G = C,xC,,. Then Rﬁlj Syl =Wy , W= exp(2n/-1 /N) and by (1):
i MN-1 M) ii}‘lﬁén N1 il]l
Hiigd=) 3 KU Wy ' T 5 PG, i IWyg (10)
N-1 ids
where 1-"'(13L.iﬂ]|=1z-'6f(11 .lo) W: . (il)

It can be shown that algorithm (10), (11) can be written in the form of a FORTRAN - like
program as follows,

Procedure 1.
DO 10 k; = ON-1
DO 10 ko = 0N-1

Pﬁ(l, kz, -1) = (ll'ﬂtlalll‘ﬂ)
DO 20 k, = 0, N-1
f(kli "11 ka) - ffkia k})
fk;, ki, k) = £ K1, k) "

L POyl k) = Pl del) + Mok Wy
20 CONTINUE
D030 k=N, 2N-1

foc-N.k,-1)=0 (initialize)
Pk, by, ky) =Pl ko k1)

kgt T g b1 Py b

30 CONTINUE

10 CONTINUE
This program may be obtained according 1o the accepted method [6] and it is suitable for
systolic/semi-systolic implementation described below (see Figure 2). Note that in par I the index
k5 stands for the mumber of steps of accumulation of 1(», *) in the right hand side of (10) whercas

in IT the index k, has the same role for mespac:u'um?(-, +} in the left hand side of (10). The
dependence matrix for the Procedure 1 is

D=0 ¢ 1
i 00 IE
0 1 0k
f P f
The method developed in [4,6] is based on the idea of a nonsingular space-time mapping T of the

index set (ki.k2,k3) which maps a given problem to many possible systolic designs. That s,
D=TD; (1 5, sl)T = T(k1 k2 k_J)T . D is the new dependence matrix and (1 s, sl)T is the new

index set, where 1 is the time coordinate with inieger values 20; s, s, - the row and the column

number, respectively, of the processing element PE, y in the systolic aray. One possible design
for the (NxN) DFT requires N? PE*‘:#: , { moves through the array by s, t north to south)

P accumulates in the PEs dunng N array clocks and 1 moves by s, ("west 10 east”).

during N array, clocks and f moves by s, ("west to east”). And for this design we have

f P1
1 1 1 I 11

D=11 o 0 S, T= [0 1 0l; t=k4k+k, 5 5=k, 5, =k, (12
0 0 s 1 0 0

1

Figure 2 illustrates the performance of the array for N=2.

Inpeat A
P 100} =Ry + Pm

§ A
‘ —""1 f{ﬂ,l} = Pﬂl -+ Pl].

_ 1=2 (1,1 L A

time in e = — — o= 0 £(1,0) = Pyy- P

array t=2 (0.1 £1,0) . oL
clocks t=0 (0,0 f(1.1) =Fy;- Py,

Pm = £(0,0) + £(0,1}

Pp1 =H0,0) - 10D I—’
Ro =1(10) + £(1,1} I
|

B, =fL0)- f(LD)

‘ fa,0 | foo

l
t
|
| |

| . |
l f‘u.nl ﬁﬂ.l;l

U~ v Bl =3 =

-

|
|
= =4 1=4 1:3

-‘_—- — ﬁMiﬂ. lmy I:-lmk!
Figure 2; Systolic array of 4 PEs for 2x2 DFT

Each PE of the systolic aray is a "double” multiply-add cell that caiculates in paraliei P — and
? - values. The PE, ; is activated in the beginning of the array operation on array clock

nummber (sq + $) (the first clock is referred to as clock 0). During the first N active clocks, the PE
performs only one multiply-add operation accumulating vatue of Py x After that, the calculated

value of P; s is stored in the internal storage register during next N clocks; on each one of these

clocks, the stored value of P, 0 is used in multiply-add operations generating the values of the

elements. In other words, after the first N active clocks, two operations occur in parallel
in each PE: muttiply-add operation with input data f and multiply-add operation with the stored
value of P, 5 10 caiculate in N steps the values of the spectrum. Figure 3 shows the general

structure of the PE for the systolic array described above. The PE has the built-in counter, to
calculate "the local time" modulo N, that is, to control the proper liming of the values P 6

to be accumulated, stored, or changed to a new value, Noie that instead of the multipliers
operating with the powers of Wy, the CORDIC rotation modules [8] can be used since the
multiplications performed are rotations in the comlex plane. The CORDIC module uses only
addition/subtraction and shift opcrations; having the same throughput and complexity as the
complex multiplier, it occupies less space in a silicon chip. However since a standard CORDIC
module performs rotations in the range of (-900,90°) only, additional hardware wouid be needed
for the Totalion angles outside this range. The hardware complexity of one PE (in terms of the
equivalent number of two-input gates) for the general case of N2 DFT (N = 2" and the data lines

have 2r bits) can be evaluated as:
Lw= Lo(myn) =602 - 3n + 2% (n-1) + 4(2°-1) + 4872 + 100r + 294[% + 158[fﬂ- nz4 (13)

The total complexity of the array of N2 PE's is L{N2) = 22" Lpg; the clock of the array is C=(416
+ 311)-tg, where tg 15 the average delay of one gate; the total hardware x time complexity is
H=L{N?) x C x N. Note that the number of 10 pins of one PE is 4n + 12r for 2r - bit data lines,
where n=1ogoN. Table 3 shows these complexity parameters for r=8 (16-bit data lines).

Number of pins

n N2 Le L C H per PE {data lines only}
4 256 5866 1.50x10% 428 L.33x1010 112
5 1024 6747 6.91x106 431 3,522 1010 116
6 4096 8218 3.36x107 434 g 3551011 120

Table 4: Complexity of Systolic Arrays for NxN DFT, n=log;N

Note that the throughput of such an array is one spectrum set (N2 values) per N array clocks.

E =k
1 1], *dk

2
H‘ l

motn bt med W
¥° Poltg T4 Tk) madN
l I 2% 21 ROM

T’

o U R PREL o L5

aPW 5153y
.

Re f o
'y

* g

)
Fo.
) 2
Im t &
-

T,

Figure 3: General structure of 2 PE for NxN syalolic array (f moves by 5, P accumulales, t moves byr,)

Finally we outline our approach 1o the adaptation of the systolic array 10 any given group G. This
can be achieved by adopting the PEs. We will illustrate our approach by a gcsi gn%f apsysmlic
aTay which can be adapied to any group G=G, x G,, where G,, G, € {C,.C,.C ,....C _,}and

2 2

k=2%1. The design for a processing element is given in Figure 4.

PR iy il =y = _
P . ey N Y e

A T ke e Bdel” P b 1=

. om - n' 1
' N |
J—fr 4
»yY h 4
. ASTRY
Multiplicr
k-1
i,
i1.1]
) - s foer
1
7%
2h
'
. 1
_ 11 11.2
’.I e
’ & e
= a
1y IIJ 2 + iy 1: '
w
=xp ATy
| Multiplier
From the previous PE, -;.
Auckcler +b
r 7.3
r k r
next
e

Figure 4: Adaptive Processing Element, G=G1 x Gj.

For this designi = (i,), fpe Gpo 1,6 Gy, 1= (g) lg€ Gpoly€ Gy, iy = ignernil™,
= Gy 0l = Qg Dy = Qe i 85,10, 1 € 10,13, W = exp Qa2 ™),
and a shifter with the left input p computes a product by 2P. Total rumber of inpait/outpui knes for

@ processing element is 4k+logy (k+1) + 3r (@=logy (k+1), r- is the number of bits in data). To
adapt this processing element to G = Cya x Cyb, where a,b € [0,1,....k-11, one should set

. k-1-a O ka1l , .0 kb1 0 k-b-1
==y =l =.=]) =0,11—...-1 --11—...---11 =Uarﬂsn-k-a-1,sl-k-h—l.

1
A similar adapeation technique can be used in case when G is product of more than two
groups,

5. References

1. T.Roziner, M. Karpovsky and E. A. Trachtenberg, "Fast Fourier Transforms over Finite
Groups by Multiprocessor Systems," IEEE Trans. on ASSP, (To Appear, September,
1989).

2. E. A.Trachtenberg, “Fault Tolerant Computing and Reliable Communication: A Unified
Approach,” Information and Compuiation, 79, 3,pp. 257-279, December, 1988.

3. E. A.Trachtenberg and M. G, Karpovsky, "Optimal Varying Dyadic Structure Models of
Time Invariant Systems,” Proc. 1988 Int’1 Symp. on Circuits and Systems, pp. 1111-1114,
Espoo, Findland, June, 1988.

4. D.L Moldovan, J. A. B. Fortes. "Partitioning and Mapping Algorithms into Fixed Size
systolic arrays”, IEEE Trans. Comp., vol C-35, 1, pp. 1-13, Jan. 1986. |

3. W_L. Miranker and A. Winkler, "Space-time Representation of Computational Smuctures”,
Computing, vol. 32, pp.sssdd 93-114, 1984,

6. DI Moldovan. “On the Design of Algorithms for VLSI Systolic Amrays®. proc. IEEE, vol.
71,1, pp. 113-120, Jan. 1983,

1. E. ATrachtenberg, M.G. Karpovsky, "Fourier Transforms Over Finite Groups for Error
Detection and Error Correction in Computation Channels”. Information and Control, 40, 3,
pp. 335-358, March 1979,

8. A.M. Despain. "Fourier Transform Computers Using CORDIC Iterations”. JEEE Trans.
Comp,, vol. C-23, 10, Oct. 1974, pp. 993-1001.

