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Abstract

There has been a massive increase in research interest towards applying data driven methods to problems in mechanics, with
particular emphasis on using data driven methods for predictive modeling and design of materials with novel functionality.
hile traditional machine learning (ML) methods have enabled many breakthroughs, they rely on the assumption that the

raining (observed) data and testing (unseen) data are independent and identically distributed (i.i.d). However, when these
tandard ML approaches are applied to real world mechanics problems with unknown test environments, they can be very
ensitive to data distribution shifts, and can break down when evaluated on test datasets that violate the i.i.d. assumption.
n contrast, out-of-distribution (OOD) generalization approaches assume that the data contained in test environments are
llowed to shift (i.e., violate the i.i.d. assumption). To date, multiple methods have been proposed to improve the OOD
eneralization of ML methods. However, most of these OOD generalization methods have been focused on classification
roblems, driven in part by the lack of benchmark datasets available for OOD regression problems. Thus, the efficiency of
hese OOD generalization methods on regression problems, which are typically more relevant to mechanics research than
lassification problems, is unknown. To address this, we perform a fundamental study of OOD generalization methods for
egression problems in mechanics. Specifically, we identify three OOD generalization problems: covariate shift, mechanism
hift, and sampling bias. For each problem, we create two benchmark examples that extend the Mechanical MNIST dataset
ollection, and we investigate the performance of popular OOD generalization methods on these mechanics-specific regression
roblems. Our numerical experiments show that in most cases, while the OOD algorithms perform better compared to traditional
L methods on these OOD generalization problems, there is a compelling need to develop more robust OOD methods that can

eneralize the notion of invariance across multiple OOD scenarios. Overall, we expect that this study, as well as the associated
pen access benchmark datasets, will enable further development of OOD methods for mechanics specific regression problems.
2022 Elsevier B.V. All rights reserved.

eywords: Machine Learning; Out of distribution; Regression; Covariate shift; Mechanism shift; Sampling bias

1. Introduction

Traditionally, the mechanical behavior of macroscale heterogeneous solid materials is obtained through laboratory
xperiments, or by simulation methods such as the finite element method (FEM) [1–4], while the mechanics of
maller length scale structures can be obtained using molecular dynamics simulations [5,6]. These methods are
enerally accurate and reliable, but can be extremely time-consuming and computationally expensive if there exists
large parameter space to search for an optimal design that maximizes specific functionalities and properties. Both
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human intuition and expert knowledge in mechanics can accelerate this process, but expert knowledge is expensive
per se. Thus, to make the material design and analysis process more efficient and broadly accessible, there has
been significant recent interest in applying machine learning (ML) methods to mechanics [7–13]. There are several
compelling reasons why ML methods have become a viable approach for addressing mechanics problems. First,
by learning from an existing collection of data samples, ML methods have shown the ability to accurately predict
material properties[14–26]. Second, because it takes only seconds for a trained ML model to predict the target
properties of thousands of new samples, this significant savings in computational expense enables the rapid and
efficient exploration of large design spaces in search of new materials, material designs, and structural designs [27–
36]. Third, as a data-driven method that makes predictions by statistically learning the correlation between input
feature vectors and the target outputs, ML methods do not require any preliminary expert knowledge for either the
learning or prediction processes. Fourth, the accuracy and reliability of a ML model can be continuously enhanced by
adding more data through modern techniques such as active learning [27,34,37,38] and reinforcement learning [39–
42]. Finally, these ML methods are often transferable such that a ML model trained on a large dataset often only
requires minimal additional data when being adapted to a new yet related mechanics problem [43–45].

Despite these significant benefits of ML methods, there are many fundamental underlying challenges to be
esolved before their potential can fully be realized in the context of mechanics problems. One of the most important
roblems is that the excellent performance of ML models on test data is established on the assumption that the
raining and testing data are independent and identically distributed (i.i.d) [46–48]. However, the data distribution
f test environments in practical mechanics problems is usually unknown, and in general the data distribution of
est environments and the training environments is not guaranteed to be i.i.d for practical applications. Generating
he ML model to test environments for which the data distribution is not identical to the data distribution of the
raining data that the ML is trained on is known as an out-of-distribution (OOD) generalization problem. While
he performance of ML methods on i.i.d. generalization problems is typically excellent given a sufficiently large
raining dataset, ML models have been shown to be very brittle when applied to OOD problems even for easy-to-
earn computer vision tasks [49–51]. For example, after learning from a training dataset with the majority of the
atapoints being blue-ish and a minority of the datapoints being green-ish, the accuracy of a ML model on a cat
s. dog classification task drops by more than 20% on a test dataset in which all datapoints are green-ish [51].
imilarly, when most of the cow pictures in the training dataset which the ML model is trained on are collected
rom common contexts like pastures and grassy fields, the ML model fails to recognize the cows in uncommon
ontexts like waves and beaches [52].

These results, and the results of many other studies [53–59], suggest that when unseen test data and training data
re not i.i.d, the predictions of a ML model built on this assumption should be called into question. Because material
esign through data driven methods requires exploring large unseen domains through learning on limited available
ata, the i.i.d. assumption will often be violated in this context [31]. With poor knowledge of the data distribution of
he unseen data, the poor generalization of ML models on OOD problems can lead to erroneous predictions on test
ata from unseen distributions and result in unreliable predictions, and in the context of material design, proposed
esigns that are far from optimal. For example, when designing composite materials with high strength and stiffness,
im et al. [60] showed that when the ML model is trained on training data with lower strength and stiffness and
sed to predict data with higher strength and stiffness, the prediction accuracy drops dramatically, resulting in being
rapped in local minima for forward material design. As one line of research, detection of OOD data is of interest
ecause it is related to the reliability of ML model predictions [61–64]. For example, methods following a Bayesian
pproach that measure the uncertainty of ML predictions have been applied to OOD detection [65–68]. In addition
o detecting OOD data, designing ML models that generalize better to OOD samples is an important new direction
or applying ML methods to problems in mechanics.

Recently, to improve the robustness and generalizability of ML models, researchers have designed algorithms
hat embed the prior known physics into ML models when the underlying physics of the training and testing
nvironments are similar and partially known. For example, the well-known approach of physics-informed neural
etworks (PINNs) embeds partial differential equations (PDEs) into neural networks during the learning process [69–
2]. In addition, equivariant neural networks embed known structural symmetries into neural networks, such that
he neural networks are robust towards the changes caused by permutation, translation or rotation [73–76]. Another
pproach, sparse identification of nonlinear dynamics (SINDy), assumes that a dynamical system can be described by

parsimonious model with few key items and parameters, which can be identified by sparse regression. Proponents
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of this approach argue that parsimonious models are able to maintain accuracy while preventing over-fitting.
Essentially, reducing the complexity of the model is a strategy to improve its generalizability [77–79]. Overall, the
methods listed here approach OOD problems by leveraging prior physical knowledge of the system and extracting
governing equations from the data. While these approaches are quite powerful, formulating predictive models in this
manner is not necessarily suitable for all problems. For example, these approaches often do not extend naturally for
making predictions on unseen heterogeneous domains. Alternatively, other recent works in mechanics have focused
on methods that improve the robustness of ML models to new domains by active or transfer learning [43,60,80],
which updates the current learned model by further collecting a few representative data points from the new test
domain. This field is referred as domain adaptation [81–83], which assumes that the data from the test domain is
available such that we can collect a few data from the test domain based on some available prior knowledge of the
test data distribution [46].

In contrast, OOD generalization, which is also known as domain generalization [46,84], considers a broader
ituation in which the ML model will be generalized to domains that are unseen and unknown. This unknown
istribution of future target datasets prevents us from augmenting the training dataset in a manner that is informed
y the characteristics of the new target domain. To improve OOD generalization without collecting new data, ML
odels are encouraged to learn the causal correlation between inputs and outputs that will not change from training

o test environments [85–88], i.e., stable correlations. This is because the failure of the traditional ML models,
.e. Empirical Risk Minimization (ERM) [50,51], on OOD generalization problems can be due to data being mixed
nd shuffled before training, which makes it difficult for ML models to learn whether a feature of the data is
table (referred to as “invariant”) or unstable (referred to as “spurious”) when the data distribution shifts from
ne environment to another [49]. Inspired by this, recently many methods have been proposed to improve OOD
eneralization by not shuffling data collected from different environments but instead learning the stable features
cross these environments (or domains) [46,84]. Specifically, these OOD generalization methods consider data
ollected from multiple environments, while setting two goals for a ML model trained on these environments.
irst, the ML model is trained to perform well on all training environments, which can be achieved by ERM by
inimizing the loss between the predicted value and the ground truth. Meanwhile, the ML model is also trained

o perform consistently across all environments, which is achieved by adding a penalty term to the loss function
49,89–91]. Furthermore, there are many other works that prevent a ML model from learning spurious features
y different approaches like distributionally robust optimization [47,92], game-theoretic ML [93], and selective
ationalization techniques [94]. Compared to ERM, researchers have shown that these methods perform better on
OD classification tasks like recognizing digits in the colored MNIST dataset [49], in which the color of a digit is

he spurious and unstable feature that varies across training and testing datasets.
While many methods have been proposed to improve OOD generalization, applying these advances to problems in

echanics is not straightforward for multiple reasons. First, the vast majority of the OOD generalization algorithms
ave been applied to classification, and not regression problems [89,90,95,96]. As a result, the performance of
hese approaches on regression problems remains poorly understood. Second, there are only a few distribution
hift benchmark datasets for validating the efficiency of these methods. To address this, Koh et al. [97] presented

ILDS as a benchmark dataset which is a collection of ten distribution shift datasets from different fields like tumor
dentification and genetic perturbation classification. However, all ten datasets in WILDS are classification problems,
hich is again an issue for advancing methods relevant to mechanics as regression problems dominate the mechanics
eld. At present, due to the unavailability of benchmark regression datasets with data distribution shifts, the
fficiency of OOD algorithms on regression problems is usually evaluated on synthetic data of artificially constructed
oy problems which do not fully represent the challenges associated with practical regression problems [98–100].
herefore, to address this gap in the literature, we perform a fundamental study of OOD generalization methods

or regression problems in mechanics. Specifically, we identify three OOD generalization problems: covariate shift,
echanism shift, and sampling bias, and develop two benchmark problems for each problem based on extensions to

he Mechanical MNIST dataset collection, with access information given in Section 6. Our experiments show that
or most cases, while the OOD algorithms outperform traditional ML methods on OOD generalization problems
n mechanics, there is a compelling need to develop more robust OOD methods that can generalize notions of
nvariance across multiple OOD scenarios. Overall, we expect that the combination of this study, as well as the
enchmark datasets we developed, will enable further development of OOD methods for regression problems.

The work is organized as follows. In Section 2, we introduce the three kinds of OOD regression problems and
resent the details of creating the corresponding benchmark examples for each type of OOD problem. In Section 3,
3
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we review the ERM method and introduce three popular algorithms (invariant risk minimization, or IRM [49], risk
extrapolation, or REx [90], and inter-gradient-alignment, or IGA [89]) for solving OOD problems. In Section 4,
we demonstrate and discuss the OOD generalization performance of ERM and the OOD algorithms on the OOD
problems in mechanics introduced in Section 2. Finally, in Section 5, we summarize the main conclusions of this
paper.

2. Dataset and computational experiment definition

2.1. Mechanical MNIST collection

The original MNIST dataset [101], the inspiration for Mechanical MNIST, is a benchmark image dataset of
abeled handwritten digits (0−9) with consistent preprocessing and formatting. Each image in the dataset is a digit
epresented by a 28 × 28 pixel bitmap. For the original MNIST dataset, the standard goal is to train a ML model
o classify the correct digit based on the input pixel bitmap [102–104]. Inspired by the original MNIST dataset,
e created the Mechanical MNIST dataset as a benchmark dataset specifically for problems in mechanics [105]. In
echanical MNIST, the images are no longer bitmaps without physical meaning, but instead represent the elastic
odulus distribution of a heterogeneous block of material. In Mechanical MNIST, to ensure the elastic modulus

alues for the image bitmaps have non-zero values and lie within a reasonable range, the 28 × 28 MNIST image
bitmaps are transformed into a map of elastic moduli following the equation:

E =
b

255.0
∗ (s − 1) + 1 (1)

here b is the corresponding value of the grayscale bitmap in range 0 − 255 and s is set to 100 for the
riginal iteration of the dataset. After the transformation defined by Eq. (1), the elastic modulus distribution of
he heterogeneous material lies in range from 1 to s.

In the original contribution to the Mechanical MNIST dataset collection, we considered four different mechanical
rocesses (Confined Compression, Shear, Equibiaxial Extension and Uniaxial Extension). In all cases, these
echanical processes are simulated via the Finite Element Method (FEM) using the open source software
EniCS [106,107]. In this paper, we will focus on the Equibiaxial Extension load case as detailed in our previous
ork [105]. We note that this dataset is publicly accessible under an open source license, with access information
iven in Section 6. For the ML problems discussed in this paper, the feature vectors X will contain the modulus
istribution of each sample, and the target interest y will contain the change in strain energy after the sample is
ubject to equibiaxial extension, and thus y is a scalar value for each sample. Specifically, for the finite element
imulation, we performed a dimensionless study and used a compressible Neo-Hookean constitutive law, where the
oisson’s ratio was set to 0.3 throughout the sample, and the applied extension displacement set to d = 7.0 on each
oundary, which corresponds to 50% of the square domain side length. Given this basic problem definition, we
ave both sampled and extended the Mechanical MNIST Dataset Collection to be suitable for OOD experiments.
he details of this work are given in the following Sections.

.2. OOD experiment 1: Covariate shift

.2.1. Problem definition
Covariate shift is one of the most common OOD shifts. It happens when only the marginal distribution P(X )

hanges from the training environment to the testing environment (Ptr (X ) ̸= Pte(X )), while the conditional
istribution P(y|X ) remains unchanged(Ptr (y|X ) = Pte(y|X )) [46,84]. In simpler terms, covariate shift occurs when
he input distribution changes while the output distribution does not. Real world covariate shift datasets are readily
vailable for classification problems. For example, in the colored MNIST dataset [49], the same digit appears in
ifferent colors between the testing and training environments. In the PACS [108] dataset, dog images are collected
rom Photo, Art, and Cartoon environments for the training dataset but from a Sketch environment for the testing
ataset. In the Waterbird dataset [47], waterbird photographs are mostly taken under a water background in the
raining dataset, but mostly taken with a land background in the testing dataset.

In contrast to classification problems, covariate shift in regression problems has been much less studied due to
he limited availability of relevant regression focused benchmark datasets. This lack of benchmark data motivated
s to introduce an open source benchmark dataset to investigate mechanics relevant problems with covariate shift.

e introduce this dataset in the next Section.

4
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2.2.2. Dataset description
As shown in Eq. (1), the Mechanical MNIST dataset input patterns are transformed from the original MNIST

ataset through an environmental control factor s. The elastic modulus E of blocks that make up the digit are
close to s while the elastic modulus E of the blocks in the background is set to 1. When s is much larger than
1 (e.g., s = 100), the blocks in the digit area are much stiffer than the soft blocks in the background. Thus the
digit will barely deform and almost all deformation during equibiaxial extension loading occurs in the blocks in the
background. As a result of this large stiffness mismatch, the effect of changing the environmental factor s within
the range s = 50−100 on the total change in strain energy of the domain is small. Therefore, altering s within this
range is an appropriate strategy for inducing a covariate shift as defined in Section 2.2.1. Following this strategy,
we introduced two training environments and two test environments summarized below:

• Training Environment 1: s = 100, data size = 2500 (2000 for training, 500 for validation)
• Training Environment 2: s = 90, data size = 2500 (2000 for training, 500 for validation)
• Testing Environment 1: s = 75, data size = 2000
• Testing Environment 2: s = 50, data size = 2000

The input and output distributions of our training and testing environments are shown in Fig. 1. In Fig. 1a,
we selected one representative example from each of the four environments. For each example, we show the
elastic modulus distribution and the corresponding deformation after equibiaxial extension. In Fig. 1b, we visualize
the input parameter space of each environment with Principal Component Analysis (PCA). Specifically, we use
PCA to reduce the high-dimensional input feature space (784 parameters) to the first principal component and
plot the distribution of this one dimensional variable in Fig. 1b with both a histogram and a redundant boxplot
to aid in visualization. Note that because the unseen environments are considered unknown, the PCA model is fit
exclusively on the data from the training environment. In Fig. 1c, we visualize the output strain energy via the same
approach. In these plots, the training and testing environments are distinguished by red and grey hues respectively.
As Fig. 1b–c shows, in this covariate shift problem, the input feature distribution shifts substantially between the
different environments while the distribution of the strain energy output barely changes. In addition, we note that
the difference between the two training environments s = 100 and s = 90 is substantially smaller than what we
will investigate in the testing environments s = 75 and s = 50.

2.3. OOD experiment 2: Mechanism shift

2.3.1. Problem definition
The notion of concept drift has emerged in ML to describe the change in relationship between input and

output data over time. Standard examples of concept drift include not accounting for the season when predicting
temperature, or changes in how people use mobile phones over time [109,110]. The elements underpinning the
concept drift, or change in the underlying data distribution P(X, y), are referred to as the hidden context.

While primarily used in other areas, this notion is also applicable to mechanics and physics, in which the
governing equations do not change over time, but can give inaccurate or physically unreasonable outputs when
the control variable increases or decreases significantly. For example, continuum mechanics can break down if the
representative length scale is small enough to be comparable to the atomic lattice spacing, or classical mechanics
can break down when velocities approach the speed of light. To distinguish these examples from the term concept
drift in which the data shift is typically caused by a time-dependent shift of the hidden context, we refer to this
phenomena as a mechanism shift. In brief, a mechanism shift is when the data shift is caused by a change in the
underlying mechanisms that control the mapping between the input and the output. We introduce our mechanism
shift dataset in the next Section.

2.3.2. Dataset description
According to the discussion in Section 2.2.2, changing the value of s when s is large (s = 50−100) has little effect

on the distribution of the strain energy. Both the training data and the testing data in Section 2.2.2 follow this same
underlying deformation mechanism where the embedded digit behaves approximately as a rigid body embedded
in a soft surrounding matrix. In this Section, we consider test environments in which s is smaller (10 − 25), i.e.,

the elastic mismatch between the digit and the background matrix is smaller. With a lower stiffness mismatch,

5
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Fig. 1. Illustration of the covariate shift dataset. (a-i) Equibiaxial extension boundary conditions and elastic modulus distribution for a
representative example from each environment. (a-ii) Deformation of each example in (a-i) after the completion of the equibiaxial extension
simulations. (b) Input distribution of all environments described by the coefficient of the first principle component obtained through PCA
performed on the input elastic modulus distribution of training data. (c) Output distribution of all environments defined as the total change
in strain energy of the domain. Note that in (b–c) the histograms and boxplots are two ways of showing the same data.

equibiaxial extension loading will cause the digit to deform, and thus changing s will influence the distribution
of the final change in strain energy. Following this strategy, we keep the training environments the same as in
Section 2.2.2 while introducing two new test environments and summarizing these new test environments along
with the previous training environments below:

• Training Environment 1: s = 100, data size = 2500 (2000 for training, 500 for validation)
• Training Environment 2: s = 90, data size = 2500 (2000 for training, 500 for validation)
6



L. Yuan, H.S. Park and E. Lejeune Computer Methods in Applied Mechanics and Engineering 400 (2022) 115569

F

a
b
b

2

2

d
t
o
t
s
b

T
m
c
a
l
t
i
v
d
t
b
S

2

n
a
i
b
s
a
c

o

• Testing Environment 1: s = 25, data size = 2000
• Testing Environment 2: s = 10, data size = 2000

The input and output distributions of our training and testing environments are shown in Fig. 2. As shown in
ig. 2(a-i) and (a-ii), compared to the representative examples from the training environments (s = 100, s = 90), the

deformation of the blocks near the digit is much smoother for the representative examples from the test environments
(s = 25, s = 10). Due to this deformation mechanism change, the distribution of the strain energy ∆ψ also shifts,
s shown in 2(c). Therefore, in contrast to the scenario posed in Section 2.2.2, the scenario posed here contains
oth a shift in the input distribution and a shift in the output distribution. The bi-leveled distribution shift caused
y the Mechanism shift makes it a larger challenge for the OOD generalization.

.4. OOD experiment 3: Sampling bias

.4.1. Problem definition
Sampling bias happens when the data that is selected for training a ML model is not representative of the entire

ata pool that will be explored once the model is deployed. The presence of sampling bias makes it more difficult
o find causal effects in the dataset by potentially introducing spurious correlations between input features and
utput properties, thus causing failures in OOD generalization. Sampling bias can exist in any empirical research if
he underlying causal relationship is unknown [111,112]. For example, although ImageNet [113] has a very large
ampling size with more than 14 million images, CNNs trained on ImageNet show bias by recognizing an animal
y its texture rather than by its shape [54].

Studying the OOD problems caused by sampling bias is critical for material design by data-driven methods.
his is because collected samples usually contain some form of bias, and thus predictions made by a ML model
ay be a function of a spurious relationship that will not exist in the testing environment. To study the OOD shift

aused by sampling bias, Kuang et al. [99] introduced a selection mechanism in which data points are selected by
selection probability determined by spurious relationships between the dataset inputs and outputs. Liu et al. [114]

ater applied state-of-the-art OOD algorithms on synthetic data generated by this selection mechanism and showed
hat they outperform traditional ML methods that do not account for the presence of sampling bias. Although it
s convenient to perform experiments on synthetic data where spurious features directly augment the input feature
ector, real-world problems often contain sampling biases that are far more subtle. Thus, additional benchmark
atasets to examine the performance of ML models in the face of sampling bias remain an important need that
he broader field is currently lacking. To provide a benchmark data resource for OOD studies on sample selection
ias, we introduce a sampling bias dataset within the Mechanical MNSIT dataset collection described in the next
ection.

.4.2. Dataset description
The input for the Mechanical MNIST dataset is the elastic modulus map for each material domain, which contains

o inherent spurious features as every component of the input vector is the Young’s modulus E of a block domain
nd thus contributes to the final change in strain energy of the domain. However, the dataset does potentially contain
mplicit spurious features embedded in the input vectors that can incorrectly be regarded as causal of the output
y a ML model during the training process. In other words, certain characteristics of the input distribution may be
puriously correlated with the simulation output. And, more critically, we have the ability to define spurious features
nd intentionally select for them when we are establishing our test and training environments. To induce spurious
orrelations, we define the sum of the modulus of each block domain Vi =

∑784
j=1 E j as an implicit spurious feature.

Then, we sample data points from the original Mechanical MNIST distribution (s = 100) through a biased selection
mechanism. Each point in the original distribution has a selection probability Pi that is designed to induce sampling
bias in a controlled fashion through the distribution control parameters r . To establish Pi , the selection probability

f data point i , we consider the sum of modulus Vi and the final change in strain energy yi . The biased selection
mechanism, inspired by the mechanism defined in Kuang et al. [99], then takes the form:

−5| ỹi − sign(r )Ṽi |
Pi = |r | (2)

7
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Fig. 2. Illustration of the mechanism shift dataset. (a-i) Equibiaxial extension boundary conditions and elastic modulus distribution for a
representative example from each environment. (a-ii) Deformation of each example in (a-i) after the completion of the equibiaxial extension
simulations. (b) Input distribution of all environments described by the coefficient of the first principle component obtained through PCA
performed on the input elastic modulus distribution of training data. (c) Output distribution of all environments defined as the total change
in strain energy of the domain. Note that in (b–c) the histograms and boxplots are two ways of showing the same data.

where |r | ≥ 1 and sign(r ) is a sign function with sign(r ) = 1 if r > 0 and sign(r ) = −1 if r ≤ 0. In addition, our
mplicit spurious feature Vi and the output distribution of y are normalized through the functions:

Ṽi =
Vi − Vmean

Vstd
and ỹi =

yi − ymean

ystd
(3)

here Vmean = 10925.34 and Vstd = 3360.66 for the sum of modulus implicit feature V of the Mechanical MNIST
raining dataset, and y = 567.52 and y = 47.35 corresponds to the output change in strain energy y of the
mean std

8
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r

Mechanical MNIST training dataset. Parameter r in this selection mechanism controls the direction and the strength
of the spurious correlation: positive spurious correlation occurs when r > 1, and negative spurious correlation
occurs when r < −1. Specifically, when r > 1, the data points with the implicit spurious feature Ṽi more highly
correlated to their final change in strain energy ỹi will have a larger chance of being selected; when r < −1, the
data points with the negative value of its implicit spurious feature Ṽi closer to their final change in strain energy
ỹi will have a larger chance of being selected. In addition, larger |r | means larger selection bias. We note that for
ease of implementation of our sampling algorithm, the final selection probability of each data point is normalized
as P̃i = Pi/

∑n
j=1 Pj where n is the total number of data points. This ensures that the sum of the probability of

all data points is equal to 1, which is statistically meaningful. Based on this selection mechanism, we created two
training environments and three testing environments dictated by the selection parameters below:

• Training Environment 1: r = 15, data size = 9800 (7840 for training, 1960 for validation)
• Training Environment 2: r = −2, data size = 200 (160 for training, 40 for validation)
• Testing Environment 1: r = −5, data size = 2000
• Testing Environment 2: r = −10, data size = 2000
• Testing Environment 3: r = 1, data size = 2000

In Fig. 3a, we illustrate the relationship between the implicit spurious feature Ṽi and the output ỹi for each
environment. The color of each plot background represents the logarithmic selection probability of each area
calculated by Eq. (3). Note that the selection probability is normalized through being divided by 10000, which
is the total number of pixel points that construct the background of the image. In training environment 1 where
> 1, data with positive spurious correlations will be overrepresented in the environment, thus ỹ ≈ Ṽ throughout

the dataset. In training environment 2, testing environment 1, and testing environment 2 where r < −1, data points
with a negative spurious correlation will be overrepresented in the environment, thus data points around ỹ = −Ṽ
have a larger probability to be selected. In testing environment 3 where r = 1, the selection probability is identical
for every data point (i.e., Pi = 1/n), thus testing environment 3 is a representative sampling of the entire Mechanical
MNIST dataset. In Fig. 3b–c, we plot the data input and output distributions following the format in Figs. 1–2b
and c. As shown in Fig. 3a, the implicit spurious features and the output strain energy are strongly correlated in
the training dataset but not in the testing datasets. Furthermore, we note that in Fig. 3b, though the data in training
environment 1 is from a biased selection, in terms of the first principle component of PCA, the biased selection
data distribution of training environment 1 (mean = −1.38, standard deviation = 216.65) and testing environment
3 (representative Mechanical MNIST dataset, mean = 65.06, standard deviation = 211.18) are within one standard
deviation of each other, which demonstrates that it can be non-trivial to detect the presence of implicit spurious
features.

2.5. Mechanical MNIST – EMNIST letters collection

The original Extended MNIST (i.e., EMNIST) dataset is a benchmark image dataset following the same
conversion paradigm used to create the MNIST dataset, except that each image in the original EMNIST Letters
dataset is a letter (a–z, A–Z) rather than a digit (0 − 9) [115]. Identical to the MNIST dataset, each input domain is
represented by a 28 × 28 pixel bitmap. To create the Mechanical MNIST – EMNIST Letters dataset, we follow the
same process as described in Section 2.1 for Mechanical MNIST. Specifically, we created the Mechanical MNIST
– EMNIST Letters dataset by transforming the 28 × 28 image bitmaps to a map of the elastic modulus for each
input pattern in EMNIST Letters through Eq. (1). We also created a covariate shift dataset through the same
process described in Section 2.2, a mechanism shift dataset through the same process described in Section 2.3,
and a sampling bias dataset through the same process described in Section 2.4. Note that when creating the
sampling bias dataset for Mechanical MNIST – EMNIST Letters through the selection probability defined in Eq. (3),
Vmean = 14151.59 and Vstd = 4045.36 are the mean and standard deviation of the spurious feature V of the
Mechanical MNIST – EMNIST Letters training dataset, and ymean = 708.50 and ystd = 88.24 corresponds to the
mean and the standard deviation of the output change in strain energy y of the Mechanical MNIST – EMNIST
Letters training dataset. Illustrations of the three OOD datasets for Mechanical MNIST – EMNIST Letters are
shown in Appendix A. In this work, the results presented in Section 4 are obtained for the three OOD datasets with
both Mechanical MNIST and Mechanical MNIST – EMNIST Letters. The methods used to obtain these results are
described next in Section 3.
9
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Fig. 3. Illustration of the sampling bias dataset. (a) Relationship between the spurious feature and the output target (the total change in strain
energy) for each environment. Note that we only show the 500 randomly selected data points for each environment (with the exception of
the 200 available data points for training environment 2) to aid in visualization. The color of each plot background represents the logarithmic
selection probability of each area (b) Input distribution of all environments described by the coefficient of the first principle component
obtained through PCA performed on the input elastic modulus distribution of training data. (c) Output distribution of all environments defined
as the total change in strain energy of the domain. Note that in (b–c) the histograms and boxplots are two ways of showing the same data.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
10



L. Yuan, H.S. Park and E. Lejeune Computer Methods in Applied Mechanics and Engineering 400 (2022) 115569
3. Methods

3.1. Algorithms and notation

For the supervised learning problems that we will pursue in this paper, we define the input space as X ⊆ R784

and the output space as y ⊆ R1. The goal of machine learning models is to find a predictor fθ (X ) that minimizes
the loss function l( fθ (X ), y). Traditionally, the training (observed) data and test (unseen) data are assumed to be
independent and identically distributed (i.i.d). Thus, the optimal predictor can be obtained by minimizing the loss
of the model on the training data. This method is referred to as Empirical Risk Minimization (ERM). However,
out-of-distribution (OOD) generalization problems deviate from the i.i.d. assumption underlying ERM. In other
words, for OOD problems we cannot assume that the training data and testing data are i.i.d. This means that the
distribution of unseen data is allowed to shift, which is practically relevant to real world problems. Specifically, OOD
generalization approaches acknowledge that the observed training data are collected from different environments
E train

= {e1, . . . , em}, which are only a subset of all environments Eall. For an OOD generalization method to perform
well, this implies that the predictor fθ (X ) obtained through learning from the training environments should perform
well across all unseen environments that are under consideration. This goal can be expressed by minimizing the
worst-case risk defined as:

ROOD(θ ) = max
e∈Eall

Re(θ ) (4)

where θ represents the parameters of the predictor (e.g., weights for a neural network). To minimize the OOD
risk defined in Eq. (4), Arjovsky et al. [49] argued that ML models should learn the causation that truly defines
the outcome. In defining causation, we distinguish it from correlation, where correlation can be either spurious or
causal. A ML model that learns a spurious correlation between input and output can make accurate predictions in
training environments, but not in test environments. This is the main reason why a ML model driven by ERM fails
in OOD generalization. In contrast, a causal correlation is one that is invariant, and thus does not change across
different environments. As a result, a ML model that learns the causation would perform consistently well across
all environments, which is the ultimate goal of OOD generalization.

Because causation does not change across environments, Arjovsky et al. [49] promoted “invariance” as the main
feature of causation and determined that ML models that perform well in OOD generalization should find a predictor
that learns the invariant correlation across all environments. We call a predictor that reaches this goal an invariant
predictor. In addition to the general requirement for a predictor that it should perform well on the whole training
data set collected from all environments, the invariant predictor is also required to exhibit a second quality, referred
to as “invariance”, which is defined as having consistent performance across every environment.

While the ERM method achieves the general requirement for a predictor, how to get an invariant predictor that
exhibits invariance across different environments is the main challenge for developing OOD generalization methods.
In the remainder of this Section, we first introduce ERM as a baseline method, and then introduce three additional
widely applied OOD algorithms that aim to find an invariant predictor.

3.1.1. Empirical Risk Minimization (ERM)
The Empirical Risk Minimization (ERM) approach assumes that the training data and the test data are i.i.d. Thus,

the optimal predictor fθ can be found by minimizing the average risk of all training environments. The risk form
of ERM is defined as:

RERM
=

m∑
e=1

Re(θ ) (5)

where e denotes each training environment. In brief, ERM makes no special acknowledgments that the problem at
hand is an OOD problem. Thus, ERM is typically used to define a baseline prediction.

3.1.2. Invariant Risk Minimization (IRM)
Motivated by the idea that causation often does not happen explicitly through input variables of a dataset

(e.g., in computer vision the collection of correlated pixels that define a recognizable object are often not explicitly
definable), Arjovsky et al. [49] proposed the Invariant Risk Minimization (IRM) algorithm to search for an invariant
11
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Fig. 4. Example illustration for IRM.

predictor through finding a data representation for which the optimal predictor is the same for all environments.
Formally, they define a data representation Φ : X → H that elicits an invariant predictor w◦Φ across environments
E train if there is an optimal classifier w for w̄ : H → Y , that is simultaneously optimal for all environments,
.e., w ∈ arg minw̄:H→Y Re(w̄ ◦ Φ), for all e ∈ E train. We note that the authors of IRM method used the term
classifier” to denote the last layer w̄ for both classification and regression problems. Though here we only consider
egression problems in mechanics, we still use the term “classifier” in order to keep it consistent with the original
RM paper [49]. The mathematical form of IRM is given as:

min
Φ:X→H
w:H→Y

m∑
e=1

Re(w ◦ Φ) subject to w ∈ arg min
w̄:H→Y

Re(w̄ ◦ Φ), for all e ∈ E train . (6)

To help interpret the terms in Eq. (6) in the context of neural networks, we illustrate the corresponding
components schematically in Fig. 4. In this example, we show training data collected from m environments. The
input and output data of each training environment is defined as {Xei , yei }. The data representation Φ that transforms
Xei to Hei is the same across all environments. Determining the associated weights of Φ, wei , is the goal of the
IRM algorithm. The optimal wei for each training environment is found by minimizing the loss l(ŷei , yei ) between
ŷei = wei ◦ Φ(Xei ) and yei , i.e., Ri (wei ◦ Φ). Thus, in this example the goal of Eq. (6) is to search for a data
representation Φ where wei is identical across all training environments, i.e., we1 = we2 = . . . = wem .

Because solving the bi-level optimization problem defined in Eq. (6) is very challenging, Arjovsky et al. [49]
implified the optimization problem by assuming that the optimal classifier w is a linear and fixed vector w = w∗.

Thus, the risk given by the practical version of IRM is:

RIRM
=

m∑
e=1

Re(w∗
◦ Φ) + λ ·

 ∇w|w=w∗ Re(w ◦ Φ)
2
. (7)

For this version of IRM, the goal becomes to find a data representation Φ such that the optimal wei of each
training environment is w∗. The first item of Eq. (7) measures the predictive power of the predictor w∗

◦ Φ on
the training data environments. The second term is the gradient penalty that measures the optimality of the choice
w = w∗ for all training environments. Because the practical form assumes that the optimal w for all training
environments is w = w∗, the gradient of Re(w ◦ Φ) should reach its minimum at w = w∗, i.e., the gradient of
Re(w◦Φ) with respect to w should be zero at w = w∗. More discussion about the relationship between the original
objective Eq. (6) and the practical objective Eq. (7) can be found in [49]. Then, Arjovsky et al. [49] set w∗ to be
a fixed scalar w∗

= 1.0 such that the practical form of IRM is given by:

RIRM
=

m∑
Re(Φ) + λ ·

 ∇w|w=1.0 Re(w · Φ)
2
. (8)
e=1
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This practical version of IRM is composed of two terms with a penalty weight λ that controls the balance between
the terms. The first term is identical to the ERM term defined in Eq. (5). The second term is the gradient penalty
that measures the optimality of the pragmatic choice w = 1 for all training environments. We will evaluate the IRM

ethod on out of distribution tasks through its practical form Eq. (8) in Section 4.

.1.3. Risk Extrapolation (REx)
Inspired by IRM, Krueger et al. [90] aim to find an invariant predictor through finding an “equipredictive”

epresentation Φ which they defined as a data representation with the property that the distribution Pe(y|Φ) is equal
or e ∈ Eall. In order to help build a geometric intuition of REx, they emphasized that their method is an extension
o another OOD generalization method, Distributionally Robust Optimization (DRO) [47], the objective of which
s a risk interpolation defined as:

RRI
= max∑

e λe=1
λe≥0

m∑
e=1

λe Re(θ ) (9)

The REx method instead considers that the coefficient of the risk from each environment can be negative such that
t allows us to extrapolate to more extreme variations. Since the final goal of OOD generalization is to minimize the

aximal risk (or the worst case risk) across all environments, they call their method as minimax Risk Extrapolation
MM-REx), the objective of which is defined as:

RMM-REx
= max∑

e λe=1
λe≥λmin

m∑
e=1

λe Re(θ ) (10)

here λmin is a hyperparameter that controls how much to extrapolate. To minimize Eq. (10), the optimal solution is
btained at R1 = R2 = · · · = Rm . In other words, REx encourages the equality of risks from different environments,
hich can also be achieved by minimizing the variance of risks across training environments. In practice, they found

he optimization landscape is smoother by using the variance of risks to be the penalty term of the risk objective.
herefore their practical form of the risk extrapolation is given by:

RREx
=

m∑
e=1

Re(θ ) + λVar({R1(θ ), . . . ,Rm(θ )}) . (11)

Similar to Eq. (8), the form of REx is composed of an ERM term and a penalty term where a penalty weight
controls the balance between the two terms. In Eq. (11), the penalty term measures the variance of risks across

raining environments. By directly focusing on the invariance of risks, the creators of REx argue that it provides
obustness to covariate shift where IRM can easily fail. We will evaluate the veracity of this claim later through its
ractical form Eq. (11) in Section 4.

.1.4. Inter Gradient Alignment (IGA)
Inspired by information theory, Koyama and Yamaguchi [89] attempt to find a data representation Φ that

aximizes the mutual information between Φ and the output interest y. In statistics, the mutual information
easures the mutual dependence between two variables. It becomes zero if Φ and Y are independent, and becomes

argest if Φ is a deterministic function of y. They called the invariant predictor found by this method as the maximal
nvariant predictor (MIP). To seek the MIP, they proposed Inter Gradient Alignment (IGA) that forces the risk
radient of each training environment to align with each other, i.e., ∇θ R1 = ∇θ R2 = · · · = ∇θ Rm . This was

implemented by minimizing the variance of the gradient of risks across all environments. Thus the risk form of the
IGA algorithm is defined as:

RIGA
=

m∑
e=1

Re(θ ) + λ trace (Var({∇θ R1(θ ), . . . ,∇θ Rm(θ )})) . (12)

Like with Eqs. (8) and (11), the first term of the IGA equation is an ERM term. In Eq. (12), the second term
is the trace of the variance of risk gradient, and λ is a penalty weight control parameter that controls the balance
between the two terms. The mathematical relationship between MIP objective and IGA algorithms can be found in

[89]

13
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3.1.5. Limitations
The risk functions of the three algorithms designed for OOD generalization problems all follow the same form.

he first term is an ERM term that corresponds to the general quality of a predictor, i.e., low error on training
ata. The second term penalizes the variance of the predictor across all training environments Etrain, which aims to

reach the second quality of an invariant predictor defined in Section 3.1, i.e., invariance across all environments
Eall. To make sure the invariant predictor for E train is also the invariant predictor for Eall, the invariance across E train

should imply the invariance across Eall [49]. However, this is difficult to realize for real world data. On the other
hand, based on the different assumptions underlying each of these algorithms, they may optimally target different
types of OOD problems, though unfortunately there exists no guide for the optimal ODD problem for a given OOD
algorithm. In Section 4 we will test these algorithms on the different types of OOD problems defined in Section 2
to have a better understanding on how they perform on different OOD problems specific to mechanics data.

3.2. Models

In this Section, we briefly introduce the two base models used to test the four algorithms introduced in Section 3.1
on the three OOD datasets introduced in Section 2. The first model is a Multilayer Perceptron (MLP) Model, while
the second model is a LeNet [101] model which was originally designed for digit classification on the MNIST
dataset. In comparison to the original LeNet model that was designed for classification problems, we modified
the activation (Softmax → ReLu) and pooling (Avepooling → Maxpooling) layers of the LeNet model to better
serve our regression problems from the Mechanical MNIST dataset. The structure of both models is schematically
illustrated in Fig. 12, Appendix B.1.

For the OOD datasets targeting covariate shift and mechanism shift, we use the true unscaled modulus values
as model inputs because the shifts in the output feature strain energy are controlled by the scale of the modulus.
Thus, rescaling the input could impede the OOD algorithms from learning invariant features between the different
environments. For the OOD dataset targeting sampling bias where s = 100 is applied for all data, the inputs for the
models are modulus values that were scaled to be within 0 ∼ 1 by dividing by 100 to help achieve faster model
convergence.

3.3. Hyperparameter tuning and performance evaluation metrics

3.3.1. Model selection/hyperparameter tuning
Although OOD generalization problems are very important for the real world applicability of many ML

techniques, and many promising algorithms have recently been proposed [46], one major issue is that there does
not exist a standardized approach to select models for such problems [96]. In ML frameworks, it is imperative
that performance is ultimately evaluated on unseen test data [96]. For OOD approaches, the delineation between
test and training datasets remains essential, yet the violation of the i.i.d. assumption between the test and training
datasets adds another layer of complication. Because each test environment can be qualitatively and quantitatively
different, it is likely that performance will vary widely across different test environments for an identical set of model
hyperparameters. Although existing OOD algorithms have shown robustness on shifted test datasets in comparison
to the ERM method, these performance enhancements are obtained by tuning the hyperparameters of the OOD
algorithm (i.e., tuning the penalty weight term in the risk function) on test environments [90]. In this work, we
take special care to define test environments that are truly “unseen” i.e., are not used in any way to select or tune
model hyperparameters. To accomplish this, we split our training datasets into training (80%) and validation datasets
(20%) while tuning the hyperparameters on the validation datasets alone. For the OOD algorithms introduced in
Section 3.1, we followed the implementation process used in [49]. Specifically, there are two main hyperparameters
to tune: the penalty weight λ, and the anneal step t , after which we add the penalty (invariant term) to the loss
function. The anneal step is determined by the step after which the validation error stops decreasing for ERM. During
the training process, the penalty weight is set to 10−4λ before the anneal step and set to be λ afterwards. The final
optimal penalty weight is then selected as the weight that reaches the lowest mean validation error for three models
trained with different random initializations. Note that if the penalty weight is too small, the penalty term has little
influence on the training process such that the training history of the OOD algorithms will be similar to ERM, and

so we neglect such small penalty weights during the hyperparameter tuning process. One example of this is shown in
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Fig. 5. Example of how penalty weight influences the training error history of a modified LeNet. The penalty weight is formally introduced
fter the anneal step (15 000). (a) training error history of ERM and IRM with penalty weight is equal to 10−6 (b) training error history of

ERM and IRM with penalty weight is equal to 10−7.

ig. 5, which compares the training history of the modified LeNet using ERM and IRM algorithm on the covariate
hift dataset defined in Section 2.2. In Fig. 5(a), the penalty weight of IRM before the anneal step (15 000) is 10−10,

which is small enough such that the training history is almost the same as ERM. The penalty weight changes to
λ = 10−6 from the anneal step where the training error suddenly increases at step t = 15000. However, in Fig. 5,
the penalty weight λ = 10−7 is too small, as the training error after the anneal step still follows the track of ERM,
which means that the penalty term does not work. Thus, we ignore the value λ = 10−7 regardless of the magnitude
of the validation error for the model trained with this penalty weight.

The final selection of hyperparameters for all approaches is given in Appendix B.2.

3.3.2. Evaluation metrics
We trained the two models described in Section 3.2 15 times each for each of the four algorithms with

initializations defined by seeds from k = [1, 2, 3 . . . 15]. We report the results of many initializations to ensure
that our conclusions are not based on outlier results obtained due to the randomness of the training process. We
note briefly that for each approach, if the lowest training error obtained from an initialization is too large, where
large is defined as three times higher than the lowest training error obtained from at least ten other initializations,
we re-trained the model with a different initialization not used in the initial group of 15. After that, we tested each
model on all test environments and calculated the root mean squared error (RMSE) between the predicted change
in strain energy ŷ and the ground truth y. We evaluate the effectiveness of each algorithm on every test environment
in two ways. First, we report the root mean squared error of the aggregate mean prediction across all 15 models
with different initializations defined as:

RM SE =

√(
y −

1
15

15∑
k=1

ŷk
)2
. (13)

econd, we report the average of the root mean squared error of all 15 models defined as:

RM SE
′
=

1
15

15∑
k=1

√(
y − ŷk

)2
. (14)

The RMSE of aggregated mean prediction defined in Eq. (13) is used to evaluate the four methods in Section 3.1
nd the results are discussed in the following Section 4. The average of RMSE defined in Eq. (14) is represented

n appendix as supplemental materials.
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4. Results and discussion

In this Section, we examine the performance of all four algorithms introduced in Section 3.1 on the OOD datasets
efined in Section 2. In Section 4.1, we discuss the results for the OOD problem caused by covariate shift. In
ection 4.2, we discuss the results for the OOD problem caused by mechanism shift. In Section 4.3, we discuss the
esults for the OOD problem caused by sampling bias. Finally, in Section 4.4, we discuss common findings across
ll investigations.

.1. ML model performance on the covariate shift dataset

In this Section, we evaluate the four different ML methods introduced in Section 3.1 on the two covariate shift
atasets from Mechanical MNIST and Mechanical MNIST-EMNIST Letters. The problem definition and details
f creating the covariate shift datasets were introduced in Section 2.2. For all four algorithms (ERM, IRM, REx,
nd IGA), we train both the MLP model and the modified LeNet model separately (see model architectures in
ppendix B.1). The performance of the MLP and LeNet model on the training, validation, and testing environments
f each covariate dataset are shown in Fig. 6 for each algorithm. Specifically, Fig. 6a shows the performance
esults for the covariate shift dataset from Mechanical MNIST and Fig. 6b shows the performance results for the
ovariate shift dataset from Mechanical MNIST-EMNIST Letters. In each Figure, we plot the root mean square error
RMSE) of the aggregate mean prediction described in Eq. (13). The performance of the baseline ERM method is
llustrated with black markers, and the performance of the other three OOD algorithms is represented in red hues.
or all algorithms, we plot the RMSE of aggregate mean prediction for the training environment, the validation
nvironment, and both test environments.

In Fig. 6a-i, we show the results of training the MLP model with all four algorithms on the covariate shift dataset
rom Mechanical MNIST. Here, the ERM approach achieves a very low error on the training data (RMSE 2.01)
ith a slightly higher error on the validation data (RMSE 20.85). For context, in Fig. 6a, the training dataset has
ean 559.12, and standard deviation 45.99, and the validation dataset has mean 559.35, and standard deviation

5.74. For a typical ML modeling approach driven by ERM (i.e., traditional ML method), the model performance
n the validation dataset is assumed to be very close to the performance of the model on unseen test datasets.
owever, we note that compared to the validation data, the performance of ERM on both test environments with

ovariate shift is substantially worse. Specifically, the test error of test environment 1 is RMSE 55.53, and the test
rror of test environment 2 is RMSE 92.52. For the MLP trained by the three OOD algorithms, test error on both
est environments 1 and 2 is lower than ERM. In addition to plotting these values in Fig. 6, they are listed in
able 3 in Appendix C.2. Overall, the lowest test error is obtained by IRM with a validation error of RMSE 16.48,
nd test error of RMSE 39.85 on test environment 1 and RMSE 44.23 on test environment 2. Through the same
valuation process as the MLP model, the results on the covariate shift dataset from Mechanical MNIST obtained
y a modified LeNet model are shown in Fig. 6a-ii. Overall, the performance of all methods improves because
f the deeper and more powerful Convolutional Neural Network model architecture. However, consistent with the
LP results, the methods designed for the OOD problems outperform the ERM algorithm. In this case, the best

erformance is obtained by REx with the training and test error consistently below RMSE 10, with the error on
est environment 1 (RMSE 8.77) being almost a third of ERM (RMSE 22.46), while the error on test environment

(RMSE 7.94) is more than four times smaller than ERM (RMSE 35.75).
The results of repeating this process on the covariate shift dataset from Mechanical MNIST - EMNIST Letters

re shown in Fig. 6b. For context, in Fig. 6b, the training dataset has mean 703.01, and standard deviation 86.26,
nd the validation dataset has mean 706.98, and standard deviation 88.45. For the evaluation results on MLP in
ig. 6b-i, the ERM method obtained a low error on the validation dataset (RMSE 36.21) but behaved poorly on test
rror with RMSE 87.24 on test environment 1 and RMSE 167.57 on test environment 2. For the evaluation results
n modified LeNet in Fig. 6b-ii, the ERM method again obtained low error on validation dataset (RMSE 28.47)
ut high test error with RMSE 80.77 on test environment 1 and RMSE 162.48 on test environment 2. We then
oticed that for ERM, although the validation error decreased by 21.38% by using a deeper convolutional neural
etwork (LeNet) compared to the simple MLP model, the decrease of test error by using LeNet is very small, as the
rror drops by only 7.42% for test environment 1 and 3.04% for test environment 2. In contrast to ERM, the OOD
lgorithms still performed better on test environments for both the MLP model as shown in Fig. 6b-i and the LeNet

odel as shown in Fig. 6b-ii. The best performance is obtained by IGA with RMSE 52.24 on test environment
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Fig. 6. The performance of four algorithms (ERM, IRM, REx, IGA) on the covariate shift datasets defined in Section 2.2. The RMSE
is calculated using Eq. (13). (a) The performance of a MLP model (a-i) and a modified LeNet model(a-ii) trained by four algorithms on
training, validation, and testing data from Mechanical MNIST Collection. (b) The performance of a MLP model (b-i) and a modified LeNet
model (b-ii) trained by four algorithms on training, validation, and testing data from Mechanical MNIST - EMNIST Letters Collection.
Additional visualization of these results can be found in Appendix C.3, which shows a comparison of prediction vs. ground truth, and
Appendix C.4 which shows representative samples of different error levels.

1 and RMSE 95.04 on test environment 2 for the MLP model, while its RMSE was 30.27 on test environment 1
and 54.33 on test environment 2 for the modified LeNet model. And compared to ERM, the performance of all
OOD algorithms was improved by using a deeper Neural Network. For example, compared to the MLP model, by
implementing IGA on the modified LeNet model, the test error decreased by 42.06% on test environment 1 and
42.83% on test environment 2. More statistics about the data and the evaluation results are given in Table 4 in
Appendix C.2. Further discussion of these results is also given in Section 4.4.

4.2. ML model performance on the mechanism shift dataset

By using the same evaluation method described in Section 4.1, we evaluate the two ML models on the two
mechanism shift datasets from both Mechanical MNIST and Mechanical MNIST-EMNIST Letters. The problem
definition and processing details of the mechanism shift datasets was introduced in Section 2.3. Since the training
environments in this Section are the same as in Section 4.1, we use the two ML models (MLP and modified LeNet)
already trained in Section 4.1 to test the two new test environments with mechanism shift. For all algorithms

introduced in Section 3.1, we plot the aggregate mean prediction RMSE for the training environment, the validation
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Fig. 7. The performance of four algorithms (ERM, IRM, REx, IGA) on mechanism shift data defined in Section 2.3. The RMSE is calculated
using Eq. (13). (a) The performance of a MLP model(a-i) and a modified LeNet model(a-ii) trained by four algorithms on training, validation,
and testing data from Mechanical MNIST Collection. (b) The performance of a MLP model(b-i) and a modified LeNet model(b-ii) trained
by four algorithms on training, validation, and testing data from Mechanical MNIST - EMNIST Letters Collection. Additional visualization
of these results can be found in Appendix C.3, which shows a comparison of prediction vs. ground truth, and Appendix C.4 which shows
representative samples of different error levels.

environment, and both test environments in Fig. 7. Specifically, Fig. 7a shows the performance results for the
mechanism shift dataset from Mechanical MNIST and Fig. 7b shows the performance results for the mechanism
shift dataset from Mechanical MNIST - EMNIST Letters. Similar to the results for the covariate shift datasets in
Section 4.1, for both Mechanical MNIST and Mechanical MNIST - EMNIST Letters, the three OOD algorithms
perform better than the baseline ERM method on both test environments for both the MLP and LeNet models.

For the mechanism shift data from Mechanical MNIST, Fig. 7a-i shows the performance of the four algorithms
sing the MLP model. The performance of the three OOD algorithms for a MLP model is similar with the IRM
ethod achieving the lowest test error for both environments 1 (RMSE 56.31) and 2 (RMSE 35.43). In contrast,

he test error achieved by ERM is RMSE 110.19 for test environment 1 and RMSE 71.55 for test environment 2. In
ig. 7a-ii, which shows the performance of the four algorithms on the modified LeNet model, the test error of ERM
rops significantly to RMSE 42.88 for test environment 1 and RMSE 31.15 for test environment 2. However, these
umbers are still much larger than the test error obtained through the OOD algorithms. Specifically, REx achieves
he lowest test error for both environments 1 (RMSE 7.70) and 2 (RMSE 10.59). Since the mechanism shift is a
ore challenging phenomena to capture than covariate shift due to a shift in both the input and output data, we
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note that for the ERM, the test error of test environment 1 in this Section is larger than the test error of the two test
environments shown in Section 4.1, while the RMSE of REx is similar to that seen in the covariate shift example.

For mechanism shift data from the Mechanical MNIST - EMNIST Letters Collection, Fig. 7b-i shows the
erformance of the four algorithms using the MLP model. Compared to ERM which gets RMSE 206.02 on test
nvironment 1 and 163.66 on test environment 2, the decrease in test error obtained by the OOD algorithms is
till lower where IGA obtained the lowest error (RMSE 133.05) on test environment 1 while REx obtained the
owest error (RMSE 131.10) on test environment 2. Fig. 7b-ii shows the performance of the four algorithms on
eNet model. The performance of all OOD algorithms improved significantly with IGA obtaining the lowest error
n both environments (RMSE 57.96 for test environment 1, and RMSE 31.49 for test environment 2) while ERM
till obtaining very high test error (RMSE 215.98 on test environment 1 and RMSE 222.95 on test environment 2).
urther discussion of these results is given in Section 4.4.

Furthermore, the test error of test environment 2 in this Section drops slightly compared to test environment 1
rror for both mechanism shift datasets. We note that for mechanism shift datasets from both Mechanical MNIST
nd Mechanical MNIST - EMNIST Letters, the output standard deviation of test environment 2 is slightly smaller
han the output standard deviation of the test environment 1 (see Tables 5 and 6), which can cause test environment 2
o get a smaller RMSE. Taking the mechanism shift dataset from Mechanical MNIST Collection as an example, the
utput standard deviation of test environment 2 is 31.37 while the output standard deviation of the test environment
is 37.94, as given in Table 5.

.3. ML model performance on the sampling bias dataset

In this Section, we evaluate the four algorithms described in Section 3.1 on OOD problems caused by sampling
ias as described in Section 2.4. Similar to Sections 4.1 and 4.2, we plot the RMSE of aggregate mean prediction for
he training environment, the validation environment, and all test environments on Fig. 8. The performance of the
our algorithms on the sampling bias data from Mechanical MNIST is shown in Fig. 8a. The performance of ERM
nd IRM on all environments is very close for both the MLP and LeNet models. The REx method obtained lower
est error than ERM for the MLP model, but unlike the covariate shift and mechanism shift examples, achieves
o improvement for a LeNet model. The IGA method is the only algorithm that consistently performs better than
RM on test environments, though the improvements are relatively small. Specifically, for the MLP model, ERM
chieved a RMSE of 29.54 on test environment 1, a RMSE of 26.63 on test environment 2 and a RMSE of 29.21
n test environment 3, while IGA achieved a RMSE of 16.25 on test environment 1, a RMSE of 15.91 on test
nvironment 2 and a RMSE of 18.24 on test environment 3. For the LeNet model, ERM achieved a RMSE of
0.97 on test environment 1, a RMSE of 10.89 on test environment 2, and a RMSE of 13.22 on test environment
. In contrast, IGA achieved a RMSE of 10.28 on test environment 1, a RMSE of 10.08 on test environment 2,
nd a RMSE of 11.74 on test environment 3. Although IGA performs better than ERM on test environments for
LeNet model, we note that the training and validation error (RMSE 6.21) of IGA was slightly larger than the

alidation error (RMSE 5.41) for ERM. Critically, this demonstrates that a lower training or validation error does
ot necessarily mean a lower test error if there is a strong spurious correlation present in the training environments.

The performance of the four algorithms on the sampling bias data from Mechanical MNIST - EMNIST Letters
s shown in Fig. 8b. For the performance on the MLP model in Fig. 8b-i, all three OOD algorithms obtained lower
est error than the ERM, with IGA obtaining the lowest test error where the RMSE is 26.91 for test environment
, 27.08 for test environment 2, and 33.28 for test environment 3. In contrast, ERM obtained a RMSE 36.48 for
est environment 1, 36.69 for test environment 2, and 42.42 for test environment 3. However for the performance
n LeNet model, as shown in Fig. 8b-i, the performance of the three OOD algorithms is similar to ERM, with no
mprovement observed for the three test environments. We will further discuss these results in the next Section.

.4. Common findings across all datasets

Sections 4.1–4.3 show the results of all the OOD experiments that we have conducted. Across all experiments,
he error on OOD test data using the traditional ERM method (not designed with OOD problems in mind) is much
igher than the error that would be predicted based on the validation data. This indicates that models trained by

RM are vulnerable to suffering poor performance when exposed to OOD test data. Thus, even if a ML model
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Fig. 8. The performance of four algorithms (ERM, IRM, REx, IGA) on the sampling bias data defined in Section 2.4. The RMSE is
alculated using Eq. (13). (a) The performance of a MLP model (a-i) and a modified LeNet model (a-ii) trained by four algorithms on
raining, validation, and testing data from Mechanical MNIST Collection. (b) The performance of a MLP model (b-i) and a modified LeNet

odel (b-ii) trained by four algorithms on training, validation, and testing data from Mechanical MNIST - EMNIST Letters Collection.
dditional visualization of these results can be found in Appendix C.3, which shows a comparison of prediction vs. ground truth, and
ppendix C.4 which shows representative samples of different error levels.

btains a low error for validation data that is i.i.d with respect to the training data, the test error can be very high
hen it is applied to practical test situations when the test data distribution may be shifted. In contrast, we found

hat the OOD generalization methods were effective in reducing the test error on OOD test data, in particular for
he covariate shift and mechanism shift challenge problems. However, the effectiveness of the OOD algorithms in
ecreasing the test error on sampling bias data was small, in particular when using a deeper ML (LeNet) model.
his makes the sampling bias problem that introduces spurious correlations the most challenging out of the three
OD problems in mechanics that we have investigated.
Secondly, we also found that although the OOD generalization methods try to find an invariant predictor

nabling consistent performance across all environments, the test error is still much larger for all of the OOD
xperiments we have conducted in comparison to the training and validation error. One potential reason is that we
une the hyperparameters on the validation dataset, which is still collected from the training environments. Thus we
ntroduced bias in the model selection in terms of hyperparameter tuning. This means that while our model selection

ethod of tuning the network hyperparameters on the validation dataset can guarantee that the penalty weight we
elect is within a reasonable regime (i.e., sufficiently large such that it does impact the training process, but not too

arge such that it jeopardizes convergence), the selected penalty weight is not guaranteed to be the optimal penalty
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weight for each OOD dataset or for each algorithm. As a result of this, there is variability in performance for
each OOD algorithm on the different OOD problems. Specifically, we do not see one OOD algorithm consistently
outperforming or underperforming the others.

Another possible reason why these OOD algorithms cannot obtain a test error as low as the training error is that
he “invariance” term introduced by these algorithms is not sufficient for a ML model to learn all factors contributing
o the invariance across environments. Thus, while some biased solutions can be avoided during the training process,
he penalty introduced by these algorithms is not formulated such that a ML model will find the causal solution
xclusively. This implies that there may need to be a re-evaluation of how invariance is defined in this context in
rder to make the OOD methods more generalizable for problems in mechanics. Specifically, assumptions on the
invariance” of each OOD generalization method should be more clear on how they are related to each type of OOD
roblem. This development would be critical to confidently solving OOD problems in mechanics, like predicting
he mechanical behavior of materials.

Third, we found that the test error for the covariate shift and mechanism shift datasets from the Mechanical
NIST - EMNIST Letters dataset is much larger than from the standard Mechanical MNIST examples. This can

e attributed to the larger mean and the standard deviation of the covariate dataset from Mechanical MNIST -
MNIST Letters than the covariate shift dataset from Mechanical MNIST. For example, for the covariate shift data

rom the Mechanical MNIST Collection, the standard deviation of the target property, i.e., the change in strain
nergy, is 48.17 in test environment 1 and 44.90 in test environment 2, while for the covariate shift data from
echanical EMNIST - Letters, the standard deviation of the same target property is 86.30 in test environment 1

nd 79.58 in test environment 2, both of which are about twice the standard deviation value in covariate shift data
rom Mechanical MNIST Collection. As a result, the RMSE of results on Mechanical MNIST - EMNIST Letters is
lso about twice larger than the RMSE of results on Mechanical MNIST Collection. More statistics of each dataset
nd the details of evaluation results can be found in Appendix C, Tables 3 and 4. In addition, the data distribution
he original MNIST and EMNIST Letters are not the same, which does not assure that the model trained on these
wo datasets can get the same performance.

Fourth, our objective is to assess these OOD algorithms not only by their performance on different types of
OD problems, but also by their demand for computational resources and feasibility of implementation. To this

nd, we note that the penalty term of REx is the only one that does not require the computation of the gradient
f risks during the training process. Thus its applicability is not restricted by computational capacity and can be
roadly applied to deeper and more complex ML models. Since the performance of REx on OOD test data was
onsistently better using the deeper LeNet model, this may imply that REx is a better choice than the other two
OD algorithms for large and complex datasets that require deeper ML architectures for good performance. In

ontrast, the IGA method is more computationally intensive because it requires computing the risk towards all the
eights of a Neural Network. However, the performance of IGA on the three OOD problems that we investigated

s overall the best as it outperforms the other two OOD algorithms in most scenarios. Thus, IGA may be the most
ppropriate choice when the problem of interest involves a small dataset without requiring a complex ML model.
n contrast to IGA, the IRM method needs to compute the gradient of risk for only the weight of the last layer of a
eural Network, which means it requires less computational capacity than IGA. However, because its performance
as generally worse than REx and IGA for the three OOD examples that we investigated, IGA and REx appear to
e better choices for the OOD problems studied here.

Finally, we note that compared to the performance of these OOD algorithms on classification problems in which
hey were shown to have similar accuracy on test data and training data [49,89,90], the test error obtained by these
OD algorithms for the regression problems in mechanics is still significantly higher than their validation error. This

s reasonable, because as compared to a classification problem with binary outputs of either 1 (belong to this class)
r 0 (does not belong to this class) in both training and test datasets, the output of regression problems is usually
ontinuous and can shift to very different value ranges than the values in the training dataset. This characteristic
f regression problems makes capturing shifts in the data more challenging than in classification. Therefore, as
echanics problems typically require regression, and because of the many different types of OOD problems that

re possible, this may require further development of OOD methods that can robustly handle multiple types of OOD

hifts in order to solve OOD regression problems in mechanics.
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5. Conclusion

In this paper, we have systematically investigated OOD generalization problems in mechanics by identifying
hree new challenge problems with test data distribution shifts: covariate shift, mechanism shift, and sampling bias.
o study these problems, we created two OOD benchmark datasets for each of the three challenge problems based
n the Mechanical MNIST and Mechanical MNIST – EMNIST datasets. We then independently trained two types of
L models, a multilayer perceptron (MLP) and a convolutional neural network (modified LeNet), on these datasets
ith four different risk minimization algorithms. One algorithm, the classical Empirical Risk Minimization (ERM)

erved as a baseline algorithm for comparison with three other popular methods specially designed for solving
OD generalization problems, Invariant Risk Minimization (IRM), Risk Extrapolation (REx) and Inter Gradient
lignment (IGA). Through evaluating the performance of these algorithms, we found that OOD generalization
ethods typically outperform ERM by achieving a lower predicting error on OOD test data while still maintaining

ood performance on training data. And, all algorithms tended to work better when paired with the more complex
eNet model than when paired with the simpler MLP. However, no algorithm had consistent top performance across
ll six OOD generalization problem datasets. And, while these OOD generalization algorithms have been reported
n the literature to achieve near consistent performance on training and test environments for OOD classification
roblems [49,89,90], for the OOD regression problems in mechanics covered in this paper, there are only a few
ases where these OOD generalization algorithms achieved comparable performance on both training and testing
nvironments. In most cases, the error in the test environments was much higher than the training and validation
rrors. These results suggest that there is a need for methods to make these ML models more robust so that they
an generalize invariance to multiple OOD scenarios.

We note that beyond the three kinds of OOD problems considered in this paper (i.e., covariate shift, mechanism
hift, and sampling bias), there are additional factors that can cause poor generalization of ML models for problems
n mechanics. For example, OOD problems also exist if the scope of the training data does not cover the whole
andscape of the data distribution, i.e. the scenario where new physics emerge due to the shifts of the landscape in the
esting environments. Examples of this include different flow behavior for low and high Reynolds numbers [116],
r linear vs. nonlinear mechanical response of soft tissues in the small and large strain regimes [117]. In these
ituations, it is difficult for traditional ML methods to predict the new physics and handle the OOD problem simply
y learning from the training data. Because the OOD methods explored in this paper have only been tested on
ovariate shift, mechanism shift, and sampling bias, OOD problems driven by the emergence of fundamentally
ifferent physical regimes are beyond the scope of this paper, and represent a promising avenue for future
ork.
Overall, this paper provides a critical first evaluation of OOD ML methods in mechanics. We anticipate that

he benchmark regression datasets that we have created for OOD problems in mechanics can accelerate the study
f OOD generalization problems in the context of regression. And, our work of examining OOD generalization
roblems in mechanics is a critical step towards applying ML methods to practical problems in real world mechanics.
ooking forward, we anticipate that defining OOD generalization methods that are specific to problems in mechanics
ill be an important direction of future research. Furthermore, it is very important to establish a standard way of

electing hyperparameters when developing new OOD generalization methods. Finally, we note that in this paper we
ssume that the environment label of each dataset is known. Future investigation should consider alternative methods
hat have been proposed to divide the training data into different environments as a preprocess step [114,118].
roadly speaking, the methods and results presented in this paper are a starting point for future work in OOD
eneralization tasks in mechanics.

. Additional information

The extensions of Mechanical MNIST data are available through the OpenBU Institutional Repository at http
://open.bu.edu/handle/2144/39371. The access to all the OOD datasets is at https://open.bu.edu/handle/2144/444
5. The code to reproduce equibiaxial simulation on FEniCS is at https://github.com/elejeune11/Mechanical-MN

dataset/Equibiaxial Extension FEA test FEniCS.py The code for implementing the four
ST/blob/master/generate
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algorithms introduced in Section 3.1 and for creating the datasets is available at https://github.com/lingxiaoyuan/o
od mechanics

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

ata availability

All data is available on publicly-accessible websites.

cknowledgments

All authors gratefully acknowledge the support of the College of Engineering and Department of Mechanical
ngineering at Boston University, United States of America. EL acknowledges the support of the David R.
alton Career Development Professorship, United States of America, the Hariri Institute Junior Faculty Fellowship,
nited States of America, and the Office of Naval Research Award, United States of America N00014-22-1-
066. We would like to thank the staff of the Boston University Research Computing Services and the OpenBU
nstitutional Repository (in particular Eleni Castro) for their invaluable assistance with generating and disseminating
he “Mechanical MNIST – Distribution Shift” dataset.

ppendix A. Illustration of ood datasets based on mechanical MNIST - EMNIST letters

In Section 2, we visualize the different OOD training and test environments created based on the Mechanical
NIST dataset in Figs. 1–3. In order to better evaluate the efficacy of the different algorithms designed for OOD

ata, we also created similar OOD training and test environments based on the Mechanical MNSIT – EMNIST
etters dataset, introduced in Section 2.5. Throughout Sections 4.1–4.3, we report the results based on both MNIST
nd EMNIST Letters. Here, in Figs. 9–11, we visualize the EMNIST Letters data. Specifically, Fig. 9 illustrates
he OOD data distribution for covariate shift, Fig. 10 illustrates the OOD data distribution for mechanism shift, and
ig. 11 illustrates the OOD data distribution for sampling bias.

ppendix B. Additional information for methods introduced in Section 3

.1. Details of ML models

In Section 3.2, we describe the two ML model architectures used for evaluating the different OOD algorithms.
ere, we present schematic illustrations of the MLP model and the modified LeNet model that are introduced in
ection 3.2 and trained with the algorithms introduced in Section 3.1. As Fig. 12 shows, the MLP model is a
eedforward Neural Network composed of forward fully connected layers and ReLU activation layers. The LeNet
odel is a Convolutional Neural Network composed of convolutional layers, maxpooling layers and ReLU activation

ayers [101].

.2. Details of hyperparameters

For all ML model training, the learning rate is fixed at 0.001, the total number of training epochs is fixed at
0 001, and for each epoch, each model was trained with one single batch with all training data, this information is
isted in Table 1. The final selection of penalty weight λ and anneal step t (count from zero) for the two ML models

using the three OOD generalization algorithms(see Section 3.1) is based on the approach for hyperparameters tuning

introduced in Section 3.3.1. These values are listed in Table 2.
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Fig. 9. Illustration of the EMNIST covariate shift dataset. (a-i) Equibiaxial extension boundary conditions and elastic modulus distribution
or a representative example from each environment. (a-ii) Deformation of each example in (a-i) after the completion of the equibiaxial
xtension simulations. (b) Input distribution of all environments described by the coefficient of the first principle component obtained through
CA performed on the input elastic modulus distribution of training data. (c) Output distribution of all environments defined as the total
hange in strain energy of the domain. Note that in (b–c) the histograms and boxplots are two ways of showing the same data.

Table 1
Training hyperparameters.

Learning rate Epochs Batch size

MLP 0.001 50 001 Training data size
LeNet 0.001 50 001 Training data size
24
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a

Fig. 10. Illustration of the EMNIST mechanism shift dataset. (a-i) Equibiaxial extension boundary conditions and elastic modulus distribution
for a representative example from each environment. (a-ii) Deformation of each example in (a-i) after the completion of the equibiaxial
extension simulations. (b) Input distribution of all environments described by the coefficient of the first principle component obtained through
PCA performed on the input elastic modulus distribution of training data. (c) Output distribution of all environments defined as the total
change in strain energy of the domain. Note that in (b–c) the histograms and boxplots are two ways of showing the same data.

Appendix C. Additional figures and tables to support the results presented in Section 4

C.1. Violin plots

Here we provide supporting information for the evaluation results shown in Section 4. In Section 4, only the
ggregated mean prediction defined by Eq. (13) is shown in Figs. 6–8 to ensure a clear comparison between the
25
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Fig. 11. Illustration of the EMNIST sampling bias datasets. (a) Relationship between the spurious feature and the output target (the total
change in strain energy) for each environment. Note that we only show the 500 randomly selected data points for each environment (with the
exception of the 200 available data points for training environment 2) to aid in visualization. The color of each plot background represents
the selection probability of each area (b) Input distribution of all environments described by the coefficient of the first principle component
obtained through PCA performed on the input elastic modulus distribution of training data. (c) Output distribution of all environments defined
as the total change in strain energy of the domain. Note that in (b–c) the histograms and boxplots are two ways of showing the same data.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
26
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Fig. 12. Illustration of model structures of the MLP model and the modified LeNet introduced in Section 3.2.

Table 2
Hyperparameter selection results where λ is the penalty weight for each OOD generalization method (IRM, REx, IGA), and t is the anneal
step (or epoch) after which the penalty weight will be introduced during training.

Source data Mechanical MNIST Mechanical MNIST - EMNIST letters

OOD problems Covariate shift
mechanism shift

Sampling bias Covariate shift
mechanism shift

Sampling bias

Hyperparameters λ t λ t λ t λ t

MLP IRM 1e−5 15 000 1e−6 10 000 1e−6 15 000 1e−5 10 000
MLP REx 1e−1 15 000 1e−1 10 000 1e−2 15 000 1e−1 10 000
MLP IGA 1e−2 15 000 1e−1 10 000 1e−2 15 000 1e0 10 000
LeNet IRM 1e−6 15 000 1e−5 15 000 1e−5 15 000 1e−6 15 000
LeNet REx 1e0 15 000 1e−1 15 000 1e−2 15 000 1e−1 15 000
LeNet IGA 1e−4 15 000 1e−1 15 000 1e−5 15 000 1e−3 15 000
27
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Table 3
The performance of four algorithms (ERM, IRM, REx, IGA) on the covariate shift data from the Mechanical MNIST Collection. The

MSE on each dataset is calculated using both Eqs. (13) and (14) based on 15 predictions given by the corresponding ML model trained
ith 15 different initialization. In addition, the mean and standard deviation for the change in strain energy from the train, validation, and

est datasets are also given.

Data Train Valid Test-1 Test-2

Statistics of strain
energy

y_mean = 559.12
y_std = 45.99

y_mean = 559.35
y_std = 45.74

y_mean = 575.96
y_std = 48.17

y_mean = 562.21
y_std = 44.90

Evaluation method RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

MLP ERM 2.01 2.77 20.85 26.60 55.53 61.50 92.52 95.04
MLP IRM 6.82 8.51 16.48 19.54 39.85 41.40 44.23 45.07
MLP REx 4.39 6.45 17.17 21.16 43.11 45.60 53.44 54.55
MLP IGA 2.72 3.87 19.50 22.08 49.11 50.34 60.33 60.98
LeNet ERM 1.51 3.01 10.04 15.72 22.46 25.85 35.75 38.69
LeNet IRM 2.91 5.04 7.03 10.78 11.74 14.55 18.21 21.40
LeNet REx 3.75 6.11 7.10 10.94 8.77 12.82 7.94 15.13
LeNet IGA 2.15 4.09 7.11 11.52 10.89 14.55 17.12 21.61

Table 4
The performance of four algorithms (ERM, IRM, REx, IGA) on the covariate shift data from the Mechanical MNIST - EMNIST Letters

ollection. The RMSE on each dataset is calculated using both Eqs. (13) and (14) based on 15 predictions given by the corresponding ML
odel trained with 15 different initialization. In addition, the mean and standard deviation for the change in strain energy from the train,

alidation, and test datasets are also given.

Data Train Valid Test-1 Test-2

Statistics of strain
energy

y_mean = 703.01
y_std = 86.26

y_mean = 706.98
y_std = 88.45

y_mean = 695.56
y_std = 86.30

y_mean = 671.97
y_std = 79.58

Evaluation method RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

MLP ERM 9.72 12.40 36.21 43.34 87.24 90.10 167.57 168.80
MLP IRM 8.70 13.35 32.72 44.84 72.41 77.36 136.24 138.15
MLP REx 8.94 12.70 27.67 36.51 58.89 63.02 111.22 113.05
MLP IGA 6.01 8.89 26.68 33.14 52.24 55.32 95.04 96.73
LeNet ERM 12.33 16.89 28.47 39.44 80.77 84.93 162.48 164.70
LeNet IRM 11.32 20.10 23.84 39.84 52.78 60.54 106.13 111.77
LeNet REx 9.41 16.34 19.45 30.85 42.58 50.08 77.88 85.92
LeNet IGA 6.54 12.60 17.47 30.45 30.27 40.41 54.33 65.97

different environments and approaches. Here, we present identical results in the more detailed form of violin plots.
In each violin plot, there are 15 white points which represent the RMSE performance of the MLP model (or the
modified LeNet model) with 15 different initialization, and one color-filled point which represents the aggregated
mean prediction calculated through Eq. (13) based on the predicting quantity of interest (i.e., the change in strain
energy after a equibiaxial extension) value given by these 15 models. Specifically, Fig. 13 shows the performance of
all algorithms (ERM, IRM, REx and IGA) on the training, validation, and test environments from the covariate shift
dataset created with the methods described in Section 2.2 on both Mechanical MNIST (Fig. 13a) and Mechanical
EMNIST-Letters (Fig. 13b). In Fig. 13a, we show a violin plot for each of the four algorithms implemented
on the MLP model (Fig. 13a-i), and the modified LeNet model (Fig. 13a-ii). Similarly, we plot the evaluation
results of all the algorithms on the covariate shift dataset from Mechanical EMNIST-Letters through violin plots
in Fig. 13b. Following the same format, Fig. 14 shows the performance of all algorithms on the mechanism shift
dataset described in Section 2.3 for both Mechanical MNIST (Fig. 14a) and Mechanical EMNIST-Letters (Fig. 14b).
28
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Table 5
The performance of four algorithms (ERM, IRM, REx, IGA) on the mechanism shift data from the Mechanical MNIST Collection. The

MSE on each dataset is calculated using both Eqs. (13) and (14) based on 15 predictions given by the corresponding ML model trained
ith 15 different initialization. In addition, the mean and standard deviation for the change in strain energy from the train, validation, and

est datasets are also given.

Data Train Valid Test-1 Test-2

Statistics of strain
energy

y_mean = 559.12
y_std = 45.99

y_mean = 559.35
y_std = 45.74

y_mean = 543.16
y_std = 37.94

y_mean = 504.45
y_std = 31.37

Evaluation method RMSE
(Eq. (10))

RMSE
(Eq.
(11))

RMSE
(Eq. (10))

RMSE
(Eq.
(11))

RMSE
(Eq. (10))

RMSE
(Eq.
(11))

RMSE
(Eq. (10))

RMSE
(Eq.
(11))

MLP ERM 2.01 2.77 20.85 26.60 110.19 112.06 71.55 76.02
MLP IRM 6.82 8.51 16.48 19.54 56.31 58.13 35.43 64.90
MLP REx 4.39 6.45 17.17 21.16 63.50 65.08 37.13 58.78
MLP IGA 2.72 3.87 19.50 22.08 62.55 63.36 40.64 42.85
LeNet ERM 1.51 3.01 10.04 15.72 42.88 45.93 31.15 38.28
LeNet IRM 2.91 5.04 7.03 10.78 23.96 31.38 19.89 32.28
LeNet REx 3.75 6.11 7.10 10.94 7.70 23.12 10.59 28.94
LeNet IGA 2.15 4.09 7.11 11.52 21.70 31.23 15.79 32.66

Table 6
The performance of four algorithms (ERM, IRM, REx, IGA) on the mechanism shift data from the Mechanical MNIST - EMNIST Letters

ollection. The RMSE on each dataset is calculated using both Eqs. (13) and (14) based on 15 predictions given by the corresponding ML
odel trained with 15 different initialization. In addition, the mean and standard deviation for the change in strain energy from the train,

alidation, and test datasets are also given.

Data Train Valid Test-1 Test-2

Statistics of strain
energy

y_mean = 703.01
y_std = 86.26

y_mean = 706.98
y_std = 88.45

y_mean = 629.56
y_std = 65.91

y_mean = 567.98
y_std = 48.67

Evaluation method RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

MLP ERM 9.72 12.40 36.21 43.34 206.02 207.21 163.66 165.31
MLP IRM 8.70 13.35 32.72 44.84 174.03 175.42 149.32 153.51
MLP REx 8.94 12.70 27.67 36.51 151.76 153.21 131.10 134.32
MLP IGA 6.01 8.89 26.68 33.14 133.05 134.75 139.39 140.81
LeNet ERM 12.33 16.89 28.47 39.44 215.98 217.78 222.95 224.47
LeNet IRM 11.32 20.10 23.84 39.84 140.05 147.29 131.84 141.74
LeNet REx 9.41 16.34 19.45 30.85 100.36 111.68 98.68 114.34
LeNet IGA 6.54 12.60 17.47 30.45 57.96 115.96 31.49 161.78

And, Fig. 15 shows the performance of all algorithms on the sampling bias dataset described in Section 2.4 for
both Mechanical MNIST (Fig. 14a) and Mechanical EMNIST-Letters (Fig. 14b).

C.2. Results tables

Tables 3–8 present the RMSE performance calculated by both Eqs. (13) and (14) for all methods introduced in
ection 3.1 on all OOD datasets introduced in Section 2. Note that in these tables, the RMSE calculated by Eq. (13)
orresponds to the RMSE performance presented and discussed in Section 4. In addition, for each table, we also
how the mean and the standard deviation of the change in strain energy for each group of data: training, validation
nd testing datasets. Note that typically datasets with larger standard deviation of strain energy tends to correspond
o a larger RMSE which makes the RMSE from Mechanical MNIST-EMNIST Letters generally larger than the
MSE from Mechanical MNIST. Tables 3 and 4 show the RMSE performance for covariate shift datasets based
n Mechanical MNIST and Mechanical MNIST-EMNIST Letters respectively. Tables 5 and 6 show the RMSE
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Table 7
The performance of four algorithms (ERM, IRM, REx, IGA) on the sampling bias data from the Mechanical MNIST Collection. The
RMSE on each dataset is calculated using both Eqs. (13) and (14) based on 15 predictions given by the corresponding ML model trained
with 15 different initialization. In addition, the mean and standard deviation for the change in strain energy from the train, validation, and
test datasets are also given.

Data Train Valid Test-1 Test-2 Test-3

Statistics of strain
energy

y_mean = 545.99
y_std = 42.55

y_mean = 545.99
y_std = 41.23

y_mean = 565.68
y_std = 22.45

y_mean = 564.82
y_std = 22.27

y_mean = 567.02
y_std = 47.57

Evaluation method RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

MLP ERM 4.99 5.16 11.96 13.36 29.54 30.38 26.63 27.53 29.21 30.05
MLP IRM 5.20 5.28 11.05 12.56 29.00 29.92 25.51 26.51 28.08 29.05
MLP REx 3.55 5.00 7.77 9.39 25.85 26.90 21.29 22.38 22.99 24.17
MLP IGA 3.58 4.77 7.15 9.59 16.25 20.39 15.91 19.05 18.24 21.31
LeNet ERM 3.90 4.59 5.41 6.10 10.97 11.42 10.89 11.33 13.22 13.60
LeNet IRM 4.65 5.30 5.74 6.36 10.96 11.35 10.92 11.32 13.02 13.37
LeNet REx 3.89 4.56 5.30 5.91 11.17 11.54 11.06 11.42 13.53 13.85
LeNet IGA 5.49 6.73 6.21 7.41 10.28 11.16 10.08 10.99 11.74 12.59

Table 8
The performance of four algorithms (ERM, IRM, REx, IGA) on the sampling bias data from the Mechanical MNIST - EMNIST Letters

ollection. The RMSE on each dataset is calculated using both Eqs. (13) and (14) based on 15 predictions given by the corresponding ML
odel trained with 15 different initialization. In addition, the mean and standard deviation for the change in strain energy from the train,

alidation, and test datasets are also given.

Data Train Valid Test-1 Test-2 Test-3

Statistics of strain
energy

y_mean = 686.22
y_std = 80.05

y_mean = 686.08
y_std = 80.41

y_mean = 704.81
y_std = 37.24

y_mean = 705.21
y_std = 37.75

y_mean = 713.32
y_std = 87.12

Evaluation method RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

RMSE
(Eq. (13))

RMSE
(Eq.
(14))

MLP ERM 3.25 3.99 21.05 23.21 36.48 38.01 36.69 38.24 42.42 43.70
MLP IRM 8.58 10.83 17.40 20.15 30.49 32.43 30.78 32.77 37.05 38.83
MLP REx 5.03 6.51 15.39 17.65 27.73 29.35 27.83 29.56 34.42 35.85
MLP IGA 9.92 12.59 15.42 18.24 26.91 28.88 27.08 29.46 33.28 35.40
LeNet ERM 10.32 12.26 13.68 15.64 21.84 23.24 22.25 23.67 28.27 29.43
LeNet IRM 9.91 11.51 13.48 15.03 22.34 23.41 22.59 23.67 28.89 29.72
LeNet REx 10.03 11.82 13.36 14.96 22.46 23.54 22.69 23.79 28.76 29.67
LeNet IGA 12.10 13.70 14.74 16.28 21.69 22.91 21.98 23.17 27.91 28.85

performance for mechanism shift datasets based on Mechanical MNIST and Mechanical MNIST-EMNIST Letters
respectively. Tables 7 and 8 show the RMSE performance for sampling bias datasets based on Mechanical MNIST
and Mechanical MNIST-EMNIST Letters respectively.

C.3. ML model prediction vs. ground truth visualization

Here we provide an additional supplement to Figs. 6–8 from Section 4. in Figs. 16–17, we visualize example
omparisons between the the ground truth and the aggregated mean prediction of the change in strain energy through
mplementing OOD generalization algorithms (IRM, REx, IGA) and ERM on LeNet model and predicting on test
nvironment 1 from each OOD dataset drawn from Mechanical MNIST and Mechanical MNIST - EMNIST Letters.
n addition, the RMSE between the aggregated mean prediction and the ground truth for each method is shown in
he legend of each plot. These values of RMSE can also be found in Tables 3–8. As shown in Figs. 16ab and 17ab,
he prediction given by ERM underestimates the ground truth for the test data from the covariate and mechanism
30
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Fig. 13. The performance of the four algorithms (ERM, IRM, REx, IGA) on the covariate shift data defined in Section 2.2. Every white
oint represents the RMSE given by a single model initialized with different seed. The color-filled points show the RMSE of the aggregated
ean prediction calculated by Eq. (13). (a) The performance of a MLP model (a-i) and the modified LeNet model (a-ii) trained by the four

lgorithms on training, validation, and testing data from the Mechanical MNIST Collection. (b) The performance of a MLP model (b-i)
nd a modified LeNet model (b-ii) trained by the four algorithms on training, validation, and testing data from the Mechanical MNIST -
MNIST Letters Collection.

hift datasets. While the prediction given by OOD generalization methods (IRM, REx and IGA) sometimes also
nderestimates the ground truth, it is closer to the ground truth (i.e., the change in strain energy calculated by FEM)
nd sometimes has no underestimation (e.g., prediction given by REx for covariate shift dataset from Mechanical
31
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Fig. 14. The performance of the four algorithms (ERM, IRM, REx, IGA) on the mechanism shift data defined in Section 2.3. Every white
point represents the RMSE given by a single model initialized with different seed. The color-filled points show the RMSE of the aggregated
mean prediction calculated by Eq. (13). (a) The performance of a MLP model (a-i) and the modified LeNet model (a-ii) trained by the four
algorithms on training, validation, and testing data from the Mechanical MNIST Collection. (b) The performance of a MLP model (b-i)
and a modified LeNet model (b-ii) trained by the four algorithms on training, validation, and testing data from the Mechanical MNIST -
EMNIST Letters Collection.

MNIST dataset). For the results from the sampling bias datasets shown in Fig. 16c and Fig. 17c, the prediction
accuracy on the test environment is similar for ERM and OOD generalization methods, which is consistent with
the discussion in Section 4.3.
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Fig. 15. The performance of the four algorithms (ERM, IRM, REx, IGA) on the sampling bias data defined in Section 2.4. Every white
point represents the RMSE given by a single model initialized with different seed. The color-filled points show the RMSE of the aggregated
mean prediction calculated by Eq. (13). (a) The performance of a MLP model (a-i) and the modified LeNet model (a-ii) trained by the four
algorithms on training, validation, and testing data from the Mechanical MNIST Collection. (b) The performance of a MLP model (b-i)
and a modified LeNet model (b-ii) trained by the four algorithms on training, validation, and testing data from the Mechanical MNIST -
EMNIST Letters Collection.

C.4. Best and worst cases pattern visualization

To further support the results shown in Figs. 6–8 from Section 4 and the prediction vs. ground truth results
shown in Figs. 16–17, here we present visualizations of representative samples from the Mechanical MNIST
dataset that lead to different error levels. As shown in Fig. 18, which contains visualizations of the data shown
in Fig. 16, we present randomly selected samples from test environment 1 for each OOD dataset from Mechanical
MNIST. Specifically, for each algorithms (ERM, IRM, REx and IGA) on each test environment 1 from covariate
shift (Fig. 18a), mechanism shift (Fig. 18b) and sampling bias dataset (Fig. 18c), we show examples at different
levels of RMSE. To achieve this, sorted the data based on RMSE and sampled three cases from three groups: lowest

error (bottom 10%), median error (45%−55%) and highest error (top 10%). For each example, we report the ground
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Fig. 16. The aggregated mean prediction versus the ground truth of the change in strain energy for OOD generalization algorithms (IRM,
Ex, IGA) and ERM on the test environment 1 of each OOD dataset on Mechanical MNIST.

ruth of the change in strain energy, the predicted change in strain energy, and the corresponding RMSE calculated
hrough Eq. (13). We note that for covariate shift and mechanism shift dataset, both the best (lowest error) and
34
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Fig. 17. The aggregated mean prediction versus the ground truth of the change in strain energy for OOD generalization algorithms (IRM,
Ex, IGA) and ERM on the test environment 1 of each OOD dataset on Mechanical MNIST - EMNIST Letters.

orst (highest error) cases of ERM lead to higher RMSE than other three OOD algorithms. We present the sample

ases for Mechanical MNIST - EMNIST Letters on Fig. 19 with an identical format.
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Fig. 18. The sampled cases of three groups: lowest error (bottom 10% RMSE), median error (45% − 55% RMSE) and highest error (top
10% RMSE) from the Mechanical MNIST collection and the corresponding ground truth and prediction of the change in strain energy. For
each OOD dataset (a) Covariate Shift (b) Mechanism Shift and (c) Sampling Bias, the error (RMSE) is calculated and sorted based on the
predicted value given by LeNet model on ERM, IRM, REx, and IGA respectively.
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Fig. 19. The sampled cases of three groups: lowest error (bottom 10% RMSE), median error (45% − 55% RMSE) and highest error (top
10% RMSE) from the Mechanical MNIST - EMNIST Letters collection and the corresponding ground truth and prediction of the change
in strain energy. For each OOD dataset (a) Covariate Shift (b) Mechanism Shift and (c) Sampling Bias, the error (RMSE) is calculated and
sorted based on the predicted value given by LeNet model on ERM, IRM, REx, and IGA respectively.
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