
Computers and Structures 270 (2022) 106825
Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc
Learning mechanically driven emergent behavior with message passing
neural networks
https://doi.org/10.1016/j.compstruc.2022.106825
0045-7949/� 2022 Elsevier Ltd. All rights reserved.

⇑ Correspoding author.
E-mail addresses: pprachas@bu.edu (P. Prachaseree), elejeune@bu.edu (E.

Lejeune).
Peerasait Prachaseree, Emma Lejeune ⇑
Department of Mechanical Engineering, Boston University, Boston, MA 02215, United States

a r t i c l e i n f o
Article history:
Received 9 February 2022
Accepted 8 May 2022

Keywords:
Machine learning
Graph neural networks
Benchmark data
Open science
Metamodel
Surrogate model
a b s t r a c t

From designing architected materials to connecting mechanical behavior across scales, computational
modeling is a critical tool for understanding and predicting the mechanical response of deformable bod-
ies. In particular, computational modeling is an invaluable tool for predicting global emergent phenom-
ena, such as the onset of geometric instabilities, or heterogeneity induced symmetry breaking. Recently,
there has been a growing interest in both using machine learning based computational models to learn
mechanical behavior directly from experimental data, and using machine learning (ML) methods to
reduce the computational cost of physics-based simulations. Notably, machine learning approaches that
rely on Graph Neural Networks (GNNs) have recently been shown to effectively predict mechanical
behavior in multiple examples of particle-based and mesh-based simulations. However, despite this ini-
tial promise, the performance of graph based methods have yet to be investigated on a myriad of solid
mechanics problems. In this work, we examine the ability of neural message passing to predict a funda-
mental aspect of mechanically driven emergent behavior: the connection between a column’s geometric
structure and the direction that it buckles. To accomplish this, we introduce the Asymmetric Buckling
Columns (ABC) dataset, a dataset comprised of three types of asymmetric and heterogeneous column
geometries (sub-dataset 1, sub-dataset 2, and sub-dataset 3) where the goal is to classify the direction
of symmetry breaking (left or right) under compression after the onset of the buckling instability.
Notably, it is difficult to parameterize these structures into a feature vector for typical ML methods.
Essentially, because the geometry of these columns is discontinuous and intricate, local geometric pat-
terns will be distorted by the low-resolution ‘‘image-like” data representations that are required to
implement convolutional neural network based metamodels. Instead, we present a pipeline to learn glo-
bal emergent properties while enforcing locality with message passing neural networks. Specifically, we
take inspiration from point cloud based classification problems from the computer vision research field
and use PointNet++ layers to perform classification on the ABC dataset. In addition to investigating GNN
model architecture, we study the effect of different input data representation approaches, data augmen-
tation, and combining multiple models as an ensemble. Overall, we were able to achieve good perfor-
mance with this approach, ranging from 0:952 prediction accuracy on sub-dataset 1, to 0:913
prediction accuracy on sub-dataset 2, to 0:856 prediction accuracy on sub-dataset 3 for training dataset
sizes of 20;000 points each. However, these results also clearly indicate that predicting solid mechanics
based emergent behavior with these methods is non-trivial. Because both our model implementation and
dataset are distributed under open-source licenses, we hope that future researchers can build on our
work to create enhanced mechanics-specific machine learning methods. Furthermore, we also intend
to provoke discussion around different methods for representing complex mechanical structures when
applying machine learning to mechanics research.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Advances in additive manufacturing have made it possible to
create architected materials with unprecedented control and intri-
cacy [7,30,48,52,66,77]. To design these materials, many research-
ers have turned to biologically-inspired design [48,73], where

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2022.106825&domain=pdf
https://doi.org/10.1016/j.compstruc.2022.106825
mailto:pprachas@bu.edu
mailto:elejeune@bu.edu
https://doi.org/10.1016/j.compstruc.2022.106825
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
naturally occurring microstructure such as bones [48], and com-
plex geometry such as spiderwebs [73] are the starting point for
achieving mechanical properties that exceeds what is possible with
homogeneous domains and simple geometry. To complement this
broad interest in exploring the design space of architected materi-
als, multiple researchers have developed computational frame-
works to both better understand and optimize architected
material mechanical behavior, often through computationally
expensive direct numerical simulations [69,72]. More recently,
there has been a surge in applying machine learning (ML) methods
to replace either computationally expensive simulations or
resource demanding experiments with computationally cheap
metamodels, also known as surrogate models, that directly map
input parameters to output quantities of interest (QoIs)
[35,36,74]. Within the broader context of ML based approaches
for computational design and analysis frameworks, graph-based
neural network approaches have received substantial recent atten-
tion for problems in recommendation systems [55], point cloud
classification [64,78], molecule property predictions [16,21], and
targeted drug design [22,84]. Fundamentally, when it comes to
designing complex structures, graph based techniques are appeal-
ing because they offer a natural strategy for representing domains
that are not conveniently captured as ‘‘image-like” arrays. In the
context of mechanics problems, this includes problems that
involve structures such as trusses [27], disordered fiber networks
[67], and polycrystal microstructures [76]. In this manuscript, our
goal is to further explore the efficacy of these graph-based tech-
niques for problems in solid mechanics, where global mechanically
driven emergent behavior is highly influenced by local geometric
properties.

Many examples of prior work on applying ML methods to com-
plex structural design focus on structures that can be parameter-
ized into a feature vector [8,23,24,38,42,46,73]. For domain
information that is not conveniently represented as a low dimen-
sional feature vector, treating domain geometry as ‘‘image-like”
arrays that serve as input to a Convolutional Neural Network
(CNN) has become standard practice [81]. For example, CNNs have
been applied to predict change in strain energy [41] and rank
toughness from heterogeneous material distributions [25], predict
full-field mechanical QoIs [53,82], aid in inverse design [18,28],
and quantify uncertainty of partial differential equations (PDEs)
[85]. For these and related examples, CNNs are an effective
approach because they naturally enforce locality and spatial invari-
ance through inductive bias with the convolution operation [5].
However, this strategy faces the fundamental limitation that arrays
are often not an efficient approach for representing complex
geometries, especially given the computational limitations associ-
ated with training a model on a dataset of large arrays [34]. In
another recent approach, collocation methods have been used in
conjunction with Physics-Informed Neural Networks (PINNs)
where points are sampled within the domain as inputs to the neu-
ral networks [65,87]. Alternatively, unordered and non-grid like
data structures such as point clouds [12] and meshes [9] can be
readily used to store geometric information for broader applica-
tions in both computer vision [64] and mechanical simulation
[61]. Furthermore, there is broad interest in the ML research com-
munity on geometric learning, or extending ML methods to graphs
and non-Euclidean data structures [5,11], where non-grid like
datasets are represented as graph structures. Neural networks that
directly take in graphs and operate on graph structures are called
graph neural networks (GNNs), and with GNNs, locality and com-
binatorial generalization (i.e., constructing new inferences from
known relations) can be induced through spatial graph convolu-
tions [5]. In this work, we are interested in using GNNs to predict
mechanically driven global emergent behavior from geometric
structures.
2

One of the most interesting aspects of solid mechanics is that
components of a structure’s local geometry and/or material prop-
erties often interact collectively to produce global emergent behav-
ior such as symmetry breaking [58], auxetic behavior [6,58,67], and
mechanical resilience [52]. Compellingly, these extreme behaviors
often emerge simply from the fundamental set of equations gov-
erning mechanical deformation [30]. As data driven approaches
to capturing mechanical behavior gain traction
[8,23,24,28,38,51,73], we anticipate that ensuring that data driven
approaches are capable of capturing these emergent, and often
highly non-linear, phenomena will be a key challenge. While there
have been multiple successful examples of modeling buckling
problems using data driven methods, these previous works do
not explicitly incorporate the geometry of the structure into the
ML model [47,87]. Critically, many recent advances in graph-
based machine learning applied to solid mechanics problems have
come from the computer science literature [61,68]. In these initial
examples, domain geometry has been relatively simple, and the
problems have not necessarily exhibited compelling non-
linearities. In this work, our goal is to not only investigate the effi-
cacy of graph-based machine learning approaches applied to prob-
lems with emergent behavior, but also to define a test problem that
other researchers can use to evaluate their own alternative
frameworks.

To accomplish this goal, we first introduce the Asymmetric
Buckling Columns (ABC) dataset that consists of columns with
complex geometry generated from different probabilistic distribu-
tions. For every given column, the goal is to classify its buckling
direction under compression as either ‘‘left” or ‘‘right.” Then, we
investigate the efficacy of neural message-passing [21], a GNN-
based spatial convolution framework, for predicting this straight-
forward mechanically-driven global emergent behavior from local
structure geometry. Specifically, we adapt the spatially-based
graph convolution PointNet++ architecture originally developed
to classify point cloud data structures to our dataset [64]. With
the ABC dataset, we address the current lack of benchmark data-
sets for classification problems in mechanics. With the accompany-
ing metamodeling pipeline, we introduce an approach to
representing complex domain geometries as graph networks, and
demonstrate the efficacy of spatial graph convolutions for making
predictions on the resulting graph representations. Looking for-
ward, we view this work as an important methodological step
towards advancing computational design and analysis of archi-
tected materials where geometry plays an essential role in the
behavior of the designed structure.

The remainder of the paper is organized as follows. In Section 2,
we first discuss the generation of our finite element analysis based
ABC dataset. Then, we introduce our metamodeling pipeline that
includes converting each domain geometry into a spatial graph
and training a message-passing graph convolution based ML
model. We end Section 2 by briefly introducing simple ensemble
methods to boost the performance of ML model prediction, as well
as introducing methods to evaluate the efficacy of ensemble model
confidence and uncertainty predictions. Next, in Section 3, we pre-
sent the prediction accuracy as well as model confidence of our
framework, and highlight the most effective approaches to imple-
menting our pipeline. Finally, we present concluding remarks and
potential future directions in Section 4. We note briefly that infor-
mation for accessing all associated data and code is given in
Section 5.

2. Methods

In this Section, we begin by introducing the open source Finite
Element Analysis dataset that we generated and curated for this

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
project – the Asymmetric Buckling Columns (ABC) dataset. Then,
we provide details of our graph neural network based metamodel-
ing pipeline for approximating the results of these simulations. We
note briefly that details for accessing the dataset, the associated
simulation software, and the metamodel implementation are given
in Section 5.
2.1. Defining and Generating the ABC Dataset

To date, most applications of ML methods to mechanics
research have focused on problems in regression. In general, there
has been less work within the mechanics community on classifica-
tion problems. In addition, we note that many problems that have
been treated as classification problems in mechanics could also be
conveniently recast as regression problem with a threshold, e.g.
tough vs. not tough [25], stable vs. unstable [42]. Critically, there
are limited examples of open source benchmark datasets for test-
ing the efficacy of ML pipelines in this area. To address this, we first
introduce the Asymmetric Buckling Columns (ABC) dataset as a toy
mechanics-specific classification dataset that is amenable to treat-
ment as a graph structure and involves a global property that
emerges from complex structure geometry. Specifically, the ABC
dataset contains matched input and output pairs where each input
is a column domain geometry and each output is the direction of
symmetry breaking of the column under compression (either ‘‘left”
or ‘‘right”). The dataset consists of three sub-datasets with differ-
ent algorithms for input domain generation. Details of domain
geometry generation for all three sub-datasets are given in Sec-
tion 2.1.1. Details of the Finite Element Analysis (FEA) simulations
used to determine the direction of symmetry breaking for each
geometry are given in Section 2.1.2. Finally, we describe the data
curation strategy and format in Section 2.1.3.
-15.0 -12 -10 -8 -6 -4 -2 0
x-Displacement (% of

Generation Method:
Stacking Blocks

Sub-Dataset 1 Sub-Dat

Fig. 1. Schematic illustration of our Asymmetric Buckling Columns ‘‘ABC” dataset: The d
conditions. The columns are compressed until the onset of buckling instability and the bu
three sub-datasets, each with varying complexity of geometric features. The geometry of
second sub-dataset is generated by intersecting rings of uniform size. The third sub-datas
this figure, deformed columns are visualized with ParaView [2,4].

3

2.1.1. Domain Geometry Generation
In Fig. 1, we schematically illustrate all three sub-datasets of the

ABC dataset. We chose to generate three sub-datasets to test if our
metamodeling pipeline, described in Section 2.2, would function
across multiple different input geometry distributions. For all three
sub-datasets, the input domain generation begins with a rectangle
with width (w) to length (L) ratio of 1:8. Then, all internal geomet-
ric features are algorithmically generated within the rectangular
domain following procedures with varying geometric complexity.
As illustrated in Fig. 1, sub-dataset 1 has the simplest underlying
features while sub-dataset 3 has the most complex underlying fea-
tures. Sub-dataset 1 is generated by stacking 38 blocks of height
0:025L with varying widths uniformly sampled from range
½0:4w;0:9wÞ (see Fig. 1 left). Note that the top-most and bottom-
most blocks cover the whole width for all geometries for consistent
boundary conditions. Sub-dataset 2 consists of 200 to 300 overlap-
ping rings with outer radius of 0:25w and inner radius of 0:15w
(see Fig. 1 center). The centers of the rings are uniformly sampled
from range ½0:25w;0:75wÞ. Again, the top and bottom of the col-
umn have rectangular blocks of height 0:05L to enable the applica-
tion of consistent boundary conditions across all structures. Sub-
dataset 3 consists of 1000 rings of different sizes that are over-
lapped and trimmed (see Fig. 1 right) The radii of the outer rings
R are uniformly sampled from range R ¼ ½0:1w;0:25wÞ, and each
inner ring radius r is uniformly sampled from a range based on
the corresponding outer ring radius defined as r ¼ ½0:35R;0:75RÞ.
Again, the top and bottom of the column have rectangular blocks
of height 0:05L to ensure consistent boundary conditions.
2.1.2. FEA Simulations
We employ Finite Element Analysis (FEA) simulations to obtain

the buckling direction of each column. We use PyGmsh [20,71] to
mesh each domain, and open source software FEniCS [3,49] to per-
15.0 2 4 6 8 10 12
 beam width)

Generation Method:
Intersecting Rings

Generation Method:
Trimmed Overlapping

Rings

aset 2 Sub-Dataset 3

ataset consists of compressed inhomogeneous columns with fixed–fixed boundary
ckling direction is classified as either ‘‘left” (0) or ‘‘right” (1). The dataset is split into
the first sub-dataset (sub-dataset 1) is generated by stacking rectangular blocks. The
et is generated by overlapping and trimming rings of varying inner and outer radii. In

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
form the FEA simulations. Specifically, we compressed the column
under a displacement control loading protocol with the column
fixed at the bottom and incrementally apply y displacement at
the top, schematically illustrated in Fig. 1. The left and right side
of each column is traction-free. We stop the FEA simulation once
the magnitude of maximum x displacement ux is greater than
0:15w (max juxj P 0:15w). To determine the buckling direction,
we compare the magnitude of the maximum and minimum x dis-
placements ux. If jmaxuxj < jminuxj, then the column is deter-
mined to buckle left and vice versa. We note briefly that we
validated this approach by visualizing a random subset of FEA
results with Paraview [2,4]. For the purpose of ML model training,
the columns that buckle left are assigned the label of ‘‘0” and the
columns that buckle right are assigned the label of ‘‘1.”

For all simulations, we used a compressible Neo-Hookean mate-
rial model with the following strain energy density function:

w ¼ l
2

F : F� 3� 2 ln J½ � þ k
2

1
2
ðJ2 � 1Þ � ln J

� �
ð1Þ

where w is the strain energy density, F is the deformation gradient,
J ¼ det F; k and l are the first and second Lamé parameters, respec-
tively. The Lamé parameters are functions of Young’s Modulus E and
Poisson’s Ratio m expressed as k ¼ Em=½ð1þ mÞð1� 2mÞ�, and
l ¼ E=½2ð1þ mÞ�. For these simulations, we arbitrarily set the mate-
rial parameters to E ¼ 1 and m ¼ 0:3. Prior to finalizing our simula-
tion framework, we performed convergence studies to ensure that
the direction of symmetry breaking was not sensitive to either
the magnitude of incrementally applied loading or level of mesh
refinement. We found that an incremental displacement of
ð2:5� 10�4ÞL was sufficient for solution convergence with respect
to loading [33,43,44]. We also found that a mesh of quadratic trian-
gular elements with � 1;300 elements for sub-dataset 1, � 27;300
elements for sub-dataset 2, and � 40;700 elements for sub-dataset
3 was sufficient for solution convergence with respect to mesh size.
We note briefly that in some cases the generated columns did not
exhibit left–right symmetry breaking and instead either skipped
to higher buckling modes or were dominated by local buckling
behavior in a non-straightforward manner. This occurred in under
0:6% of simulations across all sub-datasets. For simplicity, and to
keep the focus on this manuscript on our ML modeling approach,
we discarded these designs and generated new designs to obtain
a total of 25;000 structures with a clear direction of symmetry
breaking per sub-dataset. For all sub-datasets, the direction of sym-
metry breaking is evenly split between the ‘‘left” and ‘‘right” classes.

2.1.3. Note on data format
As stated in Section 1, we designed the ABC dataset to address

three needs: (1) the need for true classification mechanical bench-
mark datasets, (2) the need for mechanical benchmark datasets
with non-grid like geometries, and (3) the need for additional
mechanical benchmark datasets where global mechanical behavior
emerges from local geometry. Releasing the ABC dataset as an open
source mechanics-based classification dataset is a major contribu-
tion of this work. Here, we note briefly that we have made the ABC
dataset inputs (i.e., the structure of each column) available through
two independent approaches. First, in order to give other research-
ers maximum flexibility in adapting the components of our pro-
posed pipeline, we provide the details necessary to reconstruct
the exact input geometry. To accompany this information, we pro-
vide the code needed to re-generate the exact structures from
these input parameters. Second, we directly provide graphs con-
sisting of ‘‘spare,” ‘‘medium,” and ‘‘dense” nodal densities gener-
ated with the pipeline proposed in Section 2.2.1 for each input
geometry. This second approach is designed to make it as easy as
possible for other researchers to begin working with the ABC data-
4

set in PyTorch Geometric [17], a GNN library built on top of the
popular ML framework Pytorch [60]. Looking forward, we hope
that other researchers will be able to use the ABC dataset to both
design improved GNN architectures and devise new strategies to
effectively represent the complex geometry of these structures.
Information for accessing the ABC dataset, and the accompanying
code for both geometry reconstruction and importing graph struc-
tures into PyTorch Geometric, is given in Section 5.
2.2. Metamodeling Pipeline

Our goal is to design a metamodeling pipeline that trains a ML
model to effectively classify the direction of buckling (left vs. right)
for the structures in our ABC dataset introduced in Section 2.1. We
begin in Section 2.2.1 by outlining howwe converted our heteroge-
neous columns into spatial graph network. The overall ML model
architecture is introduced in Section 2.2.2, and further details of
our message-passing convolution layer implementation are given
in Section 2.2.3. We note that we employ the same set of ML model
architecture and hyperparameters to separately train the meta-
models for each sub-dataset.
2.2.1. Representation of Structures
As stated in Section 1, the main focus of this work is predicting

the direction of buckling deformation for complex geometric struc-
tures. Specifically, we are interested in structures where represent-
ing them coarsely as image-like arrays would be inefficient and/or
potentially distort their geometry and lead to loss of critical infor-
mation. In this work, we will represent these complex input data
with minimal loss of information by converting each geometric
structure into an undirected graph [79]. As a brief background,
graphs are ordered pairs G ¼ ðV ; EÞ consisting of n nodes (also
referred to as vertices) V ¼ fv1;v2; . . . ;vng and edges E#V � V
(edges are constructed by connecting nodes). For undirected
graphs, the edges are bidirectional. In general, graphs can contain
both nodal features f i that contains information associated with
nodes, and edge features eij that define the relationship between
two nodes.

In Fig. 2a, we show our methodology for converting geometric
structures into undirected graphs. We note that every step in our
pipeline is modular, and other methods to generate nodes and
determine their connectivity, such as methods in point cloud pro-
cessing [78], could also be applied in the context of our broader
analysis pipeline. The first step of our approach is to create a high
resolution image representation (100� 800) of the domain. Then,
we segmented the high resolution image array with simple linear
iterative clustering (SLIC) [1] using the package sci-kit image
(skimage) [75]. With this approach, each segmented ‘‘superpixel”
becomes a node in a spatial graph with nodal features of centroid
position, area, and eccentricity. Since the SLIC algorithm can vary
the number of superpixels in each image, it is possible to get a dif-
ferent density of nodes for the same structure by changing this
parameter. The nodal density of the graph is a parameter that we
will investigate in Section 3.2. After segmentation, the Region Adja-
cency Graph (RAG) of the structure is formed by discarding super-
pixels not associated with the structure (i.e., the superpixels
associated with the dark areas in Fig. 1), and adding edges between
adjacent remaining superpixels. The RAG is one method of data
representation that we will explore in Section 3.3. In addition,
we also investigate a ‘‘Ball Query” based method of data represen-
tation where the structure-associated superpixel nodes are con-
nected to form an undirected graph via a ball query algorithm
[64]. Specifically, the ball query algorithm constructs edges by
searching for nodes within a prescribed and tunable radius from
the central node (Eij ¼ ffi; jg j kxj � xik 6 r and i; j 2 Vg) where xi

Fig. 2. An overview of our metamodeling pipeline: (a) Steps to convert the high-resolution image representation of the structure to an undirected graph. (b) Architecture used
to predict left/right symmetry breaking. We use 4 PointNet++ Layers to generate embeddings hðlÞ

i (nodal features of node i in layer l) [64] with skip-connections [29] after each
batch normalization layer to obtain the final node embedding, and global max-pooling as the readout function before passing the final embedded vector through a linear
classifier for ‘‘left” vs. ‘‘right” prediction. The corresponding labels n� 4 and n� 64 denote the number of nodes n and the length of the current embedding vector. c) A
schematic of our implementation of a Pointnet++ Layer with spatial graph convolutions. We construct our message functions for message-passing by concatenating node
features hðlÞ

j , which are the embedded feature vector of the neighboring node, and edge features, which are formed from the difference of positions xj � xi . The message
function hðlÞ

i is updated using a Multi-Layer Perceptron (MLP) with one hidden layer aggregated with max pooling. The resulting vector hðlþ1Þ
i is the new embedding that is

passed in the next step of t.he architecture.

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
and xj are the positions of the central and neighboring node respec-
tively and r is the radius of ball query). For our spatial graphs, the
edges for both the RAG and ball query approaches carry feature
vectors xj � xi that describe the distances between the two nodes.
We note that all the node feature vectors are normalized after ball
query to ensure faster training convergence.

Alternatively, we note that structures from sub-dataset 1 and
sub-dataset 2 can also be simply represented as spatial graphs
without loss of information. In Section 3.3, we investigate the
effectiveness of using these ‘‘exact structures” as ML model inputs.
In the case of sub-dataset 1, we obtain ‘‘exact structures” by first
converting each pixel of the structure into a node with a nodal fea-
ture vector containing only nodal position. Then, we connect
neighboring pixels with edges that contain the relative difference
in positions of connected nodes (xj � xi). Since each pixel is the
same size and shape, additional information regarding the geome-
try of each pixel would be redundant. For sub-dataset 2, we repre-
sent the ‘‘exact structure” by treating the center of each ring as a
node where graph edges denote rings that overlap each other. Sim-
ilarly, the edges contain the relative difference in positions of the
connected nodes (xj � xi). Again, since the shape and size of each
ring in sub-dataset 2 is identical, additional information regarding
shape and size would be redundant. With this approach, no infor-
mation is lost in describing the geometry – thus we refer to it as
‘‘perfect representation.” We note briefly that for sub-dataset 3,
the trimmed rings (see Fig. 1) preclude a perfect representation
approach.

2.2.2. Machine Learning Model Architecture
The goal of our ML task is to predict the direction of buckling

(left or right) from the geometry of the structure. Since buckling
behavior is a global emergent behavior that arises from local geo-
5

metric features [7,30,59], we chose to use a convolution based
approach which inherently enforces locality through inductive
bias. However, traditional Convolutional Neural Networks (CNNs)
[40] are not designed for data that is not grid-like (e.g., graph struc-
ture data [79], point cloud data [12], mesh data [61]). Instead of
CNNs, we draw from recent interest within the computer vision
research community in classifying point clouds, unordered and
non-gridlike sets of points in space, with Graph Neural Networks
(GNNs) and spatial graph convolutions [54,78]. These geometry-
encoding point clouds are related to our geometric graph struc-
tures because they are both required to encode spatial information
to drive classification. As such, our ML model starting point is the
previously developed PointNet++ architecture of spatial graph con-
volution layers [64]. While one of the perceived drawback of Point-
Net++ is the lack of inherent rotation invariance in the convolution
layers [64], not having inherent rotation invariance is advanta-
geous for our dataset where we classify left–right symmetry break-
ing since the direction of buckling (and the corresponding labels)
change depending on the orientation of the column. In Fig. 2b,
we schematically illustrate our proposed machine learning model
architecture. Specifically, we applied 4 PointNet++ layers (See Sec-
tion 2.2.3) with skip connections [29] to help smooth the gradient
flow during back propagation. In the context of graph convolutions,
skip connections have also been shown to help prevent over
smoothing by preserving local information [86]. We implement
these skip connections by concatenating each embedded nodal fea-

ture vector (hl
i) after every convolution layer into a final nodal

embedding vector (see Fig. 2b). The global graph embedding is
then obtained by using global max-pooling on the concatenated
nodal features as the readout function (highlighted maxi2V in
Fig. 2b). The resulting global graph embedding vector is subse-
quently used to predict the direction of symmetry breaking via a

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
linear classifier. To train this model, we use the cross-entropy loss
function, and the ML model is trained for 50 epochs with an Adam
optimizer [37] before convergence. In short, the ML algorithm
takes in nodal features and computes the global graph embedding
through spatial graph convolution layers. The global graph embed-
ding is then passed through a linear classifier to predict the buck-
ling direction of the structure. To ensure reproducibility, all ML
models are trained with 10 different weight initialization seeds.
For each sub-dataset, the ML model is trained on 20;000 data
points. We also initially deployed and tuned the hyperparameters
and architecture of our ML models on validation data (2;500 data
points) before finally evaluating our model on held out test data
(2;500 data points).
2.2.3. Spatial Graph Convolution Layer Implementation
We implemented the PointNet++ spatial graph convolutions

using the Pytorch Geometric library [17]. For tasks involving pre-
diction of whole graphs, GNNs that utilize spatial graph convolu-
tions, also known as message passing neural networks [21], can
be summarized in two phases: the message passing phase, and
the readout phase. During the message passing phase, the nodal
embeddings are recurrently updated through ‘‘messages.” These
‘‘messages” are constructed from current central nodal embed-

dings hðlÞ
i (or nodal feature vectors f i) and neighboring embeddings

hðlÞ
j . Note that neighboring nodes in terms of graphs refer to nodes

that are directly connected by an edge (see Fig. 2c). New nodal

embeddings hðlþ1Þ
i are obtained by putting the current embeddings

through an update function and combining them by an aggregation
function. While the update function can be any differentiable func-
tion [5,21], in the case of GNNs, the most common update function
is a Multilayer Perceptron (MLP) [31]. The aggregation function is
also a differentiable function with the additional constraints of
being invariant to input node order and able to take in a variable
number of inputs. Examples of commonly used aggregation func-
tion include element-wise sum, mean pooling, and maximum/min-
imum pooling [5]. Each update-aggregation pairing is also referred
to as a spatial graph convolution layer. Note that in general, while
our implementation passes the message through the update func-
tion before the aggregation function, the order of update and
aggregation can be interchanged [5]. During the message passing
phase, the nodal embeddings will be updated a prescribed number
of times prior to the readout phase. During the readout phase, we
then compute a global graph feature vector through readout func-
tions that are also invariant to node ordering. Common readout
functions, similar to aggregation functions, are mean-pooling,
min/max-pooling, and sum-pooling applied to all of the node
embeddings in the graph [5]. For ease of implementation, we
employ EdgeConv [78] (a generalized framework for performing
spatial convolutions on point clouds) to perform spatial graph con-
volutions during the message passing phase on our spatial graph.
In general, EdgeConv also uses the edge features alongside nodal
features to construct messages for message passing. We note again
briefly that since our pipleline is modular, variants of EdgeConv or
alternative spatial graph convolutions layers could be applied here
instead in future work.

For our ML model implementation of message passing, each
node feature f i consists of nodal position xi, superpixel area, and
superpixel eccentricity (eccentrity is defined as e ¼ c

a where c and
a are the focal distance and major axis length respectively of an
ellipse with the same second moment of inertia as the superpixel).
Each edge feature contains the difference in position between the
central node and the connected neighboring node (xj � xi with xi

and xj denoting the position of the central and neighboring node
respectively). As seen in Fig. 2c, each Pointnet++ layer constructs
6

its message by concatenating the current nodal features and the
edge features. The message is passed through a MLP [31] with 1
hidden layer (our update function), and aggregated with max-
pooling to update the nodal embedding. Note that self-loops (edges
that connect the central node to itself) are present in our graphs. As

such, the new embedded feature hlþ1
i vector is expressed as:

hðlþ1Þ
i ¼ max

ði;jÞ2E
MLPfhðlÞ

j ;xj � xig ð2Þ

where h denotes the nodal embedding vectors. Subscripts i and j
denote the central node and neighboring node respectively, and
superscript l denotes the convolution layer number. We initialize

hð0Þ
i as f i (i.e., the first input to the first PointNet++ Layer is the nodal

feature vector). After the first layer, all the embedding vectors have
a length of 64. We note that all features except for position are min–
max scaled. After every PointNet++ Layer, we apply batch normal-
ization (BatchNorm) [32] to accelerate training and to provide some
additional regularization. We apply the Leaky ReLu activation func-
tion [50] after the BatchNorm layer, and the resulting embedding
nodal vectors are passed onto the next layer. After the last convolu-
tional layer, our readout function is max-pooling, as described in
Section 2.2.2. In summary, during the message passing phase, our
spatial convolutional layers construct messages from initialized
nodal features and edge features that recurrently update with each
convolutional layer. For the readout phase, we use max-pooling to
generate an embedding of each graph and then use it to classify
the buckling direction of each corresponding geometric structure.

2.2.4. Ensemble Learning
In this work, we train our ML model 10 times for each dataset

with 10 different random weight initializations (i.e., different
seeds). For each MLmodel initialization, we obtain a slightly differ-
ent set of predictions. Thus, each ML model acts as a different clas-
sifier. With these different classifiers on hand, we are then able to
use ensemble methods to increase the overall prediction accuracy
of our ML model framework. Broadly speaking, there are many dif-
ferent ensemble methods such as boosting [70], stacking [80], and
bagging [10], that have been shown to increase overall prediction
accuracy by leveraging multiple ML models [13,19,62]. In this
work, we employ a simple voting approach that requires no addi-
tional training beyond creating the initial ML models [13]. Specifi-
cally, we investigate if a voting based approach will enhance our
GNN ML model framework. We investigate predictions obtained
by combining 10 trained ML models through both hard and soft
voting. For hard voting, also referred to as majority voting, the pre-
dicted labels for each input are counted and the label with the
highest count becomes the final prediction. For soft voting, also
referred to as unweightedmodel averaging, the predicted probabil-
ity of classes for each label is averaged over all ML models. The
final predicted label is then the class with the highest average
probability. In Section 3.4, we show the performance of both hard
and soft voting. Additionally, since each individual ML model is
trained with a cross entropy loss, the computed probabilities via
soft voting are also the ensemble’s prediction confidence [39].
Broadly speaking, ML models are most useful for engineering
applications when they are able to produce a meaningful confi-
dence level for each prediction. In this context, a ML model is con-
sidered ‘‘well-calibrated” when model confidence reflects the true
probability that the model is correct [26,56,57]. By way of example,
if a ML model is perfectly calibrated and is 80% confident for 100
predictions, 80 of those predictions will be correct. Reliability dia-
grams, also referred to as calibration curves, are a common visual
approach to assessing the quality of model confidence. Briefly, reli-
ability diagrams are constructed by first separating the prediction
confidence that a given sample is in a chosen class into sequential

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
bins, and then comparing the bin average to the true fraction of
samples with the chosen class in each bin. In the context of the
ABC dataset, we can construct a reliability curve by choosing the
‘‘right” buckling class and placing ‘‘model confidence” on the x-
axis and ‘‘fraction buckled right” on the y-axis. A perfectly-
calibrated model will exhibit a reliability curve equal to the iden-
tity function [26,56,57]. In addition to visualizing these curves,
we also report quantitative metrics for model calibration. Specifi-
cally, we compute the Expected Calibration Error (ECE) and the
Maximum Calibration Error (MCE) from each reliability diagram
[56]. The ECE is computed by taking a weighted average the of gaps
between perfect calibration and model confidence within each bin,
written as:

ECE ¼
XB

i¼1

ni

N
jFi � Cij ð3Þ

where B is the number of bins, ni is the number of samples in each
bin, N is the total number of samples, Fi is the frequency of class 1 in
the bin, and Ci is average confidence that the sample is in class 1 in
the bin). The MCE is defined as the maximum gap in each reliability
diagram, written as:

MCE ¼ max
i2f1;...Bg

jFi � Cij: ð4Þ

In Section 3.5, we investigate the model calibration of our best-
performing ensembles in each sub-dataset.

3. Results and Discussion

In this Section, we investigate multiple approaches towards
designing a metamodeling pipeline and subsequently increasing
its prediction accuracy. Section 3.1 describes our data augmenta-
tion strategy that takes advantage of the symmetries in our train-
ing dataset. Next, in Section 3.2, we explore the effect of graph
nodal and edge density on the prediction accuracy. Then, in Sec-
tion 3.3, we perform a brief study on different strategies to repre-
sent structures as graphs. In Section 3.4 we leverage ensemble
learning to obtain higher prediction accuracies. We end by exam-
ining model calibration in Section 3.5 We note that all results
reported from here onward are obtained from held out test data.

3.1. Data Augmentation Enhances Prediction Accuracy

Here, we present the performance of our PointNet++ architec-
ture on both un-augmented and augmented versions of each
sub-dataset. We perform data augmentation by reflecting each col-
umn in the input domain about the x axis, y axis and both axes.
When the column is reflected about the y axis and both axes, the
associated output label is changed due to the symmetry of the
problem. This method of data augmentation is only feasible
because of the lack of rotational invariance in the PointNet++ Lay-
ers. We note briefly that in these studies, we begin data augmenta-
tion with the ground truth geometries of the columns before
segmentation and conversion into point clouds (see Fig. 2a). The
augmentations are then combined with the original training data-
set. By reflecting the geometries rather than the graphs them-
selves, the graphs of the reflected structure will be slightly
different than if the graphs in the original training dataset had sim-
ply been rotated due to the randomness associated with the seg-
mentation process. These variable graph representations also
enforce the notion that slightly different graphs can represent
the same structure.

In Fig. 3 and Table 1, we demonstrate the effectiveness of data
augmentation in increasing model predictive performance. Note
that each data point contains the mean �95% confidence interval
7

(CI) of 10 separately trained models with the same architecture
but with different weight initializations. In Fig. 3, we show test
prediction accuracy with respect to the number of unaugmented
training datapoints for both unaugmented and augmented training
datasets. The results shown in Table 1 (values obtained from Fig. 3)
are the highest prediction accuracy for each sub-dataset. Based on
these results, it is clear that our approach to data augmentation is
highly effective at increasing prediction accuracy. Specifically, it
increases prediction accuracy by 3% to 8% in the case of 20;000
training points. And, from the results presented in Table 1, we
can see that the accuracy between training the model without data
augmentation with 20;000 data points (Table 1 column 1) is nearly
equivalent to training the model with 5;000 data points (Table 1
column 2) but with data augmentation. This demonstrates that
our data augmentation method is comparable to increasing the
training set size by a factor of 4. In addition, as shown in Fig. 3,
even with data augmentation, the trend of the accuracy is still
increasing at 20;000 datapoints. This indicates that more data-
points (i.e., a larger training dataset) would likely improve the
model prediction accuracy. We also note that as anticipated, the
highest prediction accuracy is in sub-dataset 1, which has the sim-
plest features, while sub-dataset 3 has the lowest accuracy corre-
sponding to the most complicated features.

3.2. Node Density and Query Radius Influence Prediction Accuracy

In this Section, we examine the influence of node and edge den-
sity of the graph representations on model prediction accuracy. We
controlled graph nodal density by prescribing ‘‘sparse,” ‘‘medium,”
and ‘‘dense” levels of segmentations to the high-resolution images
(see Fig. 2a). Details on the distribution of node densities for each
sub-dataset as well as visualizations of graphs from each node den-
sity are presented in Appendix A. We controlled edge density by
defining different query radii of r ¼ 0:2w;0:3w;0:4w, where w is
the width of the column. Note that for a fixed ball query radius,
simply increasing the nodal density will increase the edge density
of the graph. In Fig. 4, we illustrate the effect of graph edge density
on prediction accuracy. Again, we note that each data point con-
tains the mean �95% confidence interval (CI) of 10 separately
trained models with the same architecture but different initializa-
tions. In all cases, the ML model is trained with an augmented
dataset representing 20;000 simulation results. As demonstrated
in Fig. 4, regardless of neighborhood size, the prediction accuracy
increases when edge density increases up to a maximum predic-
tion accuracy where adding in additional edges does not improve
performance. This result may be due to the fact that after each
message passing layer, the subsequent message passing layers will
contain information from the next hop (neighbors of neighbors),
thus higher edge density is redundant [86] since no additional
information about the geometry will be added. With our chosen
model architecture of 4 Pointnet++ layers, each node will have
information about its 4-hop neighbors. The average number of
edges for which the highest prediction accuracies are achieved is
2046 edges for sub-dataset 1 (‘‘medium” node density with query
radius of r ¼ 0:4w), 3815 edges for sub-dataset 2 (‘‘dense” node
density with query radius of r ¼ 0:3w), and 7479 edges for sub-
dataset 3 (‘‘dense” node density with query radius of r ¼ 0:3w).
Again, the maximum prediction accuracy is shown in Table 1 col-
umn 4.

3.3. Ball Query Graph Representation Out-Performs the Region
Adjacency Graph and Perfect Structure Representation

Here, we investigate three approaches to column geometry rep-
resentation and observe the effect of each approach on pipeline
prediction accuracy. We note that aside from the different input

5000 10000 15000 20000
Training Set Size

0.65

0.70

0.75

0.80

A
cc

ur
ac

y

Sub-Dataset 3

Model Trained Without Data Augmentation Model Trained With Data Augmentation

5000 10000 15000 20000
Training Set Size

0.75

0.80

0.85

0.90

A
cc

ur
ac

y

Sub-Dataset 2

5000 10000 15000 20000
Training Set Size

0.825

0.850

0.875

0.900

0.925

A
cc

ur
ac

y
Sub-Dataset 1

Fig. 3. Effect of data augmentation on test accuracy. The markers show the mean of 10 trained models with different weight initialization and the error bars represent a 95%
confidence interval. Note that the scales for the y-axis are different for each plot. The dataset is augmented by reflecting the columns about the x axis, y axis and both axes.
Note that the output labels is changed when the column is reflected about the y axis and both axes.

Table 1
Comparison of the model test accuracy on the original training dataset and the augmented training dataset. Tabulated values are the mean and 95% CI of the model with 10
different initializations. The values shown in this table are the best prediction accuracies we obtained using this metamodeling pipeline. Prediction accuracies are obtained from
Fig. 3.

Original Dataset Augmented Dataset

5 K training points 20 K training points 5 K training datapoints 20 K training datapoints

Sub-Dataset 1 0:818� 0:010 0:890� 0:009 0:884� 0:004 0:934� 0:003
Sub-Dataset 2 0:754� 0:020 0:861� 0:007 0:846� 0:019 0:894� 0:009
Sub-Dataset 3 0:628� 0:011 0:749� 0:010 0:737� 0:023 0:831� 0:004

0 2000 4000 6000
Average Number of Edges

0.75

0.79

0.83

0.87

0.91

A
cc

ur
ac

y

Sub-Dataset 2

0 3000 6000 9000
Average Number of Edges

0.72

0.76

0.80

0.84

A
cc

ur
ac

y

Sub-Dataset 3

0 2000 4000 6000 8000
Average Number of Edges

0.88

0.90

0.92

0.94

A
cc

ur
ac

y

Sub-Dataset 1

Node Density
Sparse Medium Dense

Query Radius
r = 0.2w r = 0.3w r = 0.4w

Fig. 4. These plots show the importance of graph structure representation. Each marker represents the mean of 10 trained models with different initializations and the error
bars represent the 95% confidence interval. The parameters varied are the number of superpixels during segmentation (‘‘sparse,” ‘‘medium,” and ‘‘dense”), and the ball query
radius. The plots show that increasing the edges density of the graphs increases test prediction accuracy up to a point. Note that the scale for the y-axis is different for each
plot.

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
graphs for training, validating, and testing phases, everything else
in the pipeline (e.g. the ML architecture and the 10 different weight
initializations) remains the same. As stated in Section 2.2.1, we
investigate ball query representation as the primary approach,
and region adjacency graph (RAG) representation and ‘‘exact struc-
ture” representation as two potential alternatives. Fig. 5 illustrates
the test prediction accuracies of each input representation type.
For sub-dataset 1 and sub-dataset 3, RAG representations perform
8

slightly worse than the ball query approach. For sub-dataset 2, RAG
performs comparably to ball query, but is still marginally worse.
We note that RAG representations can be seen as a special case
of the ball query algorithm where only neighboring superpixels
form edges (i.e., query radius r matches the superpixel size), lead-
ing it to perform similarly to graphs constructed using the ball
query approach. Critically, we note that despite no loss of geomet-
ric information, the ‘‘exact” representation approach performs

Ball
Query

RAG Exact
Structure

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y
Sub-Dataset 1

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Ball
Query

RAG Exact
Structure

Sub-Dataset 2

0.80

0.81

0.82

0.83

0.84

0.85

A
cc

ur
ac

y

N/A

Ball
Query

RAG Exact
Structure

Sub-Dataset 3

Single Model Hard Voting Soft Voting

Fig. 5. Test accuracy with respect to graph structure representation method for an augmented training dataset of 20;000 simulations with node density and ball radius
informed by the parameter sweep in Section 2.2.1. In each plot, the black circle marker shows the accuracy of an individual ML model. The red square and pink diamond show
aggregated accuracy from hard voting and soft voting respectively. For each dataset, we show results from input graphs created through ball query, RAG, and exact
representation. Note that the scale for the y-axis are different for each plot, and that for sub-dataset 3 there is no ‘‘exact structure”. representation.

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
worse than both ball query and RAG for both sub-dataset 1 and
sub-dataset 2 (for sub-dataset 3 there is no ‘‘exact” structure for-
mulation available due to the trimming step of geometry genera-
tion). The difference in performance is particularly striking for
sub-dataset 2, where the ‘‘exact” representation prediction accu-
racy is � 50% for all model initializations, indicating that the ML
model does not perform better than random guessing. We believe
that this was because PointNet++ was initially developed to deal
with point cloud datasets such as ShapeNet [12,64], so point cloud
analogous geometric representations work best with this pipeline.
Table 2
Comparison of test prediction accuracies for individual model mean, best individual
model, hard voting, and soft voting. This table reflects the 10 ball query based models
for each sub-dataset shown in Fig. 5.

Sub-Dataset 1 Sub-Dataset 2 Sub-Dataset 3

Mean of 10 Models 0.934 0.894 0.831
Best Individual Model 0.937 0.905 0.839
Hard Voting 0.946 0.910 0.856
Soft Voting 0.952 0.913 0.856

0.0 0.2 0.4
Model C

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

B
uc

kl
ed

R
ig

ht

Sub-Da

0.0 0.2 0.4 0.6 0.8 1.0
Model Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

B
uc

kl
ed

R
ig

ht

Sub-Dataset 1

Perfect Calibration Model O

Fig. 6. Reliability Curves for the best performing ensemble of 10 models. Models are tra
density with r ¼ 0:3w for sub-dataset 2 and sub-dataset 3. A perfectly calibrated mode
calibration is noted with the hatched pattern.

9

We note that there could potentially be other ML model architec-
tures where exact geometry representations would perform better,
but exploration of these architectures is outside the scope of this
paper.
3.4. Ensemble Learning Enhances Prediction Accuracy

For each sub-dataset, we independently train 10 ML models
with the same hyperparameters but different weight initializa-
tions. Therefore, we can investigate not only the average and range
of model accuracy, but also the efficacy of applying ensemble
learning methods to leverage all independently trained models to
boost performance. Specifically, we employ both hard voting and
soft voting to aggregate our predictions from the available ML
models (see Section 2.2.4 for details on hard and soft voting). The
plots in Fig. 5 demonstrate the effectiveness of both voting meth-
ods for increasing the prediction accuracy for column representa-
tions produced from our proposed metamodeling pipeline
outlined in Section 2.2.1, particularly for sub-dataset 3. In all cases,
the final predictions obtained via voting lead to slightly better pre-
diction accuracy than the best individual accuracy from the 10 dif-
0.6 0.8 1.0
onfidence

taset 2

utput Gap to Perfect Calibration

0.0 0.2 0.4 0.6 0.8 1.0
Model Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

B
uc

kl
ed

R
ig

ht

Sub-Dataset 3

ined on r ¼ 0:4w with ‘‘medium” node density for sub-dataset 1, and ‘‘dense” node
l would be a perfect diagonal. In this plot, the gap between observed and perfect

Table 3
Comparison of Expected Calibrated Error (ECE, see Eqn. 3) and Maximum Calibrated
Error (MCE, see Eqn. 4) for ensemble of ML models. A perfectly calibrated model
would have ECE and MCE of zero.

Sub-Dataset 1 Sub-Dataset 2 Sub-Dataset 3

ECE 0.024 0.041 0.023
MCE 0.246 0.169 0.076

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
ferent model initializations (see Table 2). For sub-dataset 1, soft
voting performed better than hard voting and lead to an accuracy
increase of � 0:15%. For sub-dataset 2, soft voting performed bet-
ter than hard voting and lead of an accuracy increase of � 0:076%.
For sub-dataset 3, soft voting and hard voting performed similarly
and lead to an accuracy increase of � 1:7%. The efficacy of ensem-
ble voting with our classifier suggests that differently initialized
models potentially learn different geometric features and combin-
ing these trained models leads to overall variance reduction
[10,19,62,70]. The visualizations of the important edges with
GNNExplainer [83] for each sub-dataset in Appendix B further sup-
port the notion that different geometric features are learned in dif-
ferent initializations. However, due to the different geometrical
features that are highlighted depending on model initialization, it
is not clear if important insights on the geometry can be inferred
from GNNExplainer.
3.5. Ensemble Learning Displays Well-Calibrated Confidence

In addition to evaluating the accuracy of our ML models, we are
also interested in evaluating the confidence of our ensemble of pre-
dictions. As referred to in Section 2.2.4, reliability diagrams are a
useful visual tool to evaluate model calibration. To construct our
reliability diagrams, we first separate the model predictions into
bins according to the model confidence that the input column is
in class 1 (i.e. buckles right), and then count the actual number
of class 1 labels in the bin. The number of class 1 labels is then nor-
malized with the number of samples in each bin. Fig. 6 shows the
reliability diagrams for the ensemble of 10 best-performing models
defined in Section 3.2 that are trained on ‘‘medium” node density
with r ¼ 0:4w for sub-dataset 1, and ‘‘dense” node density with
r ¼ 0:3w for both sub-dataset 2 and sub-dataset 3. In Table 3, we
report the ECE and MCE for each ensemble. Recall that for model
confidences to be well-calibrated, the reliability diagram must be
close to the diagonal (i.e., the black dotted line in Fig. 6). As such,
perfectly-calibrated models will also have ECE and MCE values that
are close to zero. Visually, the reliability diagrams in Fig. 6 shows
that our ML models are slightly underconfident (lower confidence
compared to fraction of class 1), but overall still exhibit reliable
behavior. Quantitatively, the ECE and MCE for each ML models is
relatively low, especially in the case of sub-dataset 3. In Appendix
C, we further investigate potential differences in the deformation
profile between columns from different model confidence levels.
4. Conclusion

In this paper, we introduce the Asymmetric Buckling Columns
(ABC) dataset, a mechanics specific classification dataset of spa-
tially heterogenous columns under compression where local geo-
metric structure influences the global emergent buckling
direction. The dataset consists of 3 sub-datasets, each constructed
from basic geometric features with varying degrees of complexity.
Our goal in defining these complex geometries was to create a
dataset where treating each column as an image-like array would
not be the obvious choice for data representation. Then, to explore
10
alternatives to ‘‘image-like” data representations while keeping the
benefits of inductive biases from the convolution operation, we
proposed a metamodeling pipleline that is broadly applicable to
any structure with complex geometric features, and tested its per-
formance on the ABC dataset. The proposed pipeline first converts
the columns into spatial graphs via image segmentation, then
employs a ML architecture comprised of PointNet++ spatial graph
convolution layers [64] to classify each column based on its buck-
ling direction. Within the scope of our proposed pipeline, we also
investigated strategies to increase prediction accuracy through
data augmentation, alternative spatial graph formulations, and
ensemble learning. We showed that our data augmentation
scheme improved the prediction accuracy comparably to increas-
ing the training set size by a factor of 4. We also demonstrated that
choosing a suitable edge density to represent our structure is key
to obtaining the best prediction accuracy. Additionally, we
improved the overall prediction accuracy by applying voting meth-
ods to our 10 separately trained models. Finally, we showed that
our proposed ensemble of metamodels is well-calibrated.

Looking forward, we hope that this work will serve as a plat-
form for other researchers to explore alternative data representa-
tions for ML pipelines in mechanics, especially in problems
where geometry plays an important role in the emergent behavior
of the system. To facilitate this, we have released the ABC dataset,
the code to generate the dataset, and the code to implement our
proposed ML pipeline all under open source licenses. The availabil-
ity of these resources will allow others to either apply our ML pipe-
line to alternative problems, or benchmark alternative methods on
the same dataset. Beyond the scope of the classification problem
presented in this paper, it would also be interesting to see how dif-
ferent structure representation strategies and GNN architectures
perform for predicting full-field QoIs for various problems in
mechanics. Specifically, while there are reported successes in pre-
dicting full-field QoIs in a variety of mechanics problems
[53,82,85], and examples of applying GNNs to predict full-field
QoIs from physics-based simulations [61,68], there are limited
examples in the literature that predict full-field QoIs of truly emer-
gent mechanical behavior from unstructured and non-gridlike
data. Similarly, substantial future work is needed in curating and
disseminating benchmark datasets of complex structures that are
experimentally tested [24,47] rather than simulated. Due to the
time and cost for experiments, methods to combine experimental
data and computational data through methods such as transfer
learning should also be explored [23,45]. Another interesting direc-
tion for future work is in the interpretability of GNNs especially
when applied to problems concerning solid mechanics. While
GNN interpretibility for problems in computer vision typically
focuses on qualitative visualizations [83], there have also been
important recent advances in interpreting learned physical laws
as simple symbolic equations with GNNs on discrete n-body prob-
lems [14,15]. It would be interesting to see if similar methods
could be applied to problems in solid mechanics to potentially
interpret the complex relations between structural behavior and
domain geometry. To this end, we view the creation of the ABC
dataset and our initial pipeline as a starting point for substantial
future work at the intersection of machine learning and mechanics.
5. Additional Information

The ABC dataset is available through the OpenBU Institutional
Repository at https://open.bu.edu/handle/2144/43730 [63]. All
code used to generate the domain geometry and labels is available
at https://github.com/pprachas/ABC_dataset. All code for imple-
mentation of the metamodeling pipeline from spatial graph gen-

https://open.bu.edu/handle/2144/43730

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
eration to PointNet++ layers is also available at https://github.com/
pprachas/ABC_dataset.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

We would like to thank the staff of the Boston University
Research Computing Services and the OpenBU Institutional Repos-
itory (in particular Eleni Castro) for their invaluable assistance with
Fig. 8. Comparisons of node densities of the ABC columns obtained from our metamodeli
(top) to dense (bottom).

Fig. 7. Histogram of graph node densities from our dataset. Each plot contains hi

11
generating and disseminating the Asymmetric Buckling Columns
(ABC) Dataset. This work was made possible through start up funds
from the Boston University Department of Mechanical Engineering,
the David R. Dalton Career Development Professorship, the Hariri
Institute Junior Faculty Fellowship, the Haythornthwaite Research
Initiation Grant, and the National Science Foundation grant CMMI-
2127864.
Appendix A. Node density

Fig. 7 illustrates the histograms of graph node densities from
using the metamodeling pipeline proposed in Section 2.2.1. We
note that the node densities are not fixed for each dataset since
ng pipeline for each sub-dataset. The structures in each row are ordered from sparse

stograms of sparse, medium, and dense node densities for each sub-dataset.

https://github.com/pprachas/ABC_dataset
https://github.com/pprachas/ABC_dataset

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
we controlled the number of superpixels during SLIC segmenta-
tion, and superpixels not associated with the structure (the black
regions in Fig. 2) are discarded. Fig. 8 gives a visual comparison
between the different nodal densities for each sub-dataset.

Appendix B. Visualization of ML architecture with different
initializations

In this Appendix, we visualize our trained ML models with
GNNexplainer [83]. In brief, GNNExplainer interprets the decisions
Sub-Dataset 1 Mode

Fig. 9. Visualization of the 10 different initializations of the trained GNNmodel for sub-d
[83], nodes are represented as red markers, all nodes within ball radius 40 are connected b
thicker (see zoom of the first structure).

Sub-Dataset 2 Mode

Fig. 10. Visualization of the 10 different initializations of the trained GNN model for sub-
[83], nodes are represented as red markers, all nodes within ball radius 30 are connected
and thicker.

12
of a GNN model by identifying the sub-graph GS of the input graph
that is the most important to the prediction of the output label. We
note that in our case of graph classification, GS does not have to be
connected. For large graphs, brute-force testing of all possible sub-
graphs is computationally intractable. The GNNExplainer algo-
rithm works around this constraint by determining the probability
that each edge is part of sub-graph GS [83]. As such, the output of
GNNExplainer is a weighted edge-mask of a given graph structure
that determines the probability that each edge is a part of GS for a
given trained GNN model. In Fig. 9–11, we visualize the edge-
l Visualization

ataset 1 with medium node density. In this visualization, created with GNNExplainer
y edges, and edges that are likely to be influential to label predictions are darker and

l Visualization

dataset 2 with dense nodal density. In this visualization, created with GNNExplainer
by edges, and edges that are likely to be influential to label predictions are dar.ker

Fig. 11. Visualization of the 10 different initializations of the trained GNN model for sub-dataset 3 with dense nodal density. In this visualization, created with GNNExplainer
[83], nodes are represented as red markers, all nodes within ball radius 30 are connected by edges, and edges that are likely to be influential to label predictions are darker and
thicker.

Low
Confidence

and Incorrect

Low
Confidence
and Correct

High
Confidence
and Correct

0.15

0.16

0.17

0.18

0.19

Sub-Dataset 1

)
x

u
m

in
−

x
u

(m
ax

w1

Low
Confidence

and Incorrect

Low
Confidence
and Correct

High
Confidence
and Correct

0.15

0.16

0.17

0.18

0.19

Sub-Dataset 2

)
x

u
m

in
−

x
u

(m
ax

w1

Low
Confidence

and Incorrect

Low
Confidence
and Correct

High
Confidence
and Correct

0.15

0.17

0.19

0.21

0.23

0.25

0.27

Sub-Dataset 3
)

x
u

m
in

−
x

u
(m

ax
w1

Fig. 12. Difference of maximum normalized x-displacements for each category, with 100 columns in each category. The proposed metric roughly measures the potential
presence of higher order buckling modes, which is a source of uncertainty. We note that our stopping criterion for our simulations is defined as max juxj > 0:15w.

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
masks for each of our trained ML models applied to identical sam-
ples. For each example, the underlying graph structure is identical
(created from our metamodeling pipeline), and GNNExplainer is
applied to the 10 different ML model initializations. Edges with a
higher probability of being part of GS are darker and thicker (see
in particular the Fig. 9 zoom of the first structure). We note that
while the model visualization highlights interesting features, in
all cases, the features highlighted by GNNExplainer are not consis-
tent across models. This observation leads us to believe that each
ML model is learning different features, and therefore prompted
us to investigate ensemble methods as a means to increase predic-
tion accuracy (see Section 2.2.4). We also note that GNNExplainer
outputs a feature mask that shows the importance of each node.
Similar to the edge masks, we observed that each initialization
led to a different importance for each nodal feature, further sup-
porting the notion that the models from each initialization learn
different features. On the other hand, since GS depends on model
13
initializations, it is not clear if any insights on mechanistically
important features can be obtained through GNNExplainer
directly.

Appendix C. Comparison between Deformed Profiles of High
and Low Confidence Predictions

After confirming that our metamodel ensembles are well-
calibrated, we investigate potential patterns across three cases:
(1) low confidence with incorrect predictions (‘‘Low Confidence
and Incorrect”), (2) low confidence with correct predictions
(‘‘Low Confidence and Correct”), and (3) high confidence with cor-
rect predictions (‘‘High Confidence and Correct”). To this end, we
visualize randomly selected examples from each case in Fig. 13,
we visualize overlaid column centerline displacements from each
case in Fig. 14, and we visualize the range of x-displacement pre-
sent in each column in Fig. 12. Across all examples, there is little

Fig. 13. Examples of deformed columns for high and low confidence predictions. Structures are arranged according to confidence levels (with low being 50% probability of
being in either class and high being 100% in the correct class) and accuracy of prediction.

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
overt visible difference between cases. However, in sub-dataset 1
and sub-dataset 2, some columns that correspond to low confi-
dence predictions exhibits signs of higher modes of buckling
(e.g., centerline x-deflections cross the y ¼ 0). However, this qual-
itative difference between cases is not observed in subdataset-3,
perhaps due to the fact that local buckling of trimmed rings in
subdataset-3 lead to more complex deformation profiles as shown
in Fig. 13 and Fig. 14.

In Fig. 12, we plot the range of x-displacements for each column
for 100 columns per group to further attempt to visualize a trend.
Specifically, Fig. 12 shows the distribution of the difference in max-
imum and minimum x-displacement that is normalized by the col-
umn width (ð1=wÞðmaxux �minuxÞ). Note that the stopping
criterion for our simulations is a maximum absolute x-
displacement greater than 15% of the column width
(maxux > 0:15w). Again, while there is some distinctions in the
differences in deflection between high confidence and low confi-
dence predictions in the case of sub-dataset 1 and sub-dataset 2,
14
there is no real separation in the case of sub-dataset 3. This lack
of clear distinction between the deformation profiles for each case
might be due to the fact that uncertainty in model predictions
comes from a combination of sources. First, the model performance
plots shown in Fig. 3 clearly indicate that imperfect model perfor-
mance is in part due to small training set size. Essentially, lack of
coverage of the massive input parameter space is a source of model
uncertainty. Second, as shown in Fig. 2a, each structure geometry
is captured approximately rather than exactly, which could poten-
tially contribute to uncertainty in prediction. Finally, and perhaps
most interestingly, some of the qualitative results shown in
Fig. 14 indicate that a subset of the columns in this dataset could
be behaving a way that is ‘‘mechanically distinct” where the buck-
led column deforms in a manner that is more dissimilar from typ-
ical first mode buckling of a symmetrically loaded fixed–fixed
column without geometric heterogeneity. We consider this third
potential source of uncertainty a particularly interesting avenue
for further study.

0.1 0.0 0.1
Normalized x-Deflection

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

ize
d

Po
sit

io
n

A
lo

ng
C

ol
um

n

Sub-dataset 1 Low Confidenceand Correct

-

0.1 0.0 0.1
Normalized x-Deflection

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Po
sit

io
n

A
lo

ng
C

ol
um

n

Sub-dataset 1 High Confidence and Correct

-

0.1 0.0 0.1
Normalized x-Deflection

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

ize
d

Po
sit

io
n

A
lo

ng
C

ol
um

n

Sub-dataset 2 Low Confidenceand Incorrect

-

0.1 0.0 0.1
Normalized x-Deflection

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
ize

d
Po

sit
io

n
A

lo
ng

C
ol

um
n

Sub-dataset 2 Low Confidenceand Correct

-

0.1 0.0 0.1
Normalized x-Deflection

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Po
si

tio
n

A
lo

ng
Co

lu
m

n
Sub-dataset 1 Low Confidenceand Incorrect

-

0.1 0.0 0.1
Normalized x-Deflection

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Po
sit

io
n

A
lo

ng
C

ol
um

n

Sub-dataset 2 High Confidence and Correct

-

0.1 0.0 0.1 0.2
Normalized x-Deflection

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Po
sit

io
n

A
lo

ng
C

ol
um

n

Sub-dataset 3 Low Confidenceand Incorrect

-

0.1 0.0 0.1
Normalized x-Deflection

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

ize
d

Po
sit

io
n

A
lo

ng
C

ol
um

n

Sub-dataset 3 Low Confidenceand Correct

-

0.1 0.0 0.1
Normalized x-Deflection

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
Po

sit
io

n
A

lo
ng

C
ol

um
n

Sub-dataset 3 High Confidence and Correct

-

Fig. 14. Centerline displacements of 100 columns in each category of confidence and accuracy. Plots are arranged according to confidence levels (with low being 50%
probability of being in either class and high being 100% in the correct class) and accuracy of prediction. Note that x-axis and y-axis are scaled differently for ease of
visualization, and thus the illustrated deflections are not to scale.

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
References

[1] Achanta Radhakrishna, Shaji Appu, Smith Kevin, Lucchi Aurelien, Fua Pascal,
Süsstrunk Sabine. Slic superpixels compared to state-of-the-art superpixel
methods. IEEE Trans Pattern Anal Mach Intell 2012;34(11):2274–82.

[2] Ahrens James, Geveci Berk, Law Charles. Paraview: An end-user tool for large
data visualization. Visual Handbook 2005;717(8).

[3] Alnæs Martin, Blechta Jan, Hake Johan, Johansson August, Kehlet Benjamin,
Logg Anders, et al. The fenics project version 1.5. Arch Numer Software, 2015;3
(100)..

[4] Ayachit Utkarsh. The paraview guide: a parallel visualization application.
Kitware Inc; 2015..

[5] Battaglia Peter W, Hamrick Jessica B, Bapst Victor, Sanchez-Gonzalez Alvaro,
Zambaldi Vinicius, Malinowski Mateusz, et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261; 2018..

[6] Bertoldi Katia, Reis Pedro M, Willshaw Stephen, Mullin Tom. Negative
poisson’s ratio behavior induced by an elastic instability. Adv Mater 2010;22
(3):361–6.

[7] Bertoldi Katia, Vitelli Vincenzo, Christensen Johan, Van Hecke Martin. Flexible
mechanical metamaterials. Nat Rev Mater 2017;2(11):1–11.

[8] Bessa Miguel A, Glowacki Piotr, Houlder Michael. Bayesian machine learning in
metamaterial design: Fragile becomes supercompressible. Adv Mater 2019;31
(48):1904845.
15
[9] Bogo Federica, Romero Javier, Loper Matthew, Black Michael J. Faust: Dataset
and evaluation for 3d mesh registration. In: Proceedings of the IEEE conference
on computer vision and pattern recognition 2014; p. 3794–3801..

[10] Breiman Leo. Bagging predictors. Mach Learn 1996;24(2):123–40.
[11] Bronstein Michael M, Bruna Joan, LeCun Yann, Szlam Arthur, Vandergheynst

Pierre. Geometric deep learning: going beyond euclidean data. IEEE Signal
Process Magaz 2017;34(4):18–42.

[12] Chang Angel X., Funkhouser Thomas, Guibas Leonidas, Hanrahan Pat, Huang
Qixing, Li Zimo, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012; 2015..

[13] Ciregan Dan, Meier Ueli, Schmidhuber Jürgen. Multi-column deep neural
networks for image classification. In: 2012 IEEE conference on computer vision
and pattern recognition 2012; p. 3642–9. IEEE..

[14] Cranmer Miles, Sanchez-Gonzalez Alvaro, Battaglia Peter, Xu Rui, Cranmer
Kyle, Spergel David, Ho Shirley. Discovering symbolic models from deep
learning with inductive biases. arXiv preprint arXiv:2006.11287; 2020..

[15] Cranmer Miles D, Xu Rui, Battaglia Peter, Ho Shirley. Learning symbolic
physics with graph networks. arXiv preprint arXiv:1909.05862; 2019..

[16] Duvenaud David, Maclaurin Dougal, Aguilera-Iparraguirre Jorge, Gómez-
Bombarelli Rafael, Hirzel Timothy, Aspuru-Guzik Alán, Adams Ryan P.
Convolutional networks on graphs for learning molecular fingerprints. arXiv
preprint arXiv:1509.09292; 2015..

[17] Fey Matthias, Lenssen Jan E. Fast graph representation learning with PyTorch
Geometric. In: ICLR Workshop on Representation Learning on Graphs and
Manifolds; 2019..

http://refhub.elsevier.com/S0045-7949(22)00085-2/h0005
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0005
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0005
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0010
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0010
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0030
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0030
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0030
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0035
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0035
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0040
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0040
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0040
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0050
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0055
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0055
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0055

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
[18] Elia Forte Antonio, Hanakata Paul Z, Jin Lishuai, Zari Emilia, Zareei Ahmad,
Fernandes Matheus C, et al. Inverse design of inflatable soft membranes
through machine learning. Adv Funct Mater 2022:2111610.

[19] Ganaie MA, Hu Minghui, et al. Ensemble deep learning: A review. arXiv
preprint arXiv:2104.02395; 2021..

[20] Geuzaine Christophe, Remacle Jean-François. Gmsh: A 3-d finite element mesh
generator with built-in pre-and post-processing facilities. Int J Numer
Methods Eng 2009;79(11):1309–31.

[21] Gilmer Justin, Schoenholz Samuel S, Riley Patrick F, Vinyals Oriol, Dahl George
E. Neural message passing for quantum chemistry. In: International
conference on machine learning 2017; p. 1263–72. PMLR..

[22] Gómez-Bombarelli Rafael, Wei Jennifer N, Duvenaud David, Miguel
Hernández-Lobato José, Sánchez-Lengeling Benjamín, Sheberla Dennis, et al..
Automatic chemical design using a data-driven continuous representation of
molecules. ACS Cent Sci; 2018..

[23] Gongora Aldair E, Snapp Kelsey L, Whiting Emily, Riley Patrick, Reyes Kristofer
G, Morgan Elise F, et al. Using simulation to accelerate autonomous
experimentation: A case study using mechanics. Iscience 2021;24(4):102262.

[24] Gongora Aldair E, Xu Bowen, Perry Wyatt, Okoye Chika, Riley Patrick, Reyes
Kristofer G, et al. A bayesian experimental autonomous researcher for
mechanical design. Sci Adv 2020;6(15):eaaz1708.

[25] Gu Grace X, Chen Chun-Teh, Buehler Markus J. De novo composite design
based on machine learning algorithm. Extreme Mech Lett 2018;18:19–28.

[26] Guo Chuan, Pleiss Geoff, Sun Yu, Weinberger Kilian Q. On calibration of
modern neural networks. In: International Conference on Machine Learning,
pages 1321–1330. PMLR; 2017..

[27] Guo Kai, Buehler Markus J. A semi-supervised approach to architected
materials design using graph neural networks. Extreme Mech Lett
2020;41:101029.

[28] Hanakata Paul Z, Cubuk Ekin D, Campbell David K, Park Harold S. Forward and
inverse design of kirigami via supervised autoencoder. Phys Rev Res 2020;2
(4):042006.

[29] He Kaiming, Zhang Xiangyu, Ren Shaoqing, Sun Jian. Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on computer vision
and pattern recognition 2016;p. 770–8..

[30] Holmes Douglas P. Elasticity and stability of shape-shifting structures. Curr
Opin Colloid Interface Sci 2019;40:118–37.

[31] Hornik Kurt, Stinchcombe Maxwell, White Halbert. Multilayer feedforward
networks are universal approximators. Neural Networks 1989;2(5):359–66.

[32] Ioffe Sergey, Szegedy Christian. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In: International
conference on machine learning. PMLR; 2015. p. 448–456..

[33] Javili Ali, Dortdivanlioglu Berkin, Kuhl E, Linder Christian. Computational
aspects of growth-induced instabilities through eigenvalue analysis. Comput
Mech 2015;56(3):405–20.

[34] Khan Asifullah, Sohail Anabia, Zahoora Umme, Qureshi Aqsa Saeed. A survey of
the recent architectures of deep convolutional neural networks. Artif Intell Rev
2020;53(8):5455–516.

[35] Samir Khatir D, Boutchicha C Le, Thanh H Tran-Ngoc, Nguyen TN, Abdel-
Wahab Magd. Improved ann technique combined with jaya algorithm for
crack identification in plates using xiga and experimental analysis. Theoret
Appl Fract Mech 2020;107:102554.

[36] Khatir Samir, Tiachacht Samir, Thanh Cuong Le, Ghandourah Emad, Mirjalili
Seyedali, Abdel Wahab Magd. An improved artificial neural network using
arithmetic optimization algorithm for damage assessment in fgm composite
plates. Compos Struct 2021;273:114287.

[37] Kingma Diederik P, Ba Jimmy. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980; 2014..

[38] Kumar Siddhant, Tan Stephanie, Zheng Li, Kochmann Dennis M. Inverse-
designed spinodoid metamaterials. Npj Comp Mat 2020.

[39] Lakshminarayanan Balaji, Pritzel Alexander, Blundell Charles. Simple and
scalable predictive uncertainty estimation using deep ensembles. Adv Neural
Inform Process Syst 2017;30.

[40] LeCun Yann, Bengio Yoshua, et al. Convolutional networks for images, speech,
and time series. Handbook Brain Theory Neural Networks 1995;3361
(10):1995.

[41] Lejeune Emma. Mechanical mnist: A benchmark dataset for mechanical
metamodels. Extreme Mech Lett 2020;36:100659.

[42] Lejeune Emma. Geometric stability classification: datasets, metamodels, and
adversarial attacks. Comput Aided Des 2021;131:102948.

[43] Lejeune Emma, Javili Ali, Linder Christian. An algorithmic approach to multi-
layer wrinkling. Extreme Mech Lett 2016;7:10–7.

[44] Lejeune Emma, Javili Ali, Linder Christian. Understanding geometric
instabilities in thin films via a multi-layer model. Soft Matter 2016;12
(3):806–16.

[45] Lejeune Emma, Zhao Bill. Exploring the potential of transfer learning for
metamodels of heterogeneous material deformation. J Mech Behav Biomed
Mater 2021;117:104276.

[46] Leng Yue, Tac Vahidullah, Calve Sarah, Tepole Adrian B. Predicting the
mechanical properties of biopolymer gels using neural networks trained on
discrete fiber network data. Comput Methods Appl Mech Eng
2021;387:114160.

[47] Lew Andrew J, Buehler Markus J. Deepbuckle: Extracting physical behavior
directly from empirical observation for a material agnostic approach to
analyze and predict buckling. J Mech Phys Solids 2022:104909.
16
[48] Libonati Flavia, Gu Grace X, Qin Zhao, Vergani Laura, Buehler Markus J. Bone-
inspired materials by design: toughness amplification observed using 3d
printing and testing. Adv Eng Mater 2016;18(8):1354–63.

[49] Logg Anders, Mardal Kent-Andre, Wells Garth. Automated solution of
differential equations by the finite element method: The FEniCS book,,
volume 84. Springer Science & Business Media; 2012.

[50] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities
improve neural network acoustic models. In: Proc. icml, volume 30, page 3.
Citeseer, 2013..

[51] Mao Yunwei, He Qi, Zhao Xuanhe. Designing complex architectured materials
with generative adversarial networks. Sci Adv 2020;6(17):eaaz4169.

[52] Meza Lucas R, Zelhofer Alex J, Clarke Nigel, Mateos Arturo J, Kochmann Dennis
M, et al. Resilient 3d hierarchical architected metamaterials. Proc Natl Acad Sci
2015;112(37):11502–7.

[53] Mohammadzadeh Saeed, Lejeune Emma. Predicting mechanically driven full-
field quantities of interest with deep learning-based metamodels. Extreme
Mech Lett 2021:101566.

[54] Monti Federico, Boscaini Davide, Masci Jonathan, Rodola Emanuele, Svoboda
Jan, Bronstein Michael M. Geometric deep learning on graphs and manifolds
using mixture model cnns. In: Proceedings of the IEEE conference on computer
vision and pattern recognition 2017. p. 5115–24..

[55] Monti Federico, Bronstein Michael M., Bresson Xavier. Geometric matrix
completion with recurrent multi-graph neural networks. arXiv preprint
arXiv:1704.06803; 2017..

[56] Pakdaman Naeini Mahdi, Cooper Gregory, Hauskrecht Milos. Obtaining well
calibrated probabilities using bayesian binning. In: Twenty-Ninth AAAI
conference on artificial intelligence; 2015..

[57] Niculescu-Mizil Alexandru, Caruana Rich. Predicting good probabilities with
supervised learning. In: Proceedings of the 22nd international conference on
Machine learning 2005; p. 625–32..

[58] Overvelde Johannes TB, Shan Sicong, Bertoldi Katia. Compaction through
buckling in 2d periodic, soft and porous structures: effect of pore shape. Adv
Mater 2012;24(17):2337–42.

[59] Overvelde Johannes TB, Shan Sicong, Bertoldi Katia. Compaction through
buckling in 2d periodic, soft and porous structures: effect of pore shape. Adv
Mater 2012;24(17):2337–42.

[60] Paszke Adam, Gross Sam, Massa Francisco, Lerer Adam, Bradbury James,
Chanan Gregory, et al. Pytorch: An imperative style, high-performance deep
learning library. In: Wallach H, Larochelle H, Beygelzimer A, dAlché-Buc F, Fox
E, Garnett R, editors, Advances in Neural Information Processing Systems 32,
Curran Associates Inc, 2019; p. 8024–35..

[61] Pfaff Tobias, Fortunato Meire, Sanchez-Gonzalez Alvaro, Battaglia Peter W.
Learning mesh-based simulation with graph networks. arXiv preprint
arXiv:2010.03409; 2020..

[62] Polikar Robi. Ensemble learning. In: Ensemble machine learning. Springer;
2012. p. 1–34.

[63] Prachaseree Peerasait, Lejeune Emma. Asymmetric buckling columns (abc);
2022..

[64] Qi Charles R, Yi Li, Su Hao, Guibas Leonidas J. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. arXiv preprint
arXiv:1706.02413; 2017..

[65] Raissi Maziar, Perdikaris Paris, Karniadakis George E. Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. J Comput Phys
2019;378:686–707.

[66] Raney Jordan R, Lewis Jennifer A. Printing mesoscale architectures. Mrs Bull
2015;40(11):943–50.

[67] Reid Daniel R, Pashine Nidhi, Wozniak Justin M, Jaeger Heinrich M, Liu Andrea
J, Nagel Sidney R, et al. Auxetic metamaterials from disordered networks. Proc
Natl Acad Sci 2018;115(7):E1384–90.

[68] Sanchez-Gonzalez Alvaro, Godwin Jonathan, Pfaff Tobias, Ying Rex, Leskovec
Jure, Battaglia Peter. Learning to simulate complex physics with graph
networks. In: International conference on machine learning, PMLR 2020; p.
8459–68..

[69] Sanders Emily D, Aguiló Miguel A, Paulino Glaucio H. Multi-material
continuum topology optimization with arbitrary volume and mass
constraints. Comput Methods Appl Mech Eng 2018;340:798–823.

[70] Schapire Robert E. The strength of weak learnability. Mach Learn 1990;5
(2):197–227.

[71] Schlömer Nico, Cervone Antonio, McBain GD, Gokstorp Filip, Van Staden
Ruben, Dokken Jørgen Schartum, et al. nschloe/pygmsh v7. 1.5. Zenodo; 2020..

[72] Schumacher Christian, Bickel Bernd, Rys Jan, Marschner Steve, Daraio Chiara,
Gross Markus. Microstructures to control elasticity in 3d printing. ACM Trans
Graph (TOG) 2015;34(4):1–13.

[73] Shin Dongil, Cupertino Andrea, de Jong Matthijs HJ, Steeneken Peter G, Bessa
Miguel A, Norte Richard A. Spiderweb nanomechanical resonators via bayesian
optimization: inspired by nature and guided by machine learning. Adv Mater,
page 2106248..

[74] Tran-Ngoc H, Samir Khatir T, Le-Xuan G De, Roeck T Bui-Tien, Abdel Wahab M.
A novel machine-learning based on the global search techniques using
vectorized data for damage detection in structures. Int J Eng Sci
2020;157:103376.

[75] van der Walt Stéfan, Schönberger Johannes L, Nunez-Iglesias Juan, Boulogne
François, Warner Joshua D, Yager Neil, et al. scikit-image: image processing in
Python. PeerJ 2014;2:e453. 6.

http://refhub.elsevier.com/S0045-7949(22)00085-2/h0090
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0090
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0090
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0100
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0100
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0100
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0115
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0115
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0115
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0120
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0120
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0120
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0125
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0125
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0135
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0135
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0135
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0140
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0140
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0140
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0150
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0150
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0155
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0155
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0165
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0165
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0165
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0170
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0170
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0170
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0175
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0175
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0175
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0175
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0180
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0180
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0180
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0180
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0190
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0190
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0195
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0195
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0195
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0200
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0200
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0200
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0205
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0205
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0210
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0210
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0215
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0215
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0220
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0220
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0220
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0225
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0225
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0225
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0230
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0230
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0230
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0230
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0235
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0235
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0235
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0240
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0240
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0240
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0245
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0245
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0245
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0255
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0255
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0260
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0260
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0260
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0265
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0265
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0265
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0290
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0290
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0290
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0295
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0295
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0295
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0310
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0310
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0325
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0325
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0325
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0325
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0330
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0330
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0335
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0335
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0335
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0345
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0345
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0345
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0350
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0350
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0360
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0360
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0360
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0370
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0370
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0370
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0370
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0375
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0375
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0375

P. Prachaseree and E. Lejeune Computers and Structures 270 (2022) 106825
[76] Vlassis Nikolaos N, Ma Ran, Sun WaiChing. Geometric deep learning for
computational mechanics part i: Anisotropic hyperelasticity. Comput Methods
Appl Mech Eng 2020;371:113299.

[77] Vyatskikh Andrey, Delalande Stéphane, Kudo Akira, Zhang Xuan, Portela Carlos
M, Greer Julia R. Additive manufacturing of 3d nano-architected metals. Nat
Commun 2018;9(1):1–8.

[78] Wang Yue, Sun Yongbin, Liu Ziwei, Sarma Sanjay E, Bronstein Michael M,
Solomon Justin M. Dynamic graph cnn for learning on point clouds. Acm Trans
Graph (tog) 2019;38(5):1–12.

[79] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall
Upper Saddle River; 2001..

[80] Wolpert David H. Stacked generalization. Neural networks 1992;5(2):241–59.
[81] Yang Charles, Kim Youngsoo, Ryu Seunghwa, Gu Grace X. Prediction of

composite microstructure stress-strain curves using convolutional neural
networks. Mater Des 2020;189:108509.

[82] Yang Zhenze, Chi-Hua Yu, Buehler Markus J. Deep learning model to predict
complex stress and strain fields in hierarchical composites. Sci Adv 2021;7
(15):eabd7416.
17
[83] Ying Rex, Bourgeois Dylan, You Jiaxuan, Zitnik Marinka, Leskovec Jure.
Gnnexplainer: Generating explanations for graph neural networks. Adv
Neural Inform Process Syst 2019;32:9240.

[84] You Jiaxuan, Liu Bowen, Ying Rex, Pande Vijay, Leskovec Jure. Graph
convolutional policy network for goal-directed molecular graph generation.
NeurIPS; 2018..

[85] Zhang Xiaoxuan, Garikipati Krishna. Bayesian neural networks for weak
solution of pdes with uncertainty quantification. arXiv preprint
arXiv:2101.04879, 2021..

[86] Zhou Jie, Cui Ganqu, Shengding Hu, Zhang Zhengyan, Yang Cheng, Liu Zhiyuan,
Wang Lifeng, Li Changcheng, Sun Maosong. Graph neural networks: A review
of methods and applications. AI Open 2020;1:57–81.

[87] Zhuang Xiaoying, Guo Hongwei, Alajlan Naif, Zhu Hehua, Rabczuk Timon. Deep
autoencoder based energy method for the bending, vibration, and buckling
analysis of kirchhoff plates with transfer learning. Eur J Mech-A/Solids
2021;87:104225.

http://refhub.elsevier.com/S0045-7949(22)00085-2/h0380
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0380
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0380
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0385
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0385
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0385
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0390
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0390
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0390
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0400
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0405
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0405
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0405
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0410
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0410
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0410
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0415
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0415
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0415
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0430
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0430
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0430
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0435
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0435
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0435
http://refhub.elsevier.com/S0045-7949(22)00085-2/h0435

	Learning mechanically driven emergent behavior with message passing neural networks
	1 Introduction
	2 Methods
	2.1 Defining and Generating the ABC Dataset
	2.1.1 Domain Geometry Generation
	2.1.2 FEA Simulations
	2.1.3 Note on data format

	2.2 Metamodeling Pipeline
	2.2.1 Representation of Structures
	2.2.2 Machine Learning Model Architecture
	2.2.3 Spatial Graph Convolution Layer Implementation
	2.2.4 Ensemble Learning

	3 Results and Discussion
	3.1 Data Augmentation Enhances Prediction Accuracy
	3.2 Node Density and Query Radius Influence Prediction Accuracy
	3.3 Ball Query Graph Representation Out-Performs the Region Adjacency Graph and Perfect Structure Representation
	3.4 Ensemble Learning Enhances Prediction Accuracy
	3.5 Ensemble Learning Displays Well-Calibrated Confidence

	4 Conclusion
	5 Additional Information
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Node density
	Appendix B Visualization of ML architecture with different initializations
	Appendix C Comparison between Deformed Profiles of High and Low Confidence Predictions
	References

