
PROOF COPY [BIO-22-1075]

1 Hiba Kobeissi2
2 Department of Mechanical Engineering,
3 Boston University,
4 Boston, MA 02215
5 e-mail: hibakob@bu.edu

6 Saeed Mohammadzadeh2

7 Department of Systems Engineering,
8 Boston University,
9 Boston, MA 02215

10 e-mail: saeedmhz@bu.edu

11 Emma Lejeune1

12 Department of Mechanical Engineering,
13 Boston University,
14 Boston, MA 02215
15 e-mail: elejeune@bu.edu

Enhancing Mechanical
Metamodels With a Generative
Model-Based Augmented
Training Dataset16

17 Modeling biological soft tissue is complex in part due to material heterogeneity. Micro-
structural patterns, which play a major role in defining the mechanical behavior of these
tissues, are both challenging to characterize and difficult to simulate. Recently, machine
learning (ML)-based methods to predict the mechanical behavior of heterogeneous mate-
rials have made it possible to more thoroughly explore the massive input parameter space
associated with heterogeneous blocks of material. Specifically, we can train ML models
to closely approximate computationally expensive heterogeneous material simulations
where the ML model is trained on datasets of simulations with relevant spatial heteroge-
neity. However, when it comes to applying these techniques to tissue, there is a major
limitation: the number of useful examples available to characterize the input domain
under study is often limited. In this work, we investigate the efficacy of both ML-based
generative models and procedural methods as tools for augmenting limited input pattern
datasets. We find that a style-based generative adversarial network with an adaptive dis-
criminator augmentation mechanism is able to successfully leverage just 1000 example
patterns to create authentic generated patterns. In addition, we find that diverse gener-
ated patterns with adequate resemblance to real patterns can be used as inputs to finite
element simulations to meaningfully augment the training dataset. To enable this meth-
odological contribution, we have created an open access finite element analysis simula-
tion dataset based on Cahn–Hilliard patterns. We anticipate that future researchers will
be able to leverage this dataset and build on the work presented here.
[DOI: 10.1115/1.4054898]

Keywords: machine learning mechanics surrogate modeling heterogeneous materials

18 1 Introduction

19 Establishing models that realistically capture the biomechanical
20 behavior of soft tissue is a challenging yet crucial endeavor [1,2].
21 High fidelity mechanical models are needed for tasks such as sur-
22 gical simulation [3–5], patient-specific procedure planning [6,7],
23 modeling of in vivo biological mechanisms [8,9], and inverse
24 material characterization [10,11]. Capturing the mechanical
25 behavior of soft tissue is challenging because soft tissues are often
26 highly nonlinear and anisotropic, they can exhibit a nonlinear
27 stiffening response, they often undergo large deformations, and
28 they have a complex hierarchical structure [1,12–14]. For exam-
29 ple, at the microstructural level, soft tissue may contain compo-
30 nents such as fibers with a preferred direction, which give rise to
31 highly anisotropic material behavior on the macroscale [14]. In
32 addition to complex constitutive behavior, biological materials are
33 also challenging to model because they tend to be highly hetero-
34 geneous [13,15]. As such, developing faithful mechanical models
35 of soft tissues and numerically implementing them (e.g., in the
36 finite element setting [16]) are both challenging and typically
37 quite computationally expensive [2,10,14,17–19]. Notably, both
38 the exact values of the mechanical properties of biological tissue
39 and their heterogeneous distribution in space are often uncertain
40 [20,21]. Therefore, in order to get a true picture of tissue behavior,
41 it is necessary to run multiple simulations that capture the range
42 of relevant input parameters [10]. In this context, there has been
43 substantial recent interest in reducing the computational cost of

44these numerical simulations at the cost of marginal decrease in the
45simulation accuracy [22].
46Markedly, there has been recent interest in using machine learn-
47ing tools to create computationally inexpensive data-driven mod-
48els of soft biological tissue in particular [23], and for various
49biomedical applications in general [24–27]. In previous work by
50our group and others [28–35], metamodels, or surrogate models
51[36], developed with supervised machine learning algorithms and
52multifidelity mechanical datasets have been used successfully to
53predict the mechanical behavior of heterogeneous materials via
54single and full-field quantities of interest (QoIs) (e.g., strain
55energy, displacement/strain fields, damage fields). For example,
56Tonutti et al. [22] used the results of finite element analysis (FEA)
57simulations in conjunction with artificial neural networks and sup-
58port vector regression to develop computationally inexpensive
59patient-specific deformation models for brain pathologies. In addi-
60tion, Salehi et al. [37] trained graph neural networks with FEA
61simulation results to speed-up the approximation of soft tissue
62deformation with acceptable loss of accuracy for neurosurgical
63applications. In Tac et al. [23], fully connected neural networks
64were trained with high-fidelity biaxial test data and low-fidelity
65analytical approximations to derive a data-driven anisotropic con-
66stitutive model of porcine and murine skin. Notably, due to the
67limited availability of both experimental data and high fidelity
68simulation data, methods that rely on multiple data fidelities (i.e.,
69multifidelity models) have been shown to be more effective than
70single fidelity schemes given a small number of high fidelity data
71[23,28,38,39]. This is particularly true for methods that rely on
72deep learning where training datasets must be large for successful
73model implementation [40–42]. Though multifidelity methods can
74address the scenario where there are limited high-fidelity

1Corresponding author.
2Co-first authors.
Manuscript received March 8, 2022; final manuscript received June 23, 2022;

published online xx xx, xxxx. Assoc. Editor: Adrian Buganza Tepole.

J_ID: BIO DOI: 10.1115/1.4054898 Date: 13-July-22 Stage: Page: 1 Total Pages: 12

ID: asmeml23d3b2server Time: 11:26 I Path: //chenasprod/kglpro/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220089/Comp/APPFile/AS-BIO#220089

Journal of Biomechanical Engineering MONTH 2022, Vol. 00 / 000000-1Copyright VC 2022 by ASME



PROOF COPY [BIO-22-1075]

75 simulations results, they are not necessarily equipped to address
76 the scenario where there is limited information about what the
77 training dataset should contain. For example, it is unlikely that
78 researchers will have tens of thousands of accurate examples of
79 the heterogeneous material property distribution of a given soft
80 tissue of interest. In this work, our goal is to systematically answer
81 the question: is it possible to create a meaningful training dataset
82 that ultimately improves the performance of a deep learning-
83 based metamodel of heterogeneous material given only a small
84 number of representative examples of the relevant material prop-
85 erty distribution input pattern?
86 To address this question, we first define a benchmark problem
87 to evaluate our proposed machine learning approach. This is
88 important because, at present, there are only a small number of
89 existing open access benchmark datasets related to problems in
90 solid mechanics [43–46]. Furthermore, of the available datasets,
91 few contain a good representation of the heterogeneous material
92 properties most relevant to soft tissue modeling. Our benchmark
93 dataset, the “mechanical MNIST Cahn–Hilliard” dataset, is a con-
94 tribution to our previously initiated “mechanical MNIST” project
95 where we provide simulation results for heterogeneous materials
96 undergoing large deformation. The full dataset contains 104,813
97 Cahn–Hilliard patterns and associated equibiaxial extension simu-
98 lations, and it is straightforward to train a deep learning-based
99 metamodel to predict QoI from these simulations (e.g., change in

100 strain energy DW). However, if we constrain ourselves to only a
101 small subset of these example input patterns, e.g., if we limit our
102 knowledge to just 1000 example patterns, it becomes much more
103 challenging to effectively train a deep learning-based metamodel.
104 With this benchmark dataset and imposed limitation, we are able
105 to test both the efficacy of machine learning (ML)-based genera-
106 tive models, models that learn the data distribution and generate
107 plausible examples from the distribution [47], and procedural
108 methods at augmenting a constrained version of the available
109 training dataset. By comparing the results of metamodels that rely
110 on generated patterns to metamodels that are trained on true input
111 patterns, we are able to systematically evaluate the efficacy of our
112 proposed size-limited data augmentation approaches. We note
113 that this premise follows from recent work in the literature where
114 generative models have been used to augment small materials
115 characterization datasets [48,49]. Ultimately, we are able to
116 clearly demonstrate that leveraging the capabilities of our selected
117 data generation models is an effective tool for augmenting small
118 datasets of material property distributions in biological tissue for
119 the purpose of creating training datasets for ML-based
120 metamodels.
121 The remainder of the paper is organized as follows. In Sec. 2,
122 we begin by introducing our mechanical MNIST Cahn–Hilliard
123 dataset. Then, we describe our approach to training a metamodel
124 to approximate the mechanical behavior of the simulations, and
125 our approach to generating synthetic input patterns to augment the
126 training dataset. In Sec. 3, we show the performance of our gener-
127 ative models and the performance of our metamodel with ML-
128 based and procedural augmented training dataset. We conclude in
129 Sec. 4. Finally, we note briefly that links to the code and dataset
130 required to reproduce our work are given in Sec. 5.

131 2 Methods

132 Here, we begin in Sec. 2.1 with an introduction to our mechani-
133 cal MNIST Cahn–Hilliard dataset. Then, in Sec. 2.2, we describe
134 our metamodeling approach where a ML-based metamodel is
135 used to predict a single quantity of interest (in this case change in
136 strain energy DW) from an array-based representation of the input
137 pattern. Then, in Sec. 2.3, we detail our three different approaches
138 to ML-based generative modeling of the input pattern distribution.
139 In Sec. 2.4, we introduce two additional procedural methods for
140 generating synthetic input patterns. In Sec. 2.5, we present the
141 evaluation metrics that we considered to compare the performance
142 of the different methods that we have implemented to generate

143synthetic patterns. Finally, in Sec. 2.6, we define our procedure
144for standard rotation-based augmentation. We briefly note that in
145order to stay consistent with the literature, the Greek letters k and
146l refer to different constants in Secs. 2.1 and 2.5. In both cases,
147we provide a brief definition of each term when it is introduced.

1482.1 The Mechanical MNIST Cahn–Hilliard Dataset. In
149conjunction with our previous publications [28–30], we intro-
150duced the mechanical MNIST dataset of heterogeneous materials
151undergoing large deformation. In previous iterations of the data-
152set, heterogeneous input domain patterns were defined by the
153MNIST [50] and fashion MNIST [51] bitmap patterns. For this
154paper, we extend our mechanical MNIST dataset collection to
155include additional patterns from a different input domain distribu-
156tion that is more relevant to heterogeneous biological materials.
157The input patterns for the mechanical MNIST Cahn–Hilliard data-
158set are generated based on Alan Turing’s model of morphogenesis
159[52]—a common motif during biological development manifested
160in many different animal and plant patterns such as the pigmenta-
161tion of animal skins, the branching of trees and other skeletal
162structures, and the distinct patterns on leaves and petals [53,54].
163We obtain these patterns by solving a nonlinear spatio-temporal
164fourth-order partial differential equation referred to as the
165Cahn–Hilliard equation that was originally proposed to describe
166the process of phase separation in isotropic binary alloys [55–57].
167Our new dataset, mechanical MNIST Cahn–Hilliard, contains
168not only Cahn–Hilliard based two-dimensional heterogeneous
169input patterns but also the results of finite element simulations of
170these material domains subjected to equibiaxial extension. Here,
171we will summarize the process of creating this dataset. Briefly, the
172Cahn–Hilliard equation, which is a fourth-order partial differential
173equation that governs the evolution of a binary mixture, can first
174be reduced to a pair of second-order equations [59,60]. This mixed
175formulation can be expressed in the weak form for the two
176unknown fields, c, the concentration of one of the components of
177the binary mixture, and l, the chemical potential of a uniform
178solution:

ð
X

cnþ1 � cn

tnþ1 � tn
q dxþ

ð
X

Mrlnþh � rq dx ¼ 0 8 q 2 V (1)

ð
X
lnþ1v dx�

ð
X

dfnþ1

dc
v dx�

ð
X
krcnþ1 � rv dx ¼ 0 8 v 2 V

(2)

179180where M is the mobility parameter, k is a positive scalar that
181describes the thickness of the interfaces between the phases of the
182mixture, f is the chemical free-energy function, and q and v are
183test functions [59,60].
184We solve the Cahn–Hilliard equations using the open source
185finite element software FENICS [61,62] and run 2072 phase separa-
186tion simulations on a unit square domain X ¼ ½0; 1� where each
187simulation differs in the following: (1) the initial concentration c0

188with uniform random fluctuations of zero mean and range between
189–0.05 and 0.05, (2) the grid size on which the initialized concen-
190tration is allowed to spatially vary, (3) the interface thickness k,
191and (4) the peak-to-valley value of the free-energy function f, a
192symmetric double-well function. We record the concentration
193parameter at multiple time steps in each simulation to obtain

105; 427 spatial distribution patterns which broadly fall under two
194qualitative types: spotted (for c0 ¼ 0:63 and c0 ¼ 0:75), and
195striped (for c0 ¼ 0:5), as is expected for these types of simulations
196[59,63,64], and store the obtained images as 400� 400 binary bit-
197maps. Example patterns are illustrated in Fig. 1(a). For further
198details on the underlying theory of the Cahn–Hilliard equation
199and our finite element implementation, we refer the reader to the
200supplementary document provided with the dataset (see Sec. 5).
201As an additional step, we visualize downsampled 64� 64 vectors

J_ID: BIO DOI: 10.1115/1.4054898 Date: 13-July-22 Stage: Page: 2 Total Pages: 12

ID: asmeml23d3b2server Time: 11:26 I Path: //chenasprod/kglpro/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220089/Comp/APPFile/AS-BIO#220089

000000-2 / Vol. 00, MONTH 2022 Transactions of the ASME



PROOF COPY [BIO-22-1075]

202 describing each Cahn–Hilliard pattern array in a two-dimensional
203 space using the dimension reduction technique, uniform manifold
204 approximation and projection (UMAP) [58], which provides us
205 with a qualitative tool to visualize our high-dimensional dataset
206 input parameter space. Notably, the plot in Fig.1(b) clearly reveals
207 the two distinct clusters of patterns, which is consistent with our
208 observation that the dataset is split between the striped and spotted
209 motifs.
210 From this collection of 105; 427 heterogeneous input patterns,
211 we perform a second set of finite element simulations where we
212 use the input patterns to inform the heterogeneous material prop-
213 erty distribution of the domain and subject it to equibiaxial exten-
214 sion. To accomplish this, we first convert the binary bitmap
215 patterns into meshed domains of two different materials. Briefly,
216 we detect the contours of the image features and extract their coor-
217 dinates using the OPENCV library [65]. We then translate these coor-
218 dinates into a mesh with two different subdomains, background
219 and pattern, using PYGMSH 6.1.1 [66], a Python implementation of
220 GMSH 4.6.0 [67]. We note briefly that from our initial collection of

105; 427 images, 614 images could not be processed because they
221 exhibited either pattern features that were too small to be detected
222 as area domains, features that were in very close proximity to each
223 other, or complex hierarchical contours that our pipeline was not
224 able to detect and process. Thus, our final dataset contains 104; 813
225 simulation results. Based on a mesh refinement study, we chose
226 quadratic triangular elements with a characteristic length of 0.01.
227 This led to approximately 41; 000 elements in a typical domain.
228 Once the material domain was meshed, we performed equibi-
229 axial extension simulations in FENICS [61,62]. Here, we chose a
230 compressible Neo-Hookean material model defined by strain
231 energy W as:

W ¼ 1

2
l F : F� 3� 2ln detFð Þ½ �

þ 1

2
k

1

2
detFð Þ2 � 1

h i
� ln detFð Þ

� �
(3)

232233where F is the deformation gradient, and l and k are the Lam�e
234parameters equivalent to Young’s modulus E and Poisson’s ratio
235� as E ¼ l ð3kþ 2lÞ=ðkþ lÞ and � ¼ k=ð2ðkþ lÞÞ. We define
236the Poisson’s ratio as a constant ð� ¼ 0:3Þ, and we specify a
237Young’s modulus E for the background domain that is 10 times
238lower than the Young’s modulus for the “stiffer” spotted and
239striped patterns ðE ¼ ½1; 10�Þ. We set up each finite element simu-
240lation for equibiaxial deformation so that every external edge of
241the domain is extended by half of the value of given applied dis-
242placement in the direction of the outward normal to the surface
243(Fig. 1(c)). The set of fixed displacements d go up to 50% of the
244initial domain size as

d ¼ ½0:0; 0:001; 0:1; 0:2; 0:3; 0:4; 0:5� (4)

245246The output of each of the 104; 813 large deformation simulations
247consisted of data on the total change in strain energy DW, total
248reaction force in the x and y directions, and full field domain dis-
249placement collected on a downsampled 64� 64 grid (Fig. 1(c)).
250We chose the size of the grid to be the smallest possible size that
251could be reached without the loss of important image features. In
252this context, we consider the borders of the white/dark patterns to
253be important features that should not be distorted much by any
254operation to avoid misclassifiying the cells along the edges into
255the wrong subdomain. We note that all code to implement these

Fig. 1 (a) Illustration of the spatial patterns obtained from our Cahn–Hilliard simulations where each
row corresponds to the time evolution in a single simulation for c0 5 0:5 (case 1), c0 5 0:63 (case 2),
and c0 5 0:75 (case 3) shown in the first, second, and the third rows, respectively. (b) A UMAP visualiza-
tion [58] of a representative proportion of our Cahn–Hilliard patterns using random_state542,
n_neighbors530, min_dist50.1 as training parameters. (c) A schematic illustration of displace-
ment driven equibiaxial extension applied to a heterogeneous domain dictated by the Cahn–Hilliard
patterns. Here, we show an example from case 1: c0 5 0:5 and plot the deformed state at the six magni-
tudes of applied displacement. From these finite element simulations, we obtain multiple outputs
including the total change in strain energy DW at each load step.

J_ID: BIO DOI: 10.1115/1.4054898 Date: 13-July-22 Stage: Page: 3 Total Pages: 12

ID: asmeml23d3b2server Time: 11:26 I Path: //chenasprod/kglpro/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220089/Comp/APPFile/AS-BIO#220089

Journal of Biomechanical Engineering MONTH 2022, Vol. 00 / 000000-3



PROOF COPY [BIO-22-1075]

256 simulations is shared on GITHUB with access details given in
257 Sec. 5.

258 2.2 Metamodel Design and Implementation. In this section,
259 we summarize our approach to creating metamodels for predicting
260 the change in strain energy DW from the input Cahn–Hilliard pat-
261 terns. In Secs. 2.3, 2.4, and 2.6, we describe the details of our
262 generative model-based, procedural-based, and standard rotation-
263 based approaches that we implement to augment the training
264 dataset.

265 2.2.1 Feedforward Convolutional Neural Network. In this
266 paper, we are focused on using machine learning techniques for
267 predicting single quantities of interest (DW) from input arrays
268 (Cahn–Hilliard patterns). This goal is illustrated schematically in
269 Fig. 2(a). To accomplish this, we implemented a basic feedfor-
270 ward convolutional neural network (CNN) consisting of a total of
271 nine convolutional layers each followed by batch normalization
272 and rectified linear unit (ReLu) activation except for the last
273 (ninth) layer. For downsampling input images, we used max pool-
274 ing after the first three convolutional layers with same padding
275 while valid padding is used for the rest of the convolutional layers.
276 Our network has a total of 3; 734; 625 trainable parameters. We
277 trained the network using the PYTORCH library [68] with a batch
278 size of 64 for 100 epochs. We employ an Adam optimizer [69]
279 with learning rate a ¼ 0:01 reduced to 0.001 after 50 epochs and
280 exponential decay rates b1 ¼ 0:9 and b2 ¼ 0:999. The output of
281 the CNN is a single quantity of interest (QoI) for a 64� 64 array
282 input describing the simulation input pattern. We validated our
283 model performance through a five-fold cross-validation approach
284 based on mean-squared-error (MSE). In Sec. 3.2, we report the
285 performance of our model on test data.

286 2.2.2 Transfer Learning. Our original mechanical MNIST
287 Cahn–Hilliard dataset took approximately 5240 CPU hours to
288 generate. Rather than expending a similar level of resources to run
289 simulations based on generated input patterns, we decided to
290 employ a transfer learning approach where we leverage low fidel-
291 ity simulation data [70]. Specifically, we followed the approach
292 outlined in our recent publication [28] to create low fidelity simu-
293 lation versions of our dataset that are run on a coarse mesh
294 (64� 64 grid, 8192 elements) with linear elements and only sub-
295 ject to a perturbation displacement (0.001) rather than the full

29650% extension. With these parameters, it took approximately 4.2
297CPU hours to generate a low fidelity dataset of 72; 000 patterns
298and the corresponding strain energy values only for a perturbation
299displacement. Notably, this is 0.08% of the time it would take to
300generate the equivalent number of high fidelity simulations
301described in Sec. 2.1. Of course, this speed up comes at the price
302of introducing numerical error that must be subsequently dealt
303with through transfer learning.
304Our implementation of transfer learning is a straightforward
305model pretraining approach illustrated schematically in Fig. 2(b)
306and described in detail in our previous publication [28]. Part of
307the appeal of this approach is that it is quite straightforward to
308implement. First, we train the metamodel (in our case the CNN
309defined in Sec. 2.2.1) on the low fidelity dataset. Then, we use this
310pretrained metamodel as the weight initialization for additional
311training with the high fidelity dataset. In our case, the low fidelity
312dataset will contain data from up to 16; 000 simulations while the
313high fidelity dataset will contain data from only 1000 simulations.
314The ideal outcome from this approach is to end up with a metamo-
315del that is trained on predominantly low-fidelity data yet performs
316comparably to a metamodel trained on the target high fidelity
317dataset. In Sec. 3.2, we first report the metamodel performance on
318the low fidelity dataset (Fig. 5), and then in Sec. 3.3, we report the
319performance of the low fidelity models transferred to the high
320fidelity dataset via additional training with 1000 high fidelity real
321samples (Table 1).

3222.3 Augmenting the Training Dataset With a Machine
323Learning-Based Generative Model. The main focus of this
324paper is on developing techniques to effectively train the metamo-
325dels described in Sec. 2.2 even when we have limited examples of
326the relevant input patterns needed for creating our training dataset.
327Here, we will explore methods for leveraging limited examples of
328input patterns by creating synthetic input patterns from a genera-
329tive model. Briefly, we implement a style-based generative adver-
330sarial network using adaptive discriminator augmentation
331(StyleGAN2-ADA) [42], a Wasserstein generative adversarial net-
332work with weight clipping (WGAN-CP) [71], and a WGAN with
333gradient penalty (WGAN-GP) [72] to generate patterns that
334resemble the real striped and spotted Cahn–Hilliard patterns
335detailed in Sec. 2.1. The architectures of the generative models
336explored in this work are schematically shown in Figs. 2(c) and

Fig. 2 (a) A schematic of our ML metamodels that are used to predict change in strain energy DW at a fixed level of applied
displacement from each material property distribution. (b) A schematic of transfer learning whereby a model trained on one
dataset (in this case a low fidelity dataset) is used to make predictions on another dataset (in this case a high fidelity dataset).
(c) Architecture of a generative adversarial network including the WGAN models trained in this paper. (d) An illustration of the
StyleGAN2 with an ADA mechanism implemented in this work as adapted from Ref. [42]. (e) A schematic of combining simula-
tions based on both generated and real patterns to create a larger training dataset.

J_ID: BIO DOI: 10.1115/1.4054898 Date: 13-July-22 Stage: Page: 4 Total Pages: 12

ID: asmeml23d3b2server Time: 11:26 I Path: //chenasprod/kglpro/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220089/Comp/APPFile/AS-BIO#220089

000000-4 / Vol. 00, MONTH 2022 Transactions of the ASME



PROOF COPY [BIO-22-1075]

337 2(d). We train all three generative adversarial network (GAN)
338 models with a limited set of 1000 real Cahn–Hilliard patterns (the
339 same set of real images used for training the metamodels). We
340 then combine equibiaxial extension simulation results of both gen-
341 erated and real patterns to create a larger training dataset for our
342 metamodel as shown schematically in Fig. 2(e). In the remainder
343 of this section, we provide an overview of GANs, describe the
344 specific GANs implemented in this work, and briefly present our
345 alternative approaches for augmenting the metamodel training
346 dataset via procedural pattern generation and standard rotation-
347 based augmentation.

348 2.3.1 Generative Adversarial Networks. In the context of
349 machine learning, generative models are models that learn data
350 distributions such that they can then be used to output (i.e., gener-
351 ate) plausible new examples [73]. Building upon earlier deep gen-
352 erative models, generative stochastic networks [74] in particular,
353 and inspired by the work in Refs. [75–77], Goodfellow et al. [47]
354 developed a novel framework for generative models where the
355 generative network is put in competition with a discriminative
356 network that learns to distinguish between a sample obtained from
357 the real data distribution and one that is generated from the model
358 distribution. Known as GANs, these methods consist of training
359 two models, a generative model G and a discriminative model D
360 simultaneously competing in a minimax two-player game fashion
361 [47]. In this framework, G is trained to capture the input data dis-
362 tribution by fooling the discriminative model D and maximizing
363 the probability of the latter mistakenly labeling a sample synthe-
364 sized by G as one from the training data.
365 In their original form, GANs have been applied to many
366 domains including the MNIST dataset of handwritten digits
367 [78,79], the Toronto face database of human faces with expres-
368 sions [80], and the miscellaneous CIFAR-10 dataset [81] with
369 promising results [47]. However, major drawbacks of the method
370 include low resolution of the generated images, relatively low
371 variation in the output distribution, and unstable training [82].
372 Furthermore, training GANs to synthesize high-quality, high-
373 resolution output distributions typically requires at least 105–106

374 input images. Without a dataset of this size, the training tends to
375 diverge as the discriminator network overfits to the small number
376 of training data examples and can no longer provide meaningful
377 feedback to the generator network [42]. There have been many
378 approaches to modifying the original architecture and training for-
379 mulation of GANs [47] to improve their performance. Alterations
380 to the network structure such as the implementation of deep con-
381 volutional GANs (DCGANs) [83], where the GAN model is
382 scaled using CNN architectures, result in more stable behavior.

383Other enhanced methods include WGANs and style-based genera-
384tive adversarial networks (StyleGANs), which are briefly
385described in Secs. 2.3.2 and 2.3.3, respectively.

3862.3.2 Wasserstein Generative Adversarial Networks. In con-
387trast to modifying the GAN network structure as in DCGANs,
388WGANs improve the stability of GANs by replacing the bin-to-
389bin distance function (i.e., the Jensen–Shannon divergence) of the
390original architecture with a continuous loss function, the earth
391mover or the Wasserstein-1 (W) distance [71]. The shortcomings
392of the bin-to-bin distance functions, which generally assume an
393alignment between the domains of the histograms being com-
394pared, are addressed by the more robust cross-bin earth mover dis-
395tance function defined as the minimal cost of a “transport plan” to
396transform one distribution into the other [84–86].
397As proposed, the original WGAN model [71] requires that the
398discriminator lie within a 1-Lipschitz space so that W is continu-
399ous everywhere and differentiable almost everywhere. This Lip-
400schitz constraint is enforced via weight clipping (WGAN-CP)
401whereby the weights of the discriminator are restricted to a com-
402pact space [71]. In this setting, the discriminator is no longer
403trained to directly label samples as “real” or “fake,” but rather to
404learn the Lipschitz function needed to compute W. As the model
405training proceeds to minimize the loss function, the distance W
406decreases, signifying that the generated output distribution is
407becoming closer to the real data distribution [72]. Although more
408stable compared to GANs, the performance of WGAN-CPs was
409shown to be limited because: (1) small clipping thresholds lead to
410vanishing gradients while larger thresholds result in exploding
411gradients, and (2) the discriminator is biased to converge to sim-
412plified approximations of the Lipschitz function [72]. Improved
413training of WGANs was proposed by Gulrajani et al. [72], who
414implement a gradient penalty method (WGAN-GP) instead of
415weight clipping to constrain the discriminator gradient. WGAN-
416GP enforces the Lipschitz constraint by imposing a penalty on the
417gradient norm if it is not close to the theoretical value of 1.
418In this work, we test the performance of WGAN-CP and
419WGAN-GP trained with 1000 samples from our Cahn–Hilliard
420dataset. Using the PYTORCH library [87], we train typical convolu-
421tional feedforward neural networks for both the generator and the
422discriminator networks of WGAN-CP and WGAN-GP for a total
423of 23; 690; 498 trainable parameters, 12; 656; 257 for the generator
424network and 11; 034; 241 for the discriminator network. We
425accomplish this using the code published in conjunction with
426Ref. [88] as a starting point. We perform no additional
427parameter tuning and keep all hyper-parameters at their default
428values.

Table 1 Results of transfer learning

Transfer learning

Pre-training (low fidelity) Fine-tuning (high fidelity)
Pattern generation method R2 score (test set) R2 score (test set) MAE (test set)

Real 0.9991 0.9991 0.0046
StyleGAN2-ADA 0.9967 0.9977 0.0074
WGAN-CP 0.9973 0.9974 0.0088
WGAN-GP 0.9981 0.9974 0.0077
“Procedural” 0.9979 0.9973 0.0084

No transfer learning 0.9783 0.0198

Pre-training is performed with low fidelity data of 1000 real Cahn–Hilliard patterns and 15; 000 either real or generated
patterns subjected to three additional rotations of the unique domains. Fine-tuning refers to training a metamodel with
1000 high fidelity real Cahn–Hilliard patterns with the model initial weights “transferred” from the pretrained model on
the corresponding row. For a metamodel that is trained on 1000 entirely real Cahn-Hilliard patterns without transfer
learning, the model weights are randomly initialized. Overall, it is evident that our transfer learning approach improves
the MAE by at least 55% when predicting change in strain energy. Representative plots of true strain energy versus pre-
dicted strain energy are shown in Appendix A, Fig. 6 to add additional context to these values.

J_ID: BIO DOI: 10.1115/1.4054898 Date: 13-July-22 Stage: Page: 5 Total Pages: 12

ID: asmeml23d3b2server Time: 11:27 I Path: //chenasprod/kglpro/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220089/Comp/APPFile/AS-BIO#220089

Journal of Biomechanical Engineering MONTH 2022, Vol. 00 / 000000-5



PROOF COPY [BIO-22-1075]

429 2.3.3 Style-Based Generative Adversarial Networks. A third
430 approach to enhancing GANs involves modifying the latent space
431 distributions of the generator network via feature mapping, and
432 incorporating adaptive instance normalization (AdaIN) [89]. The
433 AdaIN operation was first implemented by Huang and Belongie
434 [90] in style transfer algorithms [91]; transferring the style of one
435 image to the content of another image. Specifically, AdaIN first
436 normalizes each feature map and then scales its mean and var-
437 iance according to a style input.
438 In these StyleGAN models, the adjustments to the traditional
439 generator are twofold: (1) the input latent space is mapped to a
440 much less entangled intermediate latent feature space via an
441 eight-layer multilayer perceptron network, and (2) the generator
442 output is controlled by AdaIN processes, which are themselves
443 controlled by learned affine transformations that concentrate the
444 intermediate latent space to specific styles that dictate the domi-
445 nant image features at each convolution layer [89]. The Style-
446 GAN2 architecture was later developed to remedy artifacts
447 observed in StyleGAN generated images [92]. The StyleGAN2
448 using ADA [42] is an adaptation of StyleGAN2 specifically
449 designed for small training datasets. For the simplest implementa-
450 tions of training GANs with augmented datasets, generated distri-
451 butions are known to exhibit features that are present in the
452 augmented dataset, but not in the original dataset [42,93,94].
453 Therefore, to avoid this undesirable outcome, Karras et al. [42]
454 proposed the ADA method.
455 For the augmentations to be “nonleaking” (i.e., not present in
456 the generated examples) and for the GAN model to learn the true
457 input distribution given an augmented dataset, the set of applied
458 distortions for augmentation are required to be differentiable and
459 belong to an invertible transformation of a probability distribution
460 function [42,95]. This can be achieved for a diverse set of possible
461 augmentations when they are applied to the dataset with a proba-
462 bility p, with 0 < p < 0:8 [42]. However, the target value of p is
463 sensitive to the size of the dataset and as such, setting a fixed
464 value for it is far from optimal. For this reason, Karras et al. [42]
465 implemented the discriminator augmentation method in an adapt-
466 ive manner where p is set to 0 initially and its value is automati-
467 cally adjusted (increased or decreased) based on a metric that
468 indicates the extent by which the discriminator is overfitting. This
469 heuristic is obtained from the discriminator outputs for the train-
470 ing and validation datasets, as well as the generated images and
471 their mean over a fixed number of consecutive minibatches. ADA
472 can be implemented on any GAN model without modifying the
473 network architecture or increasing training cost [42]. Notably, the
474 StyleGAN2-ADA combination performs exceptionally well on
475 the limited CIFAR-10 dataset [81], thus motivating our imple-
476 mentation of the approach in this work.
477 Here, we train the StyleGAN2-ADA model using the PYTORCH

478 library [87] with the code provided in Ref. [42] on a small subset
479 (1000 samples) of our Cahn–Hilliard patterns. Of the set of trans-
480 formations tested in Ref. [42], we apply the ones that contextually
481 fit the Cahn–Hilliard dataset—geometric and color transformations.
482 Geometric distortions include pixel blitting, isotropic and aniso-
483 tropic scaling, fractional translation, and less frequently arbitrary
484 rotation. We briefly note at this point that these distortions are
485 implemented during the generation of synthetic patterns only and
486 are not related to the equibiaxial loading conditions of the finite ele-
487 ment simulations performed later once the generated data patterns
488 are obtained. For color transformations, the image brightness, con-
489 trast, and saturation were adjusted, the luma axis was flipped, and
490 the hue axis was rotated arbitrarily. We perform no parameter tun-
491 ing and keep all hyper-parameters at their default values. In total,
492 the generator network has 22; 238; 990 trainable parameters, and
493 the discriminator network has 23; 406; 849 trainable parameters.

494 2.4 Augmenting the Training Dataset With Procedural
495 and “Bernoulli” Randomly Generated Patterns. As discussed
496 in Sec. 2.3 and later depicted in Figs. 3 and 4, the three different

497ML-based generative models, WGAN-CP, WGAN-GP, and
498StyleGAN2-ADA are able to generate synthetic patterns relevant
499to the real Cahn–Hilliard patterns without being explicitly pro-
500gramed to do so. However, there is a rich history of implementing
501procedural algorithms for material microstructure pattern genera-
502tion [96–101]. For example, many researchers have created
503explicitly programed algorithm that draws from experimentally
504obtained probability distributions for creating and placing micro-
505structural features within a domain [102,103]. These algorithms
506range from quite simple (e.g., Voronoi tessellation [104,105]) to
507quite complex (e.g., feature shape and placement based on energy
508minimization [106]). In this paper, we implement two additional
509pattern generation algorithms to compare to the ML-based genera-
510tive models. First, we implement a straightforward procedural
511algorithm where we create synthetic patterns with spatial correla-
512tions. In Sec. 3, we refer to these patterns as procedural patterns.
513Second, we create random patterns following a Bernoulli distribu-
514tion without spatial correlation. In Sec. 3, we refer to these pat-
515terns as Bernoulli patterns.
516For the procedural patterns, we begin with a low resolution
517grid, a 4� 4, an 8� 8, or a 16� 16 grid, and assign each of the
518grid pixels an independent and identically distributed random
519value drawn from a uniform distribution U [0,1]. Using the multi-
520dimensional image processing package in SCIPY “scipy.ndimage”
521[107], we then increase the resolution of the resulting grayscale
522random image to the desired size of 64� 64 and convert the
523upscaled image to a binary pattern by setting a brightness thresh-
524old. For the Bernoulli patterns, we obtain binary images by simply
525creating a 64� 64 grid of zeros, and then replacing the zeros with
526ones based on a probability threshold p¼ 0.6594. For both types
527of patterns, the value of the threshold was chosen so that the light-
528to-dark ratio present in the real patterns is preserved. Notably, the
529procedural patterns lead to spatially correlated features while the
530Bernoulli patterns do not.

5312.5 Evaluation Metrics. For evaluating and comparing the
532performance of the implemented GANs and the procedural meth-
533ods at creating generated examples, we considered three indica-
534tors. First, we compute the Fr�echet inception distance (FID) score,
535a quantitative metric to compare the resemblance between the dis-
536tributions of the generated and real images [108]. The FID, also
537known as Wasserstein-2 distance, is computed between the 2048
538dimensional feature vectors, taken as the output of the last pooling
539layer of the pretrained Inception network, of real and generated
540images by [108]:

FID ¼ kl1 � l2k
2
2 þ Tr½C1 þ C2 � 2ðC1C2Þ1=2� (5)

541542where l1 and l2 and C1 and C2 are the means and covariance mat-
543rices of the real and generated feature vectors, respectively. The
544lower the FID score, the higher the similarity between the gener-
545ated and the real images, with a FID ¼ 0 indicating that the two
546sets are identical. Second, we perform visual inspection of the
547generated patterns to check for the presence of any artifacts in the
548generated images and confirm their resemblance to real patterns.
549Finally, we perform an assessment of the diversity of the gener-
550ated patterns by comparing the change in strain energy (DW)
551obtained from finite element simulations performed on the gener-
552ated patterns to the same quantity obtained from simulations per-
553formed on real patterns from the Cahn–Hilliard dataset. The
554performance of our generative approaches is reported in Sec. 3.1.

5552.6 Note on Standard Rotation-Based Augmentation. In
556addition to augmenting our training dataset with generated pat-
557terns, we further augment the training dataset of the metamodel
558by performing direct transformations on both real and generated
559input patterns. This type of straightforward data augmentation
560occurs after the real and generated input patterns have been used
561to run finite element simulations. Because we are considering an

J_ID: BIO DOI: 10.1115/1.4054898 Date: 13-July-22 Stage: Page: 6 Total Pages: 12

ID: asmeml23d3b2server Time: 11:27 I Path: //chenasprod/kglpro/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220089/Comp/APPFile/AS-BIO#220089

000000-6 / Vol. 00, MONTH 2022 Transactions of the ASME



PROOF COPY [BIO-22-1075]

562 equibiaxial extension load case in this work, we can increase the
563 size of the training dataset by a factor of 4 by applying a set of
564 predefined rotations (0�; 90�; 180�; 270�) on the input images.
565 For all four rotated scenarios, the FEA simulation output DW is
566 identical, thus we can gain four data points per pattern. We report
567 the significance of this standard augmentation on the metamodel
568 performance in Sec. 3.3.

569 3 Results and Discussion

570 In this section, we report the results of employing the methods
571 described in Secs. 2.2, 2.3, 2.4, and 2.6 to augment a small dataset
572 of input patterns and train a convolutional neural network to pre-
573 dict the change in strain energy DW for a given magnitude of
574 applied equibiaxial extension. We begin in Sec. 3.1 by describing
575 the performance of the generative models when trained with just
576 1000 examples of real Cahn–Hilliard patterns. Then, in Sec. 3.2,
577 we demonstrate the performance of a metamodel where the train-
578 ing set contains simulations based on both real and generated
579 input patterns. Finally, in Sec. 3.3, we summarize the results of
580 our transfer learning approach and the effect of standard rotation-
581 based augmentations on metamodel performance.

582 3.1 Generative Model Performance. As stated previously,
583 we have tested three different GAN models, WGAN-CP, WGAN-
584 GP, and SyleGAN2-ADA, with the aim of generating input pat-
585 terns from a small training dataset of 1000 real Cahn–Hilliard pat-
586 terns. In this section, we show the performance of these methods
587 and demonstrate that the StyleGAN2-ADA approach performs
588 best at capturing the Cahn–Hilliard dataset. In Fig. 3, we illustrate
589 the performance by plotting the FID between 1000 real and 1000
590 generated patterns with respect to the number of epochs used for
591 training. This plot shows that the StyleGAN2-ADA approach con-
592 sistently has the lowest FID and is thus producing patterns that are
593 a better match to the real dataset. We note that as expected, the
594 calculated FID on real versus real patterns converged to zero as
595 we increased the size of the comparison datasets of patterns from
596 1000 (FID �13:3) to 10; 000 (FID �1:7). In addition, we have
597 annotated the plot in Fig. 3 with illustrated examples of generated
598 patterns from the three generative models. These illustrations not
599 only confirm the intuition that as the FID decreases the patterns in
600 the generated images more closely resemble those in the real data-
601 set, but also show that for a converged model performance, the
602 generated patterns look quite qualitatively realistic. Based on the
603 higher FID for the WGAN-CP and WGAN-GP models, and the

604fact that FID begins to increase as the number of epochs increases,
605we conclude that both are inferior approaches when the goal is to
606generate realistic patterns that closely match the original dataset.
607However, we note that in terms of model training time, the
608StyleGAN2-ADA network is significantly more expensive to train
609with the training process taking approximately 7.5 h on 4 NVIDIA
610Tesla V100 GPUs. In comparison, it took approximately 0.5 h to
611train each of the WGAN-CP and WGAN-GP models on NVIDIA
612GeForce RTX 3060 Ti.
613In Fig. 4, we plot the percentage frequency distribution of the
614change in strain energy DW for 15; 000 low fidelity real and gener-
615ated patterns subjected to small displacement (d¼ 0.001) with equi-
616biaxial extension finite element simulations. From comparing the
617distributions of DW, it appears that the StyleGAN2-ADA output dis-
618tribution bears the most similarity to the real dataset. However, even
619though the WGAN and procedural patterns are less authentic than
620StyleGAN2-ADA patterns, they are more divergent from the original
6211000 example real dataset while still maintaining overlap with the
622real distribution of DW. Finally, the Bernoulli patterns appear only
623weakly relevant to the real dataset. From performing these simula-
624tions, we now have multiple datasets of low fidelity finite element
625simulations based on both real and generated input patterns that we
626can use to augment our ML model training datasets.

6273.2 Metamodel Performance With an Augmented Train-
628ing Dataset. With our trained ML-based generative models and
629procedural algorithm-based generative models, we are able to
630generate synthetic input patterns and use them as inputs to finite
631element simulations where the results are used to augment our
632metamodel training datasets. In Fig. 5, we show the test perform-
633ance of the CNN-based metamodel defined in Sec. 2.2.1 trained
634on these data. We report the R2 score computed on held out test
635data with respect to dataset size for five different types of training
636dataset. The first training dataset type is composed of real patterns
637only. The rest of the training dataset types contain a fixed number
638of real data points (1000), and the size of these datasets is
639increased by adding simulation results obtained from patterns gen-
640erated using WGAN-CP, WGAN-GP, StyleGAN2-ADA, proce-
641dural, or Bernoulli methods, respectively. For all training dataset
642types, we consider sample sizes of 1000, 2000, 4000, and 16; 000
643patterns. For reference, training our CNN-based metamodel for
644100 epochs with 16; 000 samples took �2 min on a single Nvidia
645Tesla V100 GPU. The results presented in Fig. 5 reveal that meta-
646models trained with WGAN-GP and procedural patterns perform
647nearly equivalently with R2 scores of 0.9975 and exhibit only a
648slightly inferior performance to a metamodel trained entirely on

Fig. 3 FID with respect to the number of epochs for the StyleGAN2-ADA, WGAN-CP, and WGAN-GP ML-based generative
models. In the right panel, we include examples of output patterns as model training proceeds to visualize the relationship
between a lower FID value and improved resemblance to the real input pattern. We note that all ML-based generative models
are trained with just 1000 examples.

J_ID: BIO DOI: 10.1115/1.4054898 Date: 13-July-22 Stage: Page: 7 Total Pages: 12

ID: asmeml23d3b2server Time: 11:27 I Path: //chenasprod/kglpro/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220089/Comp/APPFile/AS-BIO#220089

Journal of Biomechanical Engineering MONTH 2022, Vol. 00 / 000000-7



PROOF COPY [BIO-22-1075]

649 real patterns (R2 ¼ 0:9992) for a dataset size of 16; 000. Notably,
650 in all cases, the addition of the generated input patterns improves
651 the performance of the metamodel except for 1000 and 3000 ran-
652 dom Bernoulli patterns, which decreased the metamodel

653performance. This is anticipated because these patterns are not
654spatially correlated the way real Cahn–Hilliard patterns are, as
655depicted in Fig. 4. In fact, we find the very slight improvement in
656the performance of the metamodels when the dataset is augmented
657with more than 8000 of this type of synthetic patterns to be coun-
658terintuitive. Comparing the metamodel performance for dataset
659augmentations with StyleGAN2-ADA patterns versus WGAN-GP
660and procedural patterns, we anticipate that the diversity of the
661WGAN-GP and procedural synthetic patterns proves to be more
662important than the authenticity of the StyleGAN2-ADA patterns
663for enhancing metamodel performance. Namely, even though the
664StyleGAN2-ADA patterns were closer to real patterns than the
665WGAN-GP patterns, they were perhaps less diverse or even too
666similar to the real patterns used for training and thus less benefi-
667cial when training the predictive model.

6683.3 Metamodel Performance With Transfer Learning.
669After training the metamodels on datasets based on low fidelity
670simulation data, we evaluate the efficacy of our straightforward
671transfer learning approach described in Sec. 2.2.2 to make predic-
672tions on the corresponding high fidelity simulation dataset. We
673begin with our metamodel pretrained using the weights obtained
674from our low fidelity dataset metamodel trained with 1000 real
675and 15; 000 generated patterns with rotation-based augmentation
676as described in Sec. 2.6. With this additional rotation-based aug-
677mentation, a dataset size of N corresponds to 4 N training points.
678Then, we perform additional training with 1000 real pattern-based
679high fidelity simulations. As shown in Table 1, this transfer
680learning-based training process predicts the change in strain
681energy DW at the final displacement for test data with R2 score of
6820.9977 and corresponding mean absolute error (MAE) of 0.0074
683when the weights are initialized with the best performing metamo-
684del trained with a dataset augmented with StyleGAN2-ADA pat-
685terns in addition to the rotation-based methods. We note that
686although the performance of metamodels trained with datasets
687augmented with WGAN-CP, WGAN-GP and procedural patterns
688(with or without additional rotations), is better than equivalent
689metamodels trained based on StyleGAN2-ADA augmented data-
690sets (see Fig. 5 and Table 1 “pre-training” column), the
691StyleGAN2-ADA augmented model performs best after transfer
692learning. Alternatively, training a metamodel initialized with ran-
693dom weights predicts DW for the same high fidelity dataset with
694an R2 of 0.9783 and corresponding MAE of 0.0198. We note that

Fig. 4 Visualization of the ML-based and procedural genera-
tive model results in order of increasing FID. For each pattern
type, we show a comparison of strain energy DW at d 5 0.001 for
real and generated patterns with low fidelity data for: (a)
StyleGAN2-ADA patterns, (b) WGAN-GP patterns, (c) WGAN-CP
patterns, (d) procedural patterns, and (e) Bernoulli patterns.
Overall, patterns produced with StyleGAN2-ADA have the high-
est similarity to the real dataset. We note that all ML-based gen-
erative models were trained with just 1000 examples, whereas
the procedural and Bernoulli patterns rely on no training data,
only a knowledge of the average number of bright and dark pix-
els in the target dataset.

Fig. 5 Metamodel performance with respect to the size of the
training dataset. Note that “dataset size” refers to the combined
number of unique real and generated synthetic patterns. For a
dataset of 16; 000 real patterns, R2 is 0.9992. For a dataset of
1000 real and 15; 000 synthetic patterns, the metamodel per-
formance with procedural and WGAN-GP patterns is almost
identical with R2 values of 0.9975. For augmentations with
WGAN-CP, StyleGAN2-ADA, and Bernoulli patterns, the corre-
sponding R2 values are 0.9969, 0.9911, and 0.9822, respectively.

J_ID: BIO DOI: 10.1115/1.4054898 Date: 13-July-22 Stage: Page: 8 Total Pages: 12

ID: asmeml23d3b2server Time: 11:27 I Path: //chenasprod/kglpro/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220089/Comp/APPFile/AS-BIO#220089

000000-8 / Vol. 00, MONTH 2022 Transactions of the ASME



PROOF COPY [BIO-22-1075]

695 the real patterns used in the training and test sets in the low fidel-
696 ity metamodel training match the patterns used in the high fidelity
697 metamodel training, and that the same 1000 real patterns are used
698 as training data for our metamodels and the generative models.
699 Overall, this demonstrates that synthetic pattern-based and
700 rotation-based data augmentation strategies can be combined with
701 our previously explored transfer learning approach [28] to create
702 meaningful training datasets that rely on only a small number of
703 representative input pattern images and are computationally cheap
704 to generate. Based on our investigations, we find that procedural
705 patterns, when possible to generate, can not only be an effective
706 choice, but also may be a better choice than ML-based generative
707 models in some circumstances. When it is not possible to generate
708 procedural patterns, our results indicate that both WGAN-GP and
709 StyleGAN2-ADA are good choices for ML-based generative
710 models.

711 4 Conclusion

712 In this paper, we extend our previous work on using machine
713 learning-based metamodels to predict mechanical quantities of
714 interest in heterogeneous materials [28–30] to include a method
715 for working with size-limited datasets. Specifically, we are inter-
716 ested in developing tools for making smaller datasets (with as few
717 as 1000 example input patterns) amenable to deep learning
718 approaches. To accomplish this, we first create a new dataset of
719 spatially heterogeneous domains undergoing large deformation
720 with material property patterns based on the Cahn–Hilliard equa-
721 tion, the mechanical MNIST Cahn–Hilliard dataset. In contrast to
722 our previous work [43,44], these input patterns are more relevant
723 to heterogeneous biological materials. In this paper, we present a
724 brief overview of the underlying theory behind the Cahn–Hilliard
725 equations and describe the procedure for generating the dataset.
726 Then, with this dataset, we test the efficacy of different generative
727 adversarial network (GAN) models at generating new
728 Cahn–Hilliard patterns from a limited training dataset of 1000
729 example patterns. Of the approaches that we explored, we found
730 that the StyleGAN2-ADA model performed best at generating
731 synthetic Cahn–Hilliard patterns (FID ¼ 39:2). In addition to
732 GAN-based synthetic patterns, we explored two procedural
733 approaches and created two additional types of synthetic
734 Cahn–Hilliard patterns, procedural patterns and spatially uncorre-
735 lated Bernoulli patterns. With ML-based and procedural-based
736 generated patterns, we then created low fidelity (i.e., computation-
737 ally cheap through coarse mesh and perturbation displacements)
738 finite element simulation datasets comprised of 1000 simulations
739 based on real input patterns and 15; 000 simulations based on gen-
740 erated patterns. We then compared the performance of metamo-
741 dels trained on these hybrid real and generated input pattern
742 datasets to a metamodel trained entirely on real patterns and found
743 that our data augmentation approaches were highly effective (R2
744 of 0.9975 for procedural and WGAN-GP augmentation-based
745 datasets and R2 of 0.9992 for the dataset based entirely on real
746 patterns). In addition, we built on our previous work in using
747 transfer learning to leverage low fidelity simulation datasets [28],
748 and demonstrated that with just 1000 high fidelity (i.e., refined
749 mesh, full applied displacement) finite element simulations, we
750 could transfer a low fidelity metamodel to the high fidelity dataset
751 and obtain an R2 score of 0.9976 and corresponding MAE of
752 0.0074 for predicting change in strain energy. This final result was
753 obtained with 1000 unique real input patterns, 1000 real pattern
754 low fidelity simulations, 1000 real pattern high fidelity simula-
755 tions, and 15; 000 low fidelity simulations with StyleGAN2-ADA
756 generated input patterns.
757 Broadly speaking, we anticipate that the work presented in this
758 paper will motivate multiple future research directions. To this
759 end, we have made both our mechanical MNIST Cahn–Hilliard
760 dataset and our metamodel implementation readily available for
761 other research groups to build on under open-source licenses (see
762 Sec. 5). In the future, we anticipate that others may implement

763alternative approaches to this problem that exceed the baseline
764performance established in this paper. Here, we established base-
765line performance for three problems: (1) training generative mod-
766els with just 1000 example patterns, (2) demonstrating the
767effectiveness of simple procedural data generation and augmenta-
768tion approaches, and (3) training a metamodel based on a finite
769element simulation dataset where the relevant material property
770distribution is defined by just 1000 example patterns. However,
771because our dataset is published under an open source license,
772others are free to formulate different challenges and attempt the
773same problem with an entirely different metamodeling approach.
774In particular, we anticipate future work in developing more
775sophisticated approaches for representing the input pattern space,
776future work in predicting full field quantities of interest in addition
777to the single quantity of interest predicted here, and future work in
778accounting for more aspects that render modeling soft tissue very
779challenging, such as material anisotropy and the broad uncertainty
780in material properties. In addition, we plan to extend the mechani-
781cal MNIST Cahn–Hilliard dataset to include additional constitu-
782tive parameters, a more diverse set of constitutive models, and
783additional loading scenarios in the future. In addition, we note
784that there should be further future investigation into the minimum
785number of data points required to train a GAN model for this type
786of problem. In this work, we relied entirely on a pragmatic selec-
787tion of 1000 data points simply because 100 would likely be insuf-
788ficient for training a GAN, and 10; 000 would no longer be
789resolutely in the size-limited datasets regime. Looking forward,
790we hope that the findings in this work will make deep learning-
791based metamodels much more accessible for researchers working
792with limited examples of their input pattern spaces of interest.

7935 Additional Information

794The mechanical MNIST Cahn–Hilliard dataset is available
795through the OpenBU Institutional Repository at following link3

796[109]. We provide with this dataset a supplementary document
797that includes more details on the theory of the Cahn–Hilliard
798equation and our finite element implementation. The codes for
799generating the Cahn–Hilliard patterns and for performing the
800finite element equibiaxial extension simulations using FENICS

801computing platform4 are available on GITHUB at following link.5

802The codes for implementing the metamodel pipeline including the
803convolutional neural network model for a single quantity of inter-
804est prediction and the GAN model for data synthesis are also
805made available at the following link.6

806Acknowledgment

807We would like to thank the staff of the Boston University
808research computing services and the OpenBU Institutional Repos-
809itory (in particular Eleni Castro) for their invaluable assistance
810with generating and disseminating the mechanical MNIST
811Cahn–Hilliard dataset. This work was made possible through start
812up funds from the Boston University Department of Mechanical
813Engineering, the David R. Dalton Career Development Professor-
814ship, the Hariri Institute Junior Faculty Fellowship, the National
815Science Foundation Engineering Research Center CELL-MET
816NSF EEC-1647837, and the Office of Naval Research Award
817N00014-22-1-2066.
818

819Funding Data

� National Science Foundation (Grant No. CELL-MET NSF
820EEC-1647837; Funder ID: 10.13039/100000001).

3https://open.bu.edu/handle/2144/43971
4https://fenicsproject.org
5https://github.com/elejeune11/Mechanical-MNIST-Cahn-Hilliard
6https://github.com/saeedmhz/cahn-hilliard

J_ID: BIO DOI: 10.1115/1.4054898 Date: 13-July-22 Stage: Page: 9 Total Pages: 12

ID: asmeml23d3b2server Time: 11:27 I Path: //chenasprod/kglpro/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220089/Comp/APPFile/AS-BIO#220089

Journal of Biomechanical Engineering MONTH 2022, Vol. 00 / 000000-9

https://open.bu.edu/handle/2144/43971
https://fenicsproject.org
https://github.com/elejeune11/Mechanical-MNIST-Cahn-Hilliard
https://github.com/saeedmhz/cahn-hilliard


PROOF COPY [BIO-22-1075]

� Office of Naval Research (Grant No. N00014-22-1-2066;
821 Funder ID: 10.13039/100000006).

822 Appendix A: Qualitative Visualization of Metamodel

823 Performance

824 In this Appendix, we provide additional information to support
825 how synthetic data augmentation combined with a simple transfer
826 learning approach can help improve the performance of our meta-
827 model. As shown in Sec. 3.3, initializing the weights of our meta-
828 model with the weights of a model trained on low fidelity real
829 data augmented with the proper set of generated data can increase
830 the R2 score of predicted high fidelity strain energy values from
831 0.9783 to 0.9977. In order to qualitatively interpret the benefits of
832 this improvement, we plotted true versus predicted strain energy
833 values for all samples in the test set of the high fidelity dataset for
834 three different models (Fig. 6). Figure 6(a) shows the results
835 where no transfer learning is performed, whereas Fig. 6(b) shows
836 the case where the weights are transferred from a model trained
837 on 1000 low fidelity real samples and 15,000 synthetic samples
838 generated from StyleGAN2-ADA with extra rotation-based aug-
839 mentations. In Fig. 6(c) the initial weights are transferred from a
840 low fidelity model trained on 16,000 real data with rotation-based
841 augmentations. Overall, this figure further supports our findings
842 from Table 1 and Sec. 3.3 where we state the performance of our
843 metamodels in terms of R2 score.

References
[1] Nikpasand, M., Mahutga, R. R., Bersie-Larson, L. M., Gacek, E., and Barocas,

844 V. H., 2021, “A Hybrid Microstructural-Continuum Multiscale Approach for
845 Modeling Hyperelastic Fibrous Soft Tissue,” J. Elast., 145(1–2), pp. 295–319.

[2] Fan, R., and Sacks, M. S., 2014, “Simulation of Planar Soft Tissues Using a
846 Structural Constitutive Model: Finite Element Implementation and Vali-
847 dation,” J. Biomech., 47(9), pp. 2043–2054.

[3] Berkley, J., Turkiyyah, G., Berg, D., Ganter, M., and Weghorst, S., 2004,
848 “Real-Time Finite Element Modeling for Surgery Simulation: An Application
849 to Virtual Suturing,” IEEE Trans. Visual. Comput. Graph., 10(3), pp.
850 314–325.

[4] Joldes, G. R., Wittek, A., and Miller, K., 2009, “Suite of Finite Element Algo-
851 rithms for Accurate Computation of Soft Tissue Deformation for Surgical
852 Simulation,” Med. Image Anal., 13(6), pp. 912–919.

[5] Zhang, J., Zhong, Y., and Gu, C., 2018, “Deformable Models for Surgical
853 Simulation: A Survey,” IEEE Rev. Biomed. Eng., 11, pp. 143–164.

[6] Joldes, G., Bourantas, G., Zwick, B., Chowdhury, H., Wittek, A., Agrawal, S.,
854 Mountris, K., Hyde, D., Warfield, S. K., and Miller, K., 2019, “Suite of Mesh-
855 less Algorithms for Accurate Computation of Soft Tissue Deformation for Sur-
856 gical Simulation,” Med. Image Anal., 56, pp. 152–171.

[7] Sahli-Costabal, F., Seo, K., Ashley, E., and Kuhl, E., 2020, “Classifying Drugs
857 by Their Arrhythmogenic Risk Using Machine Learning,” Biophys. J., 118(5),
858 pp. 1165–1176.

[8] Sree, V. D., Rausch, M. K., and Tepole, A. B., 2019, “Linking Microvascular
859Collapse to Tissue Hypoxia in a Multiscale Model of Pressure Ulcer Ini-
860tiation,” Biomech. Model. Mechanobiol., 18(6), pp. 1947–1964.

[9] Kong, F., Pham, T., Martin, C., McKay, R., Primiano, C., Hashim, S., Kodali,
861S., and Sun, W., 2018, “Finite Element Analysis of Tricuspid Valve Deforma-
862tion From Multi-Slice Computed Tomography Images,” Ann. Biomed. Eng.,
86346(8), pp. 1112–1127.

[10] Kakaletsis, S., Meador, W. D., Mathur, M., Sugerman, G. P., Jazwiec, T.,
864Malinowski, M., Lejeune, E., Timek, T. A., and Rausch, M. K., 2021, “Right
865Ventricular Myocardial Mechanics: Multi-Modal Deformation, Microstruc-
866ture, Modeling, and Comparison to the Left Ventricle,” Acta Biomater., 123,
867pp. 154–166.

[11] Avazmohammadi, R., Li, D. S., Leahy, T., Shih, E., Soares, J. S., Gorman, J.
868H., Gorman, R. C., and Sacks, M. S., 2018, “An Integrated Inverse Model-
869Experimental Approach to Determine Soft Tissue Three-Dimensional Consti-
870tutive Parameters: Application to Post-Infarcted Myocardium,” Biomech.
871Model. Mechanobiol., 17(1), pp. 31–53.

[12] Ogden, R. W., 2017, Nonlinear Continuum Mechanics and Modeling the Elas-
872ticity of Soft Biological Tissues With a Focus on Artery Walls, Springer Inter-
873national Publishing, Cham, Switzerland, pp. 83–156.

[13] Ateshian, G. A., 2017, Mixture Theory for Modeling Biological Tissues: Illus-
874trations From Articular Cartilage, Pages, Springer International Publishing,
875Cham, Switzerland, pp. 1–51.

[14] Holzapfel, G., 2001, Biomechanics of Soft Tissue, Academic Press, San Diego,
876CA, pp. 1049–1063.

[15] Humphrey, J. D., 2013, “Multiscale Modeling of Arterial Adaptations: Incor-
877porating Molecular Mechanisms Within Continuum Biomechanical Models,”
878Computer Models in Biomechanics, Year 2013, Gerhard A. Holzapfel, and
879Ellen Kuhl, eds., Springer Netherlands, Dordrecht, pp. 119–127.

[16] Hughes, T. J., 2012, The Finite Element Method: Linear Static and Dynamic
880Finite Element Analysis, Courier Corporation, Mineola, NY.

[17] Korenczuk, C. E., Dhume, R. Y., Liao, K. K., and Barocas, V. H., 2019, “Ex
881Vivo Mechanical Tests and Multiscale Computational Modeling Highlight the
882Importance of Intramural Shear Stress in Ascending Thoracic Aortic
883Aneurysms,” ASME J. Biomech. Eng., 141(12), p. 121010.

[18] Leng, Y., de Lucio, M., and Gomez, H., 2021, “Using Poro-Elasticity to
884Model the Large Deformation of Tissue During Subcutaneous Injection,”
885Comput. Methods Appl. Mech. Eng., 384, p. 113919.

[19] Mei, Y., Liu, J., Guo, X., Zimmerman, B., Nguyen, T. D., and Avril, S., 2021,
886“General Finite-Element Framework of the Virtual Fields Method in Nonlin-
887ear Elasticity,” J. Elast., 145(1–2), pp. 265–294.

[20] Madireddy, S., Sista, B., and Vemaganti, K., 2015, “A Bayesian Approach to
888Selecting Hyperelastic Constitutive Models of Soft Tissue,” Comput. Methods
889Appl. Mech. Eng., 291, pp. 102–122.

[21] Jadidi, M., Sherifova, S., Sommer, G., Kamenskiy, A., and Holzapfel, G. A.,
8902021, “Constitutive Modeling Using Structural Information on Collagen Fiber
891Direction and Dispersion in Human Superficial Femoral Artery Specimens of
892Different Ages,” Acta Biomater., 121, pp. 461–474.

[22] Tonutti, M., Gras, G., and Yang, G.-Z., 2017, “A Machine Learning Approach
893for Real-Time Modelling of Tissue Deformation in Image-Guided Neuro-
894surgery,” Artif. Intell. Med., 80, pp. 39–47.

[23] Tac, V., Sree, V. D., Rausch, M. K., and Tepole, A. B., 2021, “Data-Driven
895Modeling of the Mechanical Behavior of Anisotropic Soft Biological Tissue,”
896arXiv preprint arXiv:2107.05388.

[24] Tajdari, M., Pawar, A., Li, H., Tajdari, F., Maqsood, A., Cleary, E., Saha, S.,
897Zhang, Y. J., Sarwark, J. F., and Liu, W. K., 2021, “Image-Based Modelling
898for Adolescent Idiopathic Scoliosis: Mechanistic Machine Learning Analysis
899and Prediction,” Comput. Methods Appl. Mech. Eng., 374, p. 113590.

Fig. 6 Qualitative interpretation of R2 scores for transfer learning evaluation. True versus predicted strain energy values of
high fidelity test data are plotted for three different metamodels trained with 1000 high fidelity real data points. (a) Metamodel
weights are initialized randomly (i.e., no transfer learning is performed). (b) Metamodel weights are transferred from a model
trained on 1000 low fidelity real samples and 15,000 generated samples from StyleGAN2-ADA with extra rotation-based aug-
mentations. (c) Metamodel weights are initialized by transferring weights of a model trained on 16,000 low fidelity real data
with extra rotation-based augmentations.

J_ID: BIO DOI: 10.1115/1.4054898 Date: 13-July-22 Stage: Page: 10 Total Pages: 12

ID: asmeml23d3b2server Time: 11:27 I Path: //chenasprod/kglpro/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220089/Comp/APPFile/AS-BIO#220089

000000-10 / Vol. 00, MONTH 2022 Transactions of the ASME

http://dx.doi.org/10.1007/s10659-021-09843-7
http://dx.doi.org/10.1016/j.jbiomech.2014.03.014
http://dx.doi.org/10.1109/TVCG.2004.1272730
http://dx.doi.org/10.1016/j.media.2008.12.001
http://dx.doi.org/10.1109/RBME.2017.2773521
http://dx.doi.org/10.1016/j.media.2019.06.004
http://dx.doi.org/10.1016/j.bpj.2020.01.012
http://dx.doi.org/10.1007/s10237-019-01187-5
http://dx.doi.org/10.1007/s10439-018-2024-8
http://dx.doi.org/10.1016/j.actbio.2020.12.006
http://dx.doi.org/10.1007/s10237-017-0943-1
http://dx.doi.org/10.1007/s10237-017-0943-1
http://dx.doi.org/10.1115/1.4045270
http://dx.doi.org/10.1016/j.cma.2021.113919
http://dx.doi.org/10.1007/s10659-021-09842-8
http://dx.doi.org/10.1016/j.cma.2015.03.012
http://dx.doi.org/10.1016/j.cma.2015.03.012
http://dx.doi.org/10.1016/j.actbio.2020.11.046
http://dx.doi.org/10.1016/j.artmed.2017.07.004
http://dx.doi.org/10.48550/arXiv.2107.05388
http://dx.doi.org/10.1016/j.cma.2020.113590


PROOF COPY [BIO-22-1075]

[25] Li, A., Farimani, A. B., and Zhang, Y. J., 2021, “Deep Learning of Material
900 Transport in Complex Neurite Networks,” Sci. Rep., 11(1), pp. 1–13.

[26] Peng, G. C., Alber, M., Tepole, A. B., Cannon, W. R., De, S., Dura-Bernal, S.,
901 Garikipati, K., Karniadakis, G., Lytton, W. W., Perdikaris, P., Petzold, L., and
902 Kuhl, E., 2021, “Multiscale Modeling Meets Machine Learning: What Can we
903 Learn?,” Arch. Comput. Methods Eng., 28(3), pp. 1017–1037.

[27] Peirlinck, M., Costabal, F. S., Sack, K. L., Choy, J. S., Kassab, G. S., Guc-
904 cione, J. M., De Beule, M., Segers, P., and Kuhl, E., 2019, “Using Machine
905 Learning to Characterize Heart Failure Across the Scales,” Biomech. Model.
906 Mechanobiol., 18(6), pp. 1987–2001.

[28] Lejeune, E., and Zhao, B., 2021, “Exploring the Potential of Transfer Learning
907 for Metamodels of Heterogeneous Material Deformation,” J. Mech. Behav.
908 Biomed. Mater., 117, p. 104276.

[29] Lejeune, E., 2020, “Mechanical MNIST: A Benchmark Dataset for Mechani-
909 cal Metamodels,” Ext. Mech. Lett., 36, p. 100659.

[30] Mohammadzadeh, S., and Lejeune, E., 2022, “Predicting Mechanically Driven
910 Full-Field Quantities of Interest With Deep Learning-Based Metamodels,”
911 Ext. Mech. Lett., 50, p. 101566.

[31] Yang, Z., Yu, C.-H., Guo, K., and Buehler, M. J., 2021, “End-to-End Deep
912 Learning Method to Predict Complete Strain and Stress Tensors for Complex
913 Hierarchical Composite Microstructures,” J. Mech. Phys. Solids, 154, p.
914 104506.

[32] Mianroodi, J. R., Siboni, N. H., and Raabe, D., 2021, “Teaching Solid
915 Mechanics to Artificial Intelligence-a Fast Solver for Heterogeneous Materi-
916 als,” NPJ Comput. Mater., 7(1), pp. 1–10.

[33] Stowers, C., Lee, T., Bilionis, I., Gosain, A. K., and Tepole, A. B., 2021,
917 “Improving Reconstructive Surgery Design Using Gaussian Process Surro-
918 gates to Capture Material Behavior Uncertainty,” J. Mech. Behav. Biomed.
919 Mater., 118, Article No. 104340.

[34] Yang, H., Guo, X., Tang, S., and Liu, W. K., 2019, “Derivation of Heterogene-
920 ous Material Laws Via Data-Driven Principal Component Expansions,” Com-
921 put. Mech., 64(2), pp. 365–379.

[35] Liu, Z., Wu, C. T., and Koishi, M., 2019, “A Deep Material Network for Multi-
922 scale Topology Learning and Accelerated Nonlinear Modeling of Heterogeneous
923 Materials,” Comput. Methods Appl. Mech. Eng., 345, pp. 1138–1168.

[36] Forrester, A. I., and Keane, A. J., 2009, “Recent Advances in Surrogate-Based
924 Optimization,” Prog. Aerospace Sci., 45(1–3), pp. 50–79.

[37] Salehi, Y., and Giannacopoulos, D., 2021, “PhysGNN: A Physics-Driven
925 Graph Neural Network Based Model for Predicting Soft Tissue Deformation
926 in Image-Guided Neurosurgery,” arXiv preprint arXiv:2109.04352.

[38] Lu, L., Dao, M., Kumar, P., Ramamurty, U., Karniadakis, G. E., and Suresh,
927 S., 2020, “Extraction of Mechanical Properties of Materials Through Deep
928 Learning From Instrumented Indentation,” Proc. Natl. Acad. Sci., 117(13), pp.
929 7052–7062.

[39] Teichert, G. H., and Garikipati, K., 2019, “Machine Learning Materials
930 Physics: Surrogate Optimization and Multi-Fidelity Algorithms Predict Pre-
931 cipitate Morphology in an Alternative to Phase Field Dynamics,” Comput.
932 Methods Appl. Mech. Eng., 344, pp. 666–693.

[40] Haghighat, E., Raissi, M., Moure, A., Gomez, H., and Juanes, R., 2021, “A
933 Physics-Informed Deep Learning Framework for Inversion and Surrogate
934 Modeling in Solid Mechanics,” Comput. Methods Appl. Mech. Eng., 379, p.
935 113741.

[41] Brock, A., Donahue, J., and Simonyan, K., 2019, “Large Scale GAN Training
936 for High Fidelity Natural Image Synthesis,” International Conference on
937 Learning Representation, New Orleans, LA, May 6–9.

[42] Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., and Aila, T., 2020,
938 “Training Generative Adversarial Networks with Limited Data,” Advances in
939 Neural Information Processing Systems 33, Virtual, Dec. 6–12, Curran Asso-
940 ciates, Red Hook, NY, pp. 12104–12114.

[43] Lejeune, E., 2020, “Mechanical MNIST-Fashion,” OpenBU, Boston, MA,
941 accessed Jan. 5, 2022, https://open.bu.edu/handle/2144/41450

[44] Lejeune, E., 2019, “Mechanical MNIST-Uniaxial Extension,” OpenBU, Bos-
942 ton, MA, accessed Jan. 5, 2022, https://open.bu.edu/handle/2144/38693

[45] Mohammadzadeh, S., and Lejeune, E., 2021, “Mechanical MNIST Crack
943 Path,” OpenBU, Boston, MA, accessed Jan. 5, 2022, https://open.bu.edu/
944 handle/2144/42757

[46] Prachaseree, P., and Lejeune, E., 2021, “Asymmetric Buckling Columns
945 (ABC),” OpenBU, Boston, MA, accessed Feb. 3, 2022, https://open.bu.edu/
946 handle/2144/43730

[47] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
947 Ozair, S., Courville, A., and Bengio, Y., 2014, “Generative Adversarial Nets,”
948 Proceedings of the 27th International Conference on Neural Information Proc-
949 essing Systems - Volume 2, NIPS’14, MIT Press, Cambridge, MA, pp.
950 2672–2680.

[48] Jangid, D. K., Brodnik, N. R., Khan, A., Goebel, M. G., Echlin, M. P., Pollock,
951 T. M., Daly, S. H., and Manjunath, B. S., 2022, “3D Grain Shape Generation
952 in Polycrystals Using Generative Adversarial Networks,” Integr. Mater.
953 Manuf. Innov., 11(1), pp. 71–84.

[49] Ma, W., Kautz, E. J., Baskaran, A., Chowdhury, A., Joshi, V., Yener, B., and
954 Lewis, D. J., 2020, “Image-Driven Discriminative and Generative Machine
955 Learning Algorithms for Establishing Microstructure–Processing
956 Relationships,” J. Appl. Phys., 128(13), p. 134901.

[50] LeCun, Y., and Cortes, C., 2010, “MNIST Handwritten Digit Database,”
957 MNIST, accessed Dec. 28, 2021, http://yann.lecun.com/exdb/mnist/

[51] Xiao, H., Rasul, K., and Vollgraf, R., 2017, “Fashion-MNIST: A Novel Image
958 Dataset for Benchmarking Machine Learning Algorithms,” arXiv preprint
959 arXiv:1708.07747

[52] Turing, A. M., 1990, “The Chemical Basis of Morphogenesis,” Bull. Math.
960Biol., 52(1–2), pp. 153–197.

[53] Maini, P. K., Woolley, T. E., Baker, R. E., Gaffney, E. A., and Lee, S. S.,
9612012, “Turing’s Model for Biological Pattern Formation and the Robustness
962Problem,” Interface Focus, 2(4), pp. 487–496.

[54] Garikipati, K., 2017, “Perspectives on the Mathematics of Biological Pattern-
963ing and Morphogenesis,” J. Mech. Phys. Solids, 99, pp. 192–210.

[55] Grant, C. P., 1993, “Spinodal Decomposition for the Cahn–Hilliard Equation,”
964Commun. Partial Diff. Eqs., 18(3–4), pp. 453–490.

[56] Wang, Z., Huan, X., and Garikipati, K., 2019, “Variational System Identifica-
965tion of the Partial Differential Equations Governing the Physics of Pattern-
966Formation: Inference Under Varying Fidelity and Noise,” Comput. Methods
967Appl. Mech. Eng., 356, pp. 44–74.

[57] Wang, Z., Huan, X., and Garikipati, K., 2021, “Variational System Identifica-
968tion of the Partial Differential Equations Governing Microstructure Evolution
969in Materials: Inference Over Sparse and Spatially Unrelated Data,” Comput.
970Methods Appl. Mech. Eng., 377, p. 113706.

[58] Sainburg, T., McInnes, L., and Gentner, T. Q., 2021, “Parametric Umap
971Embeddings for Representation and Semisupervised Learning,” Neural Com-
972put., 33(11), pp. 2881–2907.

[59] Wells, G. N., Kuhl, E., and Garikipati, K., 2006, “A Discontinuous Galerkin
973Method for the Cahn–Hilliard Equation,” J. Comput. Phys., 218(2), pp. 860–877.

[60] FEniCS Project, 2016, “Cahn–Hilliard Equation,” FEniCS Project, accessed
974Dec. 4, 2020, https://fenicsproject.org/olddocs/dolfin/1.4.0/python/demo/
975documented/cahn-hilliard/python/documentation.html

[61] Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richard-
976son, C., Ring, J., Rognes, M. E., and Wells, G. N., 2015, “The FEniCS Project
977Version 1.5,” Arch. Numer. Software, 3(100), pp. 9–23.

[62] Logg, A., Mardal, K.-A., and Wells, G., 2012, Automated Solution of Differen-
978tial Equations by the Finite Element Method: The FEniCS Book, Vol. 84,
979Springer Science & Business Media, Heidelberg, Germany.

[63] Wodo, O., and Ganapathysubramanian, B., 2011, “Computationally Efficient
980Solution to the Cahn–Hilliard Equation: Adaptive Implicit Time Schemes,
981Mesh Sensitivity Analysis and the 3D Isoperimetric Problem,” J. Comput.
982Phys., 230(15), pp. 6037–6060.

[64] G�omez, H., Calo, V. M., Bazilevs, Y., and Hughes, T. J., 2008, “Isogeometric
983Analysis of the Cahn–Hilliard Phase-Field Model,” Comput. Methods Appl.
984Mech. Eng., 197(49–50), pp. 4333–4352.

[65] Bradski, G., and Kaehler, A., 2008, Learning OpenCV: Computer Vision With
985the OpenCV Library, O’Reilly Media, Sebastopol, CA.

[66] Schl€omer, N., Cervone, A., McBain, G. D., Tryfon mw, van Staden, R., Gok-
986storp, F., Toothstone, Dokken, J. S., Anzil, Sanchez, J., Kempf, D., Busson-
987nier, M., Feng, Y., Awa5114, Maric, T., Chen, S., Nilswagner, Nate,
988Ivanmultiwave, and Fu, F., 2020, “nschloe/pygmsh v6.1.1,” Zenodo,
989Switzerland.

[67] Geuzaine, C., and Remacle, J.-F., 2009, “GMSH: A 3D Finite Element Mesh
990Generator With Built-In Pre-and Post-Processing Facilities,” Int. J. Numer.
991Methods Eng., 79(11), pp. 1309–1331.

[68] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
992T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
993DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
994Bai, J., and Chintala, S., 2019, “ Pytorch: An Imperative Style, High-
995Performance Deep Learning Library,” Advances in Neural Information Proc-
996essing Systems 32, Vancouver, BC, Canada, Dec. 8–14, Curran Associates,
997Red Hook, NY, pp. 8024–8035.

[69] Kingma, D. P., and Ba, J., 2017, “Adam: A Method for Stochastic Opti-
998mization,” arXiv preprint arXiv:1412.6980.

[70] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H., 2014, “How Transferable
999Are Features in Deep Neural Networks?” Advances in Neural Information

1000Processing Systems 27, Montr�eal, QC, Canada, Dec. 8–13, Curran Associates,
1001Red Hook, NY.

[71] Arjovsky, M., Chintala, S., and Bottou, L., 2017, “Wasserstein Generative
1002Adversarial Networks,” Proceedings of the 34th International Conference on
1003Machine Learning, Volume 70 of Proceedings of Machine Learning Research,
1004D. Precup, and Y. W. Teh, eds., PMLR, Sydney, Australia, Aug. 6–11, pp.
1005214–223.

[72] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C.,
10062017, “Improved Training of Wasserstein GANs,” Advances in Neural Infor-
1007mation Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
1008R. Fergus, S. Vishwanathan, and R. Garnett, eds., Vol. 30, Curran Associates,
1009Red Hook, NY.

[73] Bishop, C. M., and Nasrabadi, N. M., 2006, Pattern Recognition and Machine
1010Learning, Vol. 4, Springer, New York, Chap. 1, p. 43.

[74] Bengio, Y., Laufer, E., Guillaume, A., and Yosinski, J., 2014, “Deep Genera-
1011tive Stochastic Networks Trainable by Backprop,” Proceedings of the 31st
1012International Conference on Machine Learning, Beijing, China, June 21–26,
1013E. P. Xing and T. Jebara, eds., 32(2), PMLR, pp. 226–234.

[75] Gutmann, U. M., and Hyv€arinen, A., 2010, “Noise-Contrastive Estimation: A
1014New Estimation Principle for Unnormalized Statistical Models,” Proceedings
1015of the Thirteenth International Conference on Artificial Intelligence and Statis-
1016tics (AISTATS2010), JMLR Workshop and Conference Proceedings, Interna-
1017tional Conference, Sardinia, Italy, May 13–15, pp. 297–304.

[76] Schmidhuber, J., 1992, “Learning Factorial Codes by Predictability Mini-
1018mization,” Neural Comput., 4(6), pp. 863–879.

[77] Tu, Z., 2007, “Learning Generative Models Via Discriminative Approaches,”
1019IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis,
1020MN, June 17–22, pp. 1–8.

J_ID: BIO DOI: 10.1115/1.4054898 Date: 13-July-22 Stage: Page: 11 Total Pages: 12

ID: asmeml23d3b2server Time: 11:27 I Path: //chenasprod/kglpro/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220089/Comp/APPFile/AS-BIO#220089

Journal of Biomechanical Engineering MONTH 2022, Vol. 00 / 000000-11

http://dx.doi.org/10.1038/s41598-021-90724-3
http://dx.doi.org/10.1007/s11831-020-09405-5
http://dx.doi.org/10.1007/s10237-019-01190-w
http://dx.doi.org/10.1007/s10237-019-01190-w
http://dx.doi.org/10.1016/j.jmbbm.2020.104276
http://dx.doi.org/10.1016/j.jmbbm.2020.104276
http://dx.doi.org/10.1016/j.eml.2020.100659
http://dx.doi.org/10.1016/j.eml.2021.101566
http://dx.doi.org/10.1016/j.jmps.2021.104506
http://dx.doi.org/10.1038/s41524-021-00571-z
http://dx.doi.org/10.1016/j.jmbbm.2021.104340
http://dx.doi.org/10.1016/j.jmbbm.2021.104340
http://dx.doi.org/10.1007/s00466-019-01728-w
http://dx.doi.org/10.1007/s00466-019-01728-w
http://dx.doi.org/10.1016/j.cma.2018.09.020
http://dx.doi.org/10.1016/j.paerosci.2008.11.001
http://dx.doi.org/10.48550/arXiv.2109.04352
http://dx.doi.org/10.1073/pnas.1922210117
http://dx.doi.org/10.1016/j.cma.2018.10.025
http://dx.doi.org/10.1016/j.cma.2018.10.025
http://dx.doi.org/10.1016/j.cma.2021.113741
https://open.bu.edu/handle/2144/41450
https://open.bu.edu/handle/2144/38693
https://open.bu.edu/handle/2144/42757
https://open.bu.edu/handle/2144/42757
https://open.bu.edu/handle/2144/43730
https://open.bu.edu/handle/2144/43730
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://dx.doi.org/10.1007/s40192-021-00244-1
http://dx.doi.org/10.1007/s40192-021-00244-1
http://dx.doi.org/10.1063/5.0013720
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.48550/arXiv.1708.07747
http://dx.doi.org/10.1016/S0092-8240(05)80008-4
http://dx.doi.org/10.1016/S0092-8240(05)80008-4
http://dx.doi.org/10.1098/rsfs.2011.0113
http://dx.doi.org/10.1016/j.jmps.2016.11.013
http://dx.doi.org/10.1080/03605309308820937
http://dx.doi.org/10.1016/j.cma.2019.07.007
http://dx.doi.org/10.1016/j.cma.2019.07.007
http://dx.doi.org/10.1016/j.cma.2021.113706
http://dx.doi.org/10.1016/j.cma.2021.113706
http://dx.doi.org/10.1162/neco_a_01434
http://dx.doi.org/10.1162/neco_a_01434
http://dx.doi.org/10.1016/j.jcp.2006.03.010
https://fenicsproject.org/olddocs/dolfin/1.4.0/python/demo/documented/cahn-hilliard/python/documentation.html
https://fenicsproject.org/olddocs/dolfin/1.4.0/python/demo/documented/cahn-hilliard/python/documentation.html
http://dx.doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.1016/j.jcp.2011.04.012
http://dx.doi.org/10.1016/j.jcp.2011.04.012
http://dx.doi.org/10.1016/j.cma.2008.05.003
http://dx.doi.org/10.1016/j.cma.2008.05.003
http://dx.doi.org/10.5281/zenodo.3764683
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1002/nme.2579
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2014/file/375c71349b295fbe2dcdca9206f20a06-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/375c71349b295fbe2dcdca9206f20a06-Paper.pdf
https://dl.acm.org/doi/10.5555/3305381.3305404
https://dl.acm.org/doi/10.5555/3305381.3305404
http://proceedings.mlr.press/v32/bengio14.html
http://proceedings.mlr.press/v32/bengio14.html
https://proceedings.mlr.press/v9/gutmann10a/gutmann10a.pdf
http://dx.doi.org/10.1162/neco.1992.4.6.863
http://dx.doi.org/10.1109/CVPR.2007.383035


PROOF COPY [BIO-22-1075]

[78] Deng, L., 2012, “The Mnist Database of Handwritten Digit Images for
1021 Machine Learning Research [Best of the Web],” IEEE Signal Process. Mag.,
1022 29(6), pp. 141–142.

[79] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P., 1998, “Gradient-Based
1023 Learning Applied to Document Recognition,” Proc. IEEE, 86(11), pp.
1024 2278–2324.

[80] Susskind, J. M., Anderson, A. K., and Hinton, G. E., 2010, The Toronto Face
1025 Database, Department of Computer Science, University of Toronto, Toronto,
1026 ON, Canada, Report No. TR-2010-001.

[81] Krizhevsky, A., Nair, V., and Hinton, G., 2014, “The Cifar-10 Dataset,”
1027 accessed Jan. 10, 2021, https://www.cs.toronto.edu/~kriz/cifar.html

[82] Karras, T., Aila, T., Laine, S., and Lehtinen, J., 2018, “Progressive Growing of
1028 GANS for Improved Quality, Stability, and Variation,” International Confer-
1029 ence on Learning Representations, Vancouver, BC, Canada, Apr. 30–May 3.

[83] Radford, A., Metz, L., and Chintala, S., 2016, “Unsupervised Representation
1030 Learning With Deep Convolutional Generative Adversarial Networks,” Inter-
1031 national Conference on Learning Representations, San Juan, Puerto Rico,
1032 May 2–4.

[84] Rubner, Y., Tomasi, C., and Guibas, L. J., 2000, “The Earth Mover’s Distance
1033 as a Metric for Image Retrieval,” Int. J. Comput. Vision, 40(2), pp. 99–121.

[85] Rubner, Y., and Tomasi, C., 2001, Perceptual Metrics for Image Database
1034 Navigation, Springer Science & Business Media, Norwell, MA.

[86] Ling, H., and Okada, K., 2007, “An Efficient Earth Mover’s Distance Algo-
1035 rithm for Robust Histogram Comparison,” IEEE Trans. Pattern Anal. Mach.
1036 Intell., 29(5), pp. 840–853.

[87] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
1037 Desmaison, A., Antiga, L., and Lerer, A., 2017, “Automatic Differentiation in
1038 Pytorch,” Proceeding of the 31st Conference on Neural Information Process-
1039 ing Systems, Long Beach, CA, Dec. 4–9.

[88] Zeleni9, 2021, “pytorch-wgan,” Zeleni9, accessed Nov. 3, 2021, https://
1040 github.com/Zeleni9/pytorch-wgan

[89] Karras, T., Laine, S., and Aila, T., 2019, “A Style-Based Generator Architec-
1041 ture for Generative Adversarial Networks,” IEEE/CVF Conference on Com-
1042 puter Vision and Pattern Recognition (CVPR), Long Beach, CA, June 16–20,
1043 pp. 4396–4405.

[90] Huang, X., and Belongie, S., 2017, “Arbitrary Style Transfer in Real-Time
1044 With Adaptive Instance Normalization,” Proceedings of the IEEE Interna-
1045 tional Conference on Computer Vision, Oct. 22–29, Venice, Italy, pp.
1046 1501–1510.

[91] Gatys, L. A., Ecker, A. S., and Bethge, M., 2016, “Image Style Transfer Using
1047 Convolutional Neural Networks,” IEEE Conference on Computer Vision and
1048 Pattern Recognition (CVPR), Las Vegas, NV, June 26–July 1, pp. 2414–2423.

[92] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T., 2020,
1049 “Analyzing and Improving the Image Quality of StyleGAN,” IEEE/CVF Con-
1050 ference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA,
1051 June 14–19, pp. 8110–8119.

[93] Zhang, H., Zhang, Z., Odena, A., and Lee, H., 2020, “Consistency Regulariza-
1052 tion for Generative Adversarial Networks,” International Conference on
1053 Learning Representations, Virtual, Apr. 26–May 1.

[94] Zhao, Z., Singh, S., Lee, H., Zhang, Z., Odena, A., and Zhang, H., 2020,
1054 “Improved Consistency Regularization for GANS,” Proceedings of the AAAI

1055Conference on Artificial Intelligence, Virtual, Feb. 2–9, OJS, 35(12), pp.
105611033–11041.

[95] Bora, A., Price, E., and Dimakis, A. G., 2018, “AmbientGAN: Generative
1057Models From Lossy Measurements,” ICLR, International Conference on
1058Learning Representations, Vancouver, BC, Canada, Apr. 30–May 3.

[96] Cule, D., and Torquato, S., 1999, “Generating Random Media From Limited
1059Microstructural Information Via Stochastic Optimization,” J. Appl. Phys.,
106086(6), pp. 3428–3437.

[97] Fujii, D., Chen, B. C., and Kikuchi, N., 2001, “Composite Material Design of
1061Two-Dimensional Structures Using the Homogenization Design Method,” Int.
1062J. Numer. Methods Eng., 50(9), pp. 2031–2051.

[98] Jiao, Y., Stillinger, F. H., and Torquato, S., 2007, “Modeling Heterogeneous
1063Materials Via Two-Point Correlation Functions: Basic Principles,” Phys. Rev.
1064E, 76(3), p. 031110.

[99] Redenbach, C., 2009, “Microstructure Models for Cellular Materials,” Com-
1065put. Mater. Sci., 44(4), pp. 1397–1407.

[100] Pasko, A., Fryazinov, O., Vilbrandt, T., Fayolle, P.-A., and Adzhiev, V., 2011,
1066“Procedural Function-Based Modelling of Volumetric Microstructures,” Grap.
1067Models, 73(5), pp. 165–181.

[101] Walters, D. J., Luscher, D. J., and Yeager, J. D., 2020, “Volumetric Analysis
1068and Mesh Generation of Real and Artificial Microstructural Geometries,”
1069MethodsX, 7, p. 100856.

[102] Vaughan, T. J., and McCarthy, C. T., 2010, “A Combined Experimental-
1070Numerical Approach for Generating Statistically Equivalent Fibre Distribu-
1071tions for High Strength Laminated Composite Materials,” Compos. Sci. Tech-
1072nol., 70(2), pp. 291–297.

[103] Romanov, V., Lomov, S. V., Swolfs, Y., Orlova, S., Gorbatikh, L., and
1073Verpoest, I., 2013, “Statistical Analysis of Real and Simulated Fibre
1074Arrangements in Unidirectional Composites,” Compos. Sci. Technol., 87,
1075pp. 126–134.

[104] Aurenhammer, F., 1991, “Voronoi Diagrams-a Survey of a Fundamental
1076Geometric Data Structure,” ACM Comput. Surv. (CSUR), 23(3), pp.
1077345–405.

[105] Falco, S., Jiang, J., De Cola, F., and Petrinic, N., 2017, “Generation of 3D Pol-
1078ycrystalline Microstructures With a Conditioned Laguerre-Voronoi Tessella-
1079tion Technique,” Comput. Mater. Sci., 136, pp. 20–28.

[106] Bargmann, S., Klusemann, B., Markmann, J., Schnabel, J. E., Schneider, K.,
1080Soyarslan, C., and Wilmers, J., 2018, “Generation of 3D Representative Vol-
1081ume Elements for Heterogeneous Materials: A Review,” Prog. Mater. Sci., 96,
1082pp. 322–384.

[107] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Courna-
1083peau, D., Burovski, E., 2020, “SciPy 1.0: Fundamental Algorithms for Scien-
1084tific Computing in Python,” Nat. Methods, 17(3), pp. 261–272.

[108] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter,
1085S., 2017, “GANs Trained by a Two Time-Scale Update Rule Converge
1086to a Local Nash Equilibrium,” Proceeding of the 31st Conference on
1087Neural Information Processing Systems - Vol. 30, Long Beach, CA, Dec.
10884–9, pp. 6626–6637.

[109] Kobeissi, H., and Lejeune, E., 2022, Mechanical MNIST—Cahn-Hilliard,”
1089OpenBU, Boston, MA, accessed Mar. 15, 2022, https://open.bu.edu/
1090handle/2144/43971

J_ID: BIO DOI: 10.1115/1.4054898 Date: 13-July-22 Stage: Page: 12 Total Pages: 12

ID: asmeml23d3b2server Time: 11:27 I Path: //chenasprod/kglpro/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220089/Comp/APPFile/AS-BIO#220089

000000-12 / Vol. 00, MONTH 2022 Transactions of the ASME

http://dx.doi.org/10.1109/MSP.2012.2211477
http://dx.doi.org/10.1109/5.726791
https://www.cs.toronto.edu/~kriz/cifar.html
http://dx.doi.org/10.48550/arXiv.1710.10196
http://dx.doi.org/10.48550/arXiv.1710.10196
http://dx.doi.org/10.48550/arXiv.1511.06434
http://dx.doi.org/10.48550/arXiv.1511.06434
http://dx.doi.org/10.1023/A:1026543900054
http://dx.doi.org/10.1109/TPAMI.2007.1058
http://dx.doi.org/10.1109/TPAMI.2007.1058
https://openreview.net/pdf?id=BJJsrmfCZ
https://openreview.net/pdf?id=BJJsrmfCZ
https://github.com/Zeleni9/pytorch-wgan
https://github.com/Zeleni9/pytorch-wgan
https://openaccess.thecvf.com/content_CVP R_2019/papers/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.pdf
http://dx.doi.org/10.1109/ICCV.2017.167
http://dx.doi.org/10.1109/ICCV.2017.167
http://dx.doi.org/10.1109/CVPR.2016.265
http://dx.doi.org/10.1109/CVPR42600.2020.00813
http://dx.doi.org/10.48550/arXiv.1910.12027
http://dx.doi.org/10.48550/arXiv.1910.12027
https://ojs.aaai.org/index.php/AAAI/article/view/17317
https://ojs.aaai.org/index.php/AAAI/article/view/17317
https://openreview.net/forum?id=Hy7fDog0b
https://openreview.net/forum?id=Hy7fDog0b
http://dx.doi.org/10.1063/1.371225
http://dx.doi.org/10.1002/nme.105
http://dx.doi.org/10.1002/nme.105
http://dx.doi.org/10.1103/PhysRevE.76.031110
http://dx.doi.org/10.1103/PhysRevE.76.031110
http://dx.doi.org/10.1016/j.commatsci.2008.09.018
http://dx.doi.org/10.1016/j.commatsci.2008.09.018
http://dx.doi.org/10.1016/j.gmod.2011.03.001
http://dx.doi.org/10.1016/j.gmod.2011.03.001
http://dx.doi.org/10.1016/j.mex.2020.100856
http://dx.doi.org/10.1016/j.compscitech.2009.10.020
http://dx.doi.org/10.1016/j.compscitech.2009.10.020
http://dx.doi.org/10.1016/j.compscitech.2013.07.030
http://dx.doi.org/10.1145/116873.116880
http://dx.doi.org/10.1016/j.commatsci.2017.04.018
http://dx.doi.org/10.1016/j.pmatsci.2018.02.003
http://dx.doi.org/10.1038/s41592-019-0686-2
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://open.bu.edu/handle/2144/43971
https://open.bu.edu/handle/2144/43971

	s1
	aff1
	aff2
	l
	s2
	s2A
	FD1
	FD2
	FD3
	FD4
	1
	s2B
	s2B1
	s2B2
	s2C
	2
	s2C1
	s2C2
	1
	T1
	s2C3
	s2D
	s2E
	FD5
	s2F
	s3
	s3A
	s3B
	3
	s3C
	4
	5
	s4
	s5
	FN1
	FN2
	FN3
	FN4
	app1
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	6
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109

