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Future Work
We plan to publish our ABC dataset and the associated code under a Creative Commons License and a MIT 0.8 1x 256¢
License respectively. In the short term, we are interested in using data and model visualization techniques to & £ N n
better interpret the trained machine learning models, and exploring alternative methods to making predictions E Linear Classifier
on the ABC dataset. In the long term, we are interested in building on these approaches to investigating more = 0.7 - ¢
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