
We examined the ability of neural message passing to predict mechanically 
driven emergent behavior: the connection between a column's geometric 
structure and the buckling direction.
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Introduction
Recently, there has been a growing interest in both using machine learning methods to approximate mechanical 
behavior directly from experimental data, and using machine learning methods to reduce the computational cost 
of physics-based simulations. Here, we are interested in machine learning methods that can be used to predict 
global emergent properties from complex local geometric properties. Our work addresses the following 
methodological gaps in training metamodels for problems in solid mechanics:
     1) There is a lack of methods tailored to  “true” classi�cation problems in mechanics. 
     2) There are few metamodeling approaches that deal well with non-gridlike data that can’t be approximated 
via a small number of parameters. 
In this work, we introduce a novel dataset of structures with complex geometry and present methods for (1) 
representing these data and (2) making predictions based on these data with a machine learning model. 
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Asymmetric Buckling Columns “ABC” 
Dataset (Fig. 1)

The dataset consists of compressed inhomogeneous columns with �xed-�xed boundary conditions. The columns 
are compressed until the onset of instability and the emergent buckling direction under compression. The 
dataset is split into three sub-datasets, each with varying complexity of geometric features:
     1) Sub-dataset 1: Generated by stacking rectangular blocks on top of each other
     2) Sub-dataset 2: Generated by intersecting rings of the same size.
     3) Sub-dataset 3: Generated by overlapping and trimming rings of di�ering sizes

Results (Fig. 3)
Data Augmentation:
We augmented our graphs by re�ecting the images over the x-axis, y-axis and y=x axis. The labels are �ipped for 
images re�ected over y-axis and y=x axis. The models trained with augmented data perform signi�cantly better 
than the models trained without augmented data.
Ball Query and Superpixel Density:
We systematically varied the graph construction for each dataset. Each dataset has graph variations with di�erent 
node densities (Sparse, Medium, Dense) and ball queries (r = 0.2, 0.3, 0.4 of the column width). We conclude that 
after a certain number of edges, there is no bene�t to adding more edges, either through increasing the node 
density or ball query radius, since doing so will not increase the accuracy signi�cantly. 
Current Best Performance:
Sub-dataset 1: With medium node density and r = 0.4, the maximum accruacy achieved is 93.5±0.4 % (95% CI)
Sub-dataset 2:  With desnse node density and r = 0.3 the maximum accruacy achieved is 90±1 % (95% CI)
Sub-dataset 3:  With desnse node density and r = 0.3 the maximum accruacy achieved is 84.3±0.3 % (95% CI)

Methods (Fig. 2)
Data Representation:
To deal with complicated geometry, we convert the structure into a graph. We �rst convert our structure to a high 
resolution image. Then, by using Simple Linear Iterative Clustering (SLIC) segmentation and retaining the 
superpixels associated with the structure, we obtain nodes of the graph. The edges of the graph are constructed 
by ball query, which is a hyperparameter that can be tuned. The nodes of the graph contain features vectors 
consisting of centroid, area, and eccentricity of the superpixels. 
Machine learning model:
To deal with graphs, and to enforce locality, we use spatial graph convolutions. The graph convolution layer we 
use is PointNet++. PointNet++ constructs its message function from nodal features and edge features, before 
passing the message into a Multilayer perceptron (MLP) to obtain the �nal graph embedding. Batch normaliza-
tion and skip connections are employed after each convolution layer to obtain the �nal graph embedding, which 
is then passed through to a linear classi�er. 

Future Work
We plan to publish our ABC dataset and the associated code under a Creative Commons License and a MIT 
License respectively. In the short term, we are interested in using data and model visualization techniques to 
better interpret the trained machine learning models, and exploring alternative methods to making predictions 
on the ABC dataset. In the long term, we are interested in building on these approaches to investigating more 
complex three dimensional structures and extending this work to experimental data. 
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