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250 12. Modeling biological materials with peridynamics

1. Introduction

From a mechanical modeling perspective, capturing the behavior of
biological materials presents a compelling challenge for three main
reasons. First, biologically derived materials often have a complex
microstructure that can lead to mechanical response that is quite different
from standard engineering materials (Meador et al., 2020). For example,
shell composites such as nacre have been shown to have unprecedented
fracture toughness in relation to their yield strength (Shao et al., 2012).
Second, biological materials can adapt in response to their surroundings
(Ambrosi et al., 2011). For example, heart muscle can grow and remodel in
response to changes in blood pressure (Rausch et al., 2011). Third, both the
material microstructure and adaptive response influence mechanical
behavior on multiple scales (Ambrosi et al., 2016). Therefore, even when a
phenomena is well understood on one scale, it is not necessarily clear how
that behavior will link across scales or how mechanical information will
traverse scales and trigger adaptation (Lejeune et al., 2019). The inherently
interesting nature of these challenges combined with the potential bene-
fits of understanding, predicting, and ultimately controlling the
mechanical behavior of biological materials has motivated researchers to
develop novel numerical methods, and extend modeling frameworks
originally formulated for engineered materials (Rodriguez et al., 1994).

Peridynamics, a theoretical and computational framework that is
designed to unify the mechanics of discrete and continuous media, is a
technique originally developed for fracture mechanics applications
(Silling and Lehoucq, 2010). Rather than using partial differential equa-
tions to formulate the equations of motion, peridynamics uses integral
equations which exist on crack surfaces (Silling, 2000; Silling et al., 2007).
The first paper introducing peridynamics was published in 2000 and
presents peridynamics as a methodology for modeling discontinuities
and long range forces using a constitutive relation based on bond-based
(i.e., pair-wise) interactions between particles (Silling, 2000). Since this
original work, peridynamic theory has been developed numerically
(Bobaru and Ha, 2011), extended to include more complex constitutive
models (Silling et al., 2007; Warren et al., 2009), and applied to model a
variety of engineered systems (Kilic and Madenci, 2010b). In the context
of biological materials, peridynamics is a compelling method for
capturing material fracture, for example, bone fracture (Deng et al., 2008;
Ghajari et al.,, 2014), and for capturing material behavior where long-
range forces are important, for example, in lipid membranes (Madenci
et al., 2020). And, because the peridynamic framework deals comfortably
with both continuous and discrete media, it is a compelling method for
modeling biological tissue on the cell population scale where the material
is, in reality, somewhere in-between (Lejeune and Linder, 2017a).

II. New applications in peridynamics
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Over the course of the past decade, peridynamics has gained traction as
a method for modeling biological materials. The range of this recent
research is shown in Fig. 12.1. Peridynamics has been used to model
diverse phenomena ranging from fracture to aspects of growth and
remodeling (Javili et al., 2019). In this chapter, we will discuss some of
these recent advances with an emphasis on adapting the peridynamic
framework to capture mechanical behavior on the cell population scale.
We begin in Section 2 with a brief methodological background; we
highlight some notable applications in Section 3, and then we conclude in
Section 4. We anticipate that in the coming decade the flexible nature of
the peridynamics framework will lead to further adoption in modeling
biological materials.

peridynamics for
biological materials

FIGURE 12.1 Examples adapted from the literature of models of biological materials
based on peridynamics. Clockwise from the upper left: agent-based cell modeling
(Lejeune et al., 2019), understanding emergent behavior in the cerebellum (Lejeune et al.,
2019), modeling inclusions in lipid membranes (Madenci et al., 2020), modeling cortical bone
fracture (Deng et al., 2008), modeling rupture in lipid membranes (Taylor et al., 2016),
modeling tumor growth (Lejeune and Linder, 2017a), modeling mechanical inhomogeneities
in growing spheroids (Lejeune and Linder, 2018a), and modeling tumor shrinkage (Lejeune
and Linder, 2020).

II. New applications in peridynamics
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2. Methodology

Here, we cover basic methodological advances for modeling biological
materials with peridynamics. First, in Section 2.1, we briefly review the
fundamental equations of peridynamics. Then, in Section 2.2, with a
consistent notation, we introduce extensions to the framework that enable
modeling biological mechanisms such as cell growth, division, and death,
and present the fundamental equations in their corresponding discrete
form. Finally, in Section 2.3, we cover the concept of emergent behavior in
biological systems and provide additional context for understanding the
results demonstrated in Section 3.

2.1 Background and notation

As stated in Section 1, peridynamics is a theoretical and computational
framework where the classical balance equations are integrals rather than
partial differential equations (Silling, 2000). Here we introduce the basic
notation and equations, with key terms illustrated in Fig. 12.2. First, we
introduce the concept of a horizon. In the peridynamic formulation, a given
point x interacts with other points within its horizon H , where H  is a line
(1D), circle (2D), or sphere (3D) defined by horizon size ¢, and written as

Hy={x|||¥ —x| < 6} (12.1)

Physically, H, is defined as the domain where any particle will
experience force exerted by x. The two-dimensional case is illustrated in
Fig. 12.2. In addition to the horizon, we introduce the dual-horizon, which
will allow for nonuniformity in horizon size across different points (Ren
et al., 2016), specifically the case where some point x is within the horizon
of ¥/ but x’ is not within the horizon of x (Bobaru et al., 2009; Bobaru and
Ha, 2011). The dual horizon is defined as the union of points whose ho-
rizons include x, written as

H,={x |xe H,). (12.2)

For all points x within H ., ¥ acts on x. And, unlike the horizon, the
dual horizon is not necessarily a circle or sphere. However, if the horizon
size o, does not vary across points, then H y = H ; and the dual-horizon
formulation will be identical to that of conventional peridynamics.

The equation of motion is formulated as an integral of interaction
forces between points on the body Q. Here we introduce the terminology
required to define the balance of linear momentum. Material points in the
initial configuration Q) are illustrated in Fig. 12.2A as x and x’. The bond
vector between x and x’ in the initial configuration is defined by the term

II. New applications in peridynamics
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FIGURE 12.2 Tllustration of key notation: (A) illustration of the reference configuration mapped to the deformed configuration; (B) illustration of
model implementation in the mesh-free setting.
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254 12. Modeling biological materials with peridynamics

& = x' — x. In the discrete setting, and in numerical implementation, point
x is referred to as node j, point ¥’ is referred to as node k, and the bond
between them is defined as §j; = x; — x;. The displacement vector u(x, t)
and position vector y(x,f) =x+ u(x,t), illustrated in Fig. 12.2A, are
defined in the current configuration. The relative displacement of a bond
is then defined as n = #/ — u, and described in the discrete setting as Ny =
u — u;. Here we adopt the typical state notation where we define a state

of order m as a function A( +) that maps the vector in angle brackets ( +) to
a tensor of order m (Silling et al., 2007). For example, the relative position
of bond & can be written as y(§) = y(x', t) — y(x,t) = & + 5. In this chapter,
states are written with an underline, and angle brackets are used to
indicate the quantity which the state function is acting on.

In dual-horizon peridynamics, the force between points x and x’ is
defined in two distinct steps, first using the dual horizon and then using
the horizon. We define force density vector f,..(n,&) as the force per
volume acting on particle x due to particle x’. Point x is the location of the
force and x’ is the source of the force. Likewise, f...(—n, —£) is the force
density vector acting on particle ¥’ due to particle x. Each force density,
fe acting on x, is then accompanied by a reaction force density, —f,./
acting on x’. The direct force density at x is computed from points in the
dual horizon of x and the reaction force density at x is computed from
points in the horizon of x. Therefore, the net force density acting on point x
due to bond x—x' is a sum of the direct force density and reaction force
density written as

fxx’(nas) —fxfx(—ﬂ, _E) (123)
And, the net force density acting on a point ¥’ due to bond x—x’ is
Fox(=m,—8) = frr(n,€). (12.4)

By accounting for the contributions from ; and H, (and subse-
quently direct and reaction forces) separately, the antisymmetry of net
force density is preserved in the case of variable horizon size.

Given the kinematic description and definition of force density, we can
define the balance of linear momentum (Silling, 2000). The inertial force,
body force, and internal force terms at point x and time ¢ are equated as

pii(xa t) = / fxx’(n7 E)dVX’ - / fx’x(_nv - E)dvx’ + b(x7 t) (125)
xedH, xeH,

where p is density, # is acceleration, and b is body force (Ren et al., 2016).
Integrating over the dual horizon ", contributes the direct force term acting
on point x, and integrating over the horizon H . contributes the reaction

II. New applications in peridynamics
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force term. The discrete form of the balance of linear momentum is then
written as

pii(xj ) = > fi (M, Eic) AV — ka] — Mk, — &jk) AV + b(x;, £)
ke}[ ke H;

(12.6)

where the integral in Eq. (12.5) is simply replaced by a summation. We
note that in the numerical implementation of dual-horizon peridynamics
it is not necessary to compute the dual horizon explicitly. This equation
can be assembled by looping through the horizon of each node and
subsequently inferring each node’s dual horizon (Ren et al., 2016).

Next, we define the equation for force density f,,, with a constitutive
law based on ordinary state-based peridynamics (Silling et al., 2007). The
qualification “state-based” comes from the state notation defined previ-
ously. In state-based peridynamics, bond force is a function of the collective
deformation of all bonds that act on the same points as the bond in
question. Peridynamics is a nonlocal theory meaning that nonadjacent
points can interact. The degree to which nonlocal forces come into play is
controlled by two parameters: the horizon size § and the influence func-
tion w(). The influence function can be chosen to weight the effect of
certain bonds more heavily or it can be set to a constant. For example, w(£)
can be equal to

w(E)—exp( [E]] ) or w({é)=1 (12.7)
or another appropriate function (Ren et al., 2016; Littlewood, 2015). Given
a chosen influence function, we can then compute the influence function
weighted volume of the horizon at point x, 1y, by integrating over H y as

g = / W(E)E-£AVE. (12.8)
3,

In addition, we define extension state e(§) as

e(€) =€ + il — [I&]| (12.9)

based on the bonds deformation. Using m, defined at point x and e(¢)
defined for each bond associated with x, we then compute the dilation
at x:

n

he=1" / &) [Elle(E)d Ve (12.10)

X

—’}{x
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where 7 is the dimension number, ne {2, 3}. The deviatoric extension state
for bond £ from the perspective of point x is then computed as

_ OxllE]l
mat

e(E) = eE)

With these terms, the scalar force state that defines the linear elastic or-
dinary state-based constitutive law for each bond £ from the perspective
of point x is written as

(12.11)

nkly
byx =

n(n+2
wl@el + "2 el (1212)
x My
where « and p are the Lamé parameters bulk modulus and shear
modulus, respectively (Littlewood, 2015). Given the scalar force state ¢,
the force density vectors corresponding with each bond are computed as

—n—£
(M, E) =ty 12.13
which is the action force applied at point ¥, and
n+é
~frox(M &) =ty 12.14

which is the reaction force applied at point x. To compute the total force at
each point, force density vectors are summed over all bonds in the hori-
zon. For more detail, we direct the reader to the peridynamics literature
(Littlewood, 2015; Madenci and Oterkus, 2014; Oterkus, 2015; Silling and
Lehoucq, 2010).

2.2 Implementing growth and remodeling

Starting from the background given in Section 2.1, we now highlight
one strategy for adding growth and remodeling to the peridynamic
framework. Specifically, we discuss using peridynamics to model cellular
behavior on the microscale. We note that a description of additional cases,
for example, adding macroscale growth alone, can be found in the liter-
ature (Lejeune and Linder, 2017a). In this example, we treat each cell as an
individual node and use the peridynamic equation of motion to maintain
mechanical equilibrium (Lejeune and Linder, 2017a). With this treatment,
it is possible to implement an algorithm, illustrated in Fig. 12.3, where the
peridynamic framework interacts with a biological algorithm and is used
to maintain mechanical equilibrium in a defined system (Lejeune and
Linder, 2017a). Essentially, after each simulation step of algorithmically
defined cell behavior, the entire system is relaxed back to mechanical
equilibrium via an adaptive dynamic relaxation procedure (Kilic and

II. New applications in peridynamics
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initial
conditions

Aload steps remain?
fi

or
mechanical

ilibrium?
apply load apply bio . equilibrium?
: while
step algorithm
simulation
results

adaptive dynamic
relaxation
FIGURE 12.3 An example of an algorithm where a biological mechanism such as cell
death or cell division is implemented in conjunction with the peridynamic equation of
motion.

Madenci, 2010a). Here we redefine the constitutive relations in a manner
that makes this possible and introduce the equations from Section 2.1 in
their discrete form. First, we redefine the stretch-free separation distance
between nodes as

&5k = (1 +g)r + (1 +1)nc (12.15)

where r is the initial radius associated with each node (cell), and g is the
radial growth (or shrinkage) associated with each node where — 1 < g <
gmax- Given |[|§j||, we define the stretch between node j and node k as

s = vl = 1
K 12.16
T Tl 1219
which is used to determine bond damage ;i following
1 ifs< Smax
T { 0 otherwise (12.17)

with smax defined as the maximum allowable stretch between bonds.
Depending on the application, bond damage can be either reversible or
irreversible (Lejeune and Linder, 2017a). We then define influence func-
tion w as simply

Wik = Yjk- (12.18)

II. New applications in peridynamics
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The discrete form of the horizon weighted volume m is written as

mi= > ol &l "AVE (12.19)
kE.rIL[]

where AVy is a function of r and g, and bond elongation e is written as
e = [y =yl = €l (1220)

The discrete form of dilation @ is written as

n

(9] :7, Z a)ij:SijEjkAVk (1221)
m] ke 5‘[/'

and deviatoric bond elongation ¢ is defined as

0;11&jk
& = e — L Hn] | (12.22)
where n =2 for a two-dimensional problem and n =3 for a three-
dimensional problem. With these terms, the equation for the magnitude
of force density that arises at node k due to node j is

TlKﬁj

nn+2

(L)]kHE]k| wjkejk (1223)
where «k and p are Lamé parameters. Building on these definitions, force
density is defined as

Y — Y;
fjk(ijyk) = Ljk m
( ) (12.24)
—Wk Y
o) =t
j

where only position in the current configuration y defines the direction of
force density. In Table 12.1 we list standard ranges for the parameters
required to implement these equations.

2.3 Note on emergent behavior

In computational modeling of biological materials, there is an inherent
trade-off between continuous and discrete approaches. Continuum
modeling is typically used to understanding materials on the macroscale,
where biological materials are treated as either growing surfaces
(Rudraraju et al., 2019), volumetrically growing solids (Javili et al., 2015),
or as constituents in a mixture theory approach (Byrne, 2003; Preziosi and

II. New applications in peridynamics
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TABLE 12.1 This table summarizes typical parameter ranges for agent-based cell
simulations. We note that a framework for running a global sensitivity
analysis on these and other parameters has been presented in the

literature (Lejeune and Linder, 2018b, 2020).

Parameter Value Source

0o 1.01 —1.15 Plausible values
(Lejeune and Linder,
2017a)

Smax 1.0 —2.0 Plausible values
(Lejeune and Linder,
2017a)

E 1 kPa Plausible value (Xu
et al., 2012)

v 0.45 Nearly incompressible
material

70 5 um Approximate cell size
(Drasdo and Hohme,
2005)

Tosin, 2008). Discrete modeling, on the other hand, views biological ma-
terials as a collection of cellular and/or subcellular components (Drasdo
et al., 2007; Sandersius and Newman, 2008). Discrete modeling, which is
often favored by the biophysics community (Norton et al., 2010), allows a
mechanistic description of cell behavior, but is computationally intrac-
table on the macroscale, which severely limits many potential applica-
tions in the clinical setting such as modeling the macroscale mechanical
interactions between tumors and healthy tissue or organs (Frieboes et al.,
2007; Lowengrub et al., 2010). To capture the benefits of both discrete and
continuum modeling, hybrid modeling approaches have been proposed
(Stolarska et al., 2009). For example, one approach treats active cells on the
perimeter of a growing system as discrete particles and the inactive cells
at the center of the system as a continuum captured by a finite element
mesh (Kim et al., 2007). In addition, there has been significant effort to
formulate continuum models that phenomenologically reflect cellular
scale behavior (Ambrosi et al., 2012; Araujo and McElwain, 2004). And,
more recently, researchers have explored multiscale modeling frame-
works for biological materials (Khang et al., 2020).

In several of the results presented in Section 3, the goal is to understand
how phenomena observed on the cellular scale will ultimately influence
macroscale tissue behavior. Essentially, given some known cellular-scale
mechanism such as cell division or cell death, what macroscale growth
and remodeling-related behavior will emerge? Here we briefly define two

II. New applications in peridynamics



260 12. Modeling biological materials with peridynamics

tools for summarizing the results of agent-based cell models that will
allow us to quantify emergent behavior. First, we define the average
growth-induced deformation gradient F. Examples of this are illustrated
in Figs. 12.4—12.6. To compute the average growth-induced deformation
F, we define an array of initial stretch vectors Ag as

No= |26, 2 A28 A2 B A (12.25)

Then, we define an array of current stretch vectors A; which reflects the
initial stretch vectors tracked into the current configuration:

A= (MR AR A AR A (12.26)

where p reflects initial vector repeats due to cell splitting as illustrated in
Fig. 12.5C. In the case of cell death, as in Fig. 12.6, only vectors that are
present in both configurations are considered. Given these arrays, we then
define average deformation in the current configuration F with the
equation

FAg=A;. (12.27)
To solve this over-determined system of equations, we use the normal

equation F = A;A] (AOAOT)fl. We can also define change in volume with
respect to deformation as | = det F.

In addition to summarizing average population deformation, we
define average population connectivity C. To compute C, we treat the
population of cells as a mathematical graph structure G (Newman, 2010).
Each cell is treated as a node in graph G. For every cell pair (j, k) where the
physical distance between node j and node k is less than or equal to rj+ 7,
there is a corresponding edge in G between nodes j and k. This is illus-
trated in Fig. 12.6C. Average population connectivity C is then defined as

NZ* Ngg
= x — 12.28
msg  Ng ( )

where N is the number of nodes in G, Ng¢ is the number of nodes in the
largest connected subgroup, d =2 or d =3 is the dimension of the
problem, and mgg is the dimensionless mean shortest path in the largest
connected subgroup. The results in Section 3 show the ratio of connec-
tivity at the end of the simulation to connectivity at the start of the
simulation C¢/Cy. We note that both F and C have the added benefit of
being a convenient way to summarize complicated model results with
potential stochastic variation (Lejeune and Linder, 2020).

II. New applications in peridynamics
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FIGURE 12.4 Examples from the literature relevant to modeling fracture in biological materials with peridynamics: (A) the relationship between
fracture and healing in cortical bone (Deng et al., 2008); (B) fracture in anisotropic cortical bone (Ghajari et al., 2014); (C) fracture in wood (Perré et al.,
2016); (D) rupture of biological membranes (Taylor et al., 2016); (E) fracture in a porous material (Chen et al., 2019). All figures are adapted from the
original manuscripts cited.
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FIGURE 12.5 Investigating cell division—driven tissue growth with a peridynamics-based model: (A) illustration of cell division; (B) different
probability density functions for cell division angle in 2D; (C) method for computing an approximate growth-induced deformation gradient from an
agent-based cell model (see Section 2.3 for additional details); (D) components of the growth-induced deformation gradient as a function of un-
derlying division angle distribution where ¢ = 8.#°(0, 1). Information is adapted from Lejeune, E., Linder, C., 2017b. Quantifying the relationship between cell
division angle and morphogenesis through computational modeling. J. Theor. Biol. 418, 1—7.
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FIGURE 12.6 Investigating cell death—driven tissue shrinkage with a peridynamics-based model: (A) illustration of cell death; (B) method for
computing an approximate growth-induced deformation gradient from an agent-based cell model; (C) method for computing cell population con-
nectivity based on graph theory (see Section 2.3 for additional details); (D) components of the growth-induced displacement-based volume change
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agent-based models of cell death. Comput. Methods Appl. Mech. Eng. 360, 112700.
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264 12. Modeling biological materials with peridynamics

3. Example applications

In this section, we discuss three broad examples of peridynamics
applied to modeling biological materials. First, in Section 3.1, we highlight
several examples of fracture in biological materials. Then, in Section 3.2,
we show how peridynamics can be used to better understand tissue
growth and shrinkage. Finally, in Section 3.3, we show an example where
peridynamic simulation is a part of a multiscale modeling framework
designed to better understand mechanical contributions to cerebellar
morphogenesis.

3.1 Fracture in biological materials

Peridynamics is best known as a method for modeling fracture
(Madenci and Oterkus, 2014). Here we briefly note some examples of
peridynamics being used to model fracture in biological materials.
In Fig. 12.4A, we show an example of simulating fracture experiments in
cortical bone (Deng et al., 2008). Notably, these simulations investigated
the influence of weakened regions due to previous fracture and healing.
Fig. 12.4B shows an example of simulating fracture experiments in
cortical bone where the crack path depends on material anisotropy
(Ghajari et al., 2014). We note that several recent advances in implementing
anisotropic, porous, and spatially heterogeneous material behavior could
potentially be relevant to simulating bone fracture (Karpenko et al., 2020).
One such advance, simulating fracture in porous media, is shown in
Fig. 124E (Chen et al., 2019). We also show an example of fracture in a
complex wood microstructure in Fig. 12.4C (Perré et al., 2016), and rupture in
a micron scale biological membrane in Fig. 124D (Taylor et al., 2016).
Notably, there has been compelling recent work on simulating the complex
behavior of inclusions in lipid membranes with peridynamics (Madenci
et al., 2020). And, hyperelastic constitutive modeling, relevant to modeling
soft tissue, has also been implemented in the peridynamic framework
(Huang et al., 2019).

3.2 Tissue growth and shrinkage

Here we show two examples where peridynamics is used to better
understand tissue growth and shrinkage. We note that in both cases, the
peridynamic framework is used to model biological materials,
populations of cells, that from a mechanics perspective are not strictly
classified as either continuous or discrete.

II. New applications in peridynamics
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3.2.1 Cell division and tissue growth

Significant effort has been made toward defining rules for predicting
division angle in an individual cell (Gillies and Cabernard, 2011). And,
external cues such as peptide gradients (Lamb et al., 2014), applied stretch
(Wyatt et al., 2015), and applied force (Nestor-Bergmann et al., 2014) have
all been shown to influence cell division angle. In studies of cell division
orientation, division angle will vary even between tightly controlled ex-
periments. Based on this experimentally observed variability, it follows
that cell division angle is best understood as a random variable (Akanuma
et al., 2016; Bosveld et al., 2016; Corrigan et al., 2015; Juschke et al., 2013).
At present, it is unknown how the stochastic cell division angle influences
morphogenesis on the population and tissue scales (Matamoroa-Vidal
et al., 2015; Minc and Piel, 2012).

To better understand how the distribution of division angle orienta-
tions will influence tissue scale growth, we implement a mechanics-based
model of a population of cells where individual cells are represented with
the peridynamic framework outlined in Section 2.2. We apply volumetric
growth to each cell, and when cells exceed a threshold size they divide
according to some probability distribution defined by angle ¢, illustrated
in Fig. 12.5B. The main quantitative simulation result is visualized in
Fig. 12.5D, where the ellipses are visualizations of the average growth
tensor, defined in Section 2.3, for a simulated cell population with respect
to division angle probability distribution ¢ (Lejeune and Linder, 2017b).
The peridynamic framework allows us to demonstrate that in certain
systems the degree of anisotropy in population scale growth—induced
deformation is directly connected to the underlying probability distri-
bution of division angle ¢.

3.2.2 Cell death and tissue shrinkage

The ability to robustly model cell death has important applications
ranging from understanding anomalous organ development (Yamaguchi
et al., 2011) to neurodegeneration (Weickenmeier et al., 2019). A particu-
larly compelling example where an enhanced understanding of cell death
on the organ scale would help guide clinical decision making is the case
where tumors are located in a high stakes regions and can mechanically
damage the surrounding tissue if they continue to grow, illustrated in
Fig. 12.1 (Bellomo et al., 2008; Clatz et al., 2005; Deisboeck et al., 2011). In
these cases, the relevant medical interventions such as radiation therapy
and chemotherapy largely function by inducing cell death (Baskar et al.,
2012; Cohen-Jonathan et al., 1999). Computational modeling is relevant
because even when the response of individual cells to treatment is well
understood, it is not necessarily straightforward how the cellular-scale

II. New applications in peridynamics
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process of cell death will manifest on the macroscale. On the macroscale,
many different fundamental modeling choices are potentially justifiable
for capturing cell death. For example, macroscale tissue models may
represent cell death as volumetric shrinkage, mechanical damage, a
decrease in species concentration, or some combination of these mecha-
nisms (Harris et al., 2018; Jain et al., 2014; Taber, 1995). The most appli-
cable macroscale modeling choice will vary based on the specific type of
cell death, illustrated in Fig. 12.6A (Majno and Joris, 1995), and the system
in question (Ambrosi et al, 2016; Suzanne and Steller, 2013;
Stylianopoulos, 2017).

With the peridynamic framework described in Section 2.2 and the
analysis tools summarized in Section 2.3, we are able to take a bottom-up
approach to show how differences in cell death on the cellular scale are
linked to different interpretations of cell death on larger length scales.
Specifically, we show that in some cases cell death leads to gaps between
cells, while in other cases it lead to tissue shrinkage, illustrated in
Fig.12.6B and C. In Fig. 12.6D, we plot the change in population shrinkage
J and average connectivity C, the two quantities of interest defined in
Section 2.3 with respect to degree of radial cell shrinkage o = #pyin /79 with
all other parameters fixed. Clearly, the amount that a cell shrinks before it
stops exerting force on its neighbors is important to population scale
tissue behavior. When o is small (more shrinkage) cell death predomi-
nantly manifests as a volumetric change. When o is large, cell death
predominantly manifests as a change in porosity and/or as an increase in
material damage. Notably, Fig. 12.6D also shows that the results for both
the two-dimensional and three-dimensional cases are quantitatively
different. Unlike with a standard continuum model, the model based on
peridynamics allows these differences to naturally emerge.

3.3 Connecting emergent behavior across scales

The cerebellum is a tightly folded structure located at the back of the
head where the folds of the cerebellum are aligned such that the external
surface appears to be covered in parallel grooves (Leto et al., 2015).
Experiments have shown that a series of interconnected mechanisms
drive cerebellar foliation (Sudarov and Joyner, 2007). However, the
mechanism guiding the initial location of these folds, and subsequently
cerebellar morphology, remains poorly understood (Leto et al., 2015).
Critically, there is no definitive mechanistic explanation for the prefer-
ential emergence of parallel folds instead of the irregular folding pattern
seen in the cerebral cortex (Lawton et al., 2019). With the framework
defined in Sections 2.2 and 2.3, we are able to implement a multiscale
model that connects the anisotropic cell division experimentally observed
during cerebellar development (Legué et al., 2015) to anisotropic fold
formation on the tissue scale (Lejeune et al., 2016). As shown in Fig. 12.7,
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we implement an agent-based model of simulated cell clones, propagate
information from our in silico cell clones to a tissue-scale model, and use
the framework to understand how differential growth between the cere-
bellar layers drives geometric instability in three-dimensional space.
In the macroscale model, we study the influence of physically realistic
anisotropic growth on surface wrinkling through both incremental
stability analysis (Biot, 1965) and numerical modeling with isogeometric
analysis (Hughes et al., 2005). By approaching this problem with fully
three-dimensional models on both scales, we are able to better understand
how the symmetry of the cerebellum emerges, rather than treating this
symmetry as inherent and only presenting a model in two-dimensional
space. Looking forward, the framework implemented here with a
cellular-scale peridynamics-based model coupled to a macroscale
continuum model is a powerful tool for understanding emergent
behavior across scales.

4. Conclusion and outlook

In this chapter, we begin in Section 1 by introducing several reasons
why modeling biological materials is a compelling research challenge.
Then, we reviewed the basic equations for peridynamics in Section 2.1,
described key details of adapting the peridynamic framework for bio-
logical materials in Section 2.2, and briefly describe methods for sum-
marizing mechanically relevant results of agent-based model simulations
in Section 2.3. In Section 3, we highlight three main applications for
modeling biological materials with peridynamics: material fracture in
Section 3.1, tissue growth and shrinkage in Section 3.2, and understanding
emergent behavior across scales in Section 3.3. Practically, these applica-
tions cover bone fracture, lipid membrane rupture, tumor growth and
shrinkage, and cerebellar morphogenesis.

Looking forward, we anticipate multiple avenues for future research in
modeling biological materials with peridynamics. For example, there are
numerous ways in which the peridynamic framework can be extended for
modeling of biological systems ranging from implementing unique cell
types and additional cellular-scale mechanisms to adding growth com-
ponents to multiphysics constitutive laws. Furthermore, we anticipate
that additional potential of the peridynamic framework could be realized
through a class of models referred to as “hybrid models.” In the broader
literature of agent-based cell modeling, “hybrid models,” where select
locations contain discrete representations of cells and subcellular com-
ponents while other locations are represented as a continuum, are gaining
traction (Van Liedekerke et al., 2015, 2018). In particular, hybrid models
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are being used to mitigate the prohibitive computational cost of imple-
menting large agent-based models. Peridynamics, by nature, is a prom-
ising tool for hybrid modeling because it is specifically designed to unify
the mechanics of continuous and discontinuous media. With the peri-
dynamic framework, both “continuous” approximate regions and
“discrete” highly resolved regions can be implemented with the same set
of equations. Thus, the flexibility of the peridynamic framework could
enable substantial further advances in computational modeling of
biological materials beyond what we show here.
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