
Computer-Aided Design 131 (2021) 102948

p
e
l
e
‘
i
d
l
m
d
d
a
o
F
m
e

h

h
0

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Geometric Stability Classification: Datasets, Metamodels, and
Adversarial Attacks
Emma Lejeune
Department of Mechanical Engineering, Boston University, Boston, MA 02215, United States of America

a r t i c l e i n f o

Article history:
Received 27 April 2020
Received in revised form 10 August 2020
Accepted 20 September 2020

Keywords:
Machine learning
Buckling
Open data

a b s t r a c t

Many recent advances in machine learning have been motivated by classification problems. For
example, classification methods are used to differentiate between ‘‘spam’’ and ‘‘non-spam’’ emails,
identify hand written digits, and recognize the content of photos. For each application, a different
model and model architecture will often perform best. Therefore, machine learning research has been
enabled by readily available benchmark datasets. In particular, benchmark datasets have been used
by researchers to demonstrate that novel methods can achieve high accuracy, and to demonstrate
common vulnerabilities of classification methods to adversarial attacks. In the recent mechanics
literature, there has been substantial interest in machine learning driven metamodels. Metamodels,
or models of models, are appealing because once trained, they typically require orders of magnitude
less compute time than full fidelity simulations. However, a better understanding of which machine
learning methods and model architectures will perform best on mechanical data has been limited. Here
we introduce an open source dataset ‘‘BIC’’ (Buckling Instability Classification) where a heterogeneous
column is subject to a fixed level of applied displacement and is classified as either ‘‘Stable’’
or ‘‘Unstable.’’ In addition to introducing this benchmark dataset, we show baseline metamodel
performance, and show two different types of adversarial attack. We anticipate that the open source
BIC dataset will enable the future development of improved methods for classification problems in
mechanics.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical classification in machine learning is a type of su-
ervised learning where the goal is to predict what class a new
xample will belong to [1,2]. Many recent advances in machine
earning have been motivated by statistical classification [3]. For
xample, classification models are used to differentiate between
‘spam’’ and ‘‘non-spam’’ emails [4], identify hand written digits
n zip codes [5], recognize the subject of photos [6], and pre-
ict disease risk [7]. Critically, pragmatic advances in machine
earning methods have been enabled by the availability of bench-
ark datasets [8], and the efficacy of new methods is often
emonstrated by reporting model performance on a benchmark
ataset [9]. Likewise, the shortcomings of different methods such
s sensitivity to noise or susceptibility to adversarial attacks are
ften showcased by demonstrations on benchmark datasets [10].
or each type of data (ex: email text, facial images), a different
odel and model architecture will often perform best [11]. And,
ach type of problem has unique associated vulnerabilities [12].
In the mechanical design literature, machine learning methods

ave become increasingly popular [13–16]. In particular, there

E-mail address: elejeune@bu.edu.
ttps://doi.org/10.1016/j.cad.2020.102948
010-4485/© 2020 Elsevier Ltd. All rights reserved.
has been substantial recent literature that relies on the use
of metamodels [17–24]. Metamodels, sometimes referred to as
surrogate models, are computationally cheap models of models
that relate specifically defined model inputs to specifically de-
fined model outputs [25,26]. The computationally cheap nature
of metamodels has enabled sensitivity analysis, optimization,
and multiscale modeling beyond what would be feasible with
direct numerical simulation alone [27–29]. However, the lack of
benchmark data has meant that tools for pragmatic metamodel
development specific to mechanics and mechanical design prob-
lems have been largely siloed [30]. In this work, we present
an open source mechanics-based classification dataset with the
intention that it will first aid in pragmatic metamodel develop-
ment, and second, offer a platform to demonstrate vulnerabilities
specifically relevant to mechanics problems.

Our open source dataset ‘‘BIC’’ (Buckling Instability Classifica-
tion) contains finite element simulation inputs and results for a
heterogeneous column subject to a fixed level of applied displace-
ment [31]. For each pattern of heterogeneous material properties,
the column is classified as either ‘‘Stable’’ or ‘‘Unstable.’’ We
generate three datasets that differ only in the patterns allowed
in their input domain (BIC-1, BIC-2, and BIC-3). This is illustrated
in Fig. 1. Then, we investigate three methods for metamodeling:

https://doi.org/10.1016/j.cad.2020.102948
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2020.102948&domain=pdf
mailto:elejeune@bu.edu
https://doi.org/10.1016/j.cad.2020.102948

E. Lejeune Computer-Aided Design 131 (2021) 102948

m
o
s
m
b
i
a
l

s
c
i
o
l
t
p
t

S
e
f
a
I
b
s
a
d

2

t
b
s
c
t
i
m
s
f

2

S
e
h
d

p
c
s
f
t
f
a

d

P

E

m
T
e
p
t
t
b
O
a
u
s

2

i
d
i
w
o
B
o
E
(
s

Fig. 1. In the BIC datasets, columns with heterogeneous material properties are
subject to a fixed level of applied displacement and are classified as either
‘‘stable’’ or ‘‘unstable.’’ Each BIC input is a 16 × 1 vector that informs the
aterial stiffness along the length of the column. In BIC-1, there are two discrete
ptions. In BIC-2, there are three discrete options. In BIC-3, there is a continuous
tiffness range. Here we show the performance of three different types of
etamodel on each dataset. Then, we show two ways that metamodels can
e used to launch adversarial attacks. In a type 1 attack, an attack metamodel
s used to find unstable inputs that are very similar to stable inputs. In a type 2
ttack, an attack model finds inputs that a trained metamodel will erroneously
abel as stable.

upport vector machines, neural networks, and Gaussian process
lassification. Finally, we define two types of adversarial attack,
llustrated in Fig. 1, and evaluate the performance of these attacks
n the BIC-1 dataset. Notably, we show that of all the machine
earning models tested, Gaussian process classification is able
o achieve the best performance. However, despite near perfect
erformance, the results of our adversarial attacks show that
here is room for future improvement.

The remainder of the paper is organized as follows. In
ection 2 we describe the finite element simulations used to gen-
rate our benchmark dataset, introduce three baseline methods
or creating classification metamodels, and define two types of
dversarial attacks that are relevant to this mechanical problem.
n Section 3, we show baseline metamodel performance, and
aseline attack results. Finally, we conclude in Section 4 with
ome examples of future investigation that will be directly en-
bled by this work. In Section 5, details for accessing the BIC
atasets and all code relevant to this paper are provided.

. Methods

In Section 2.1, we describe the finite element simulations used
o generate the BIC datasets. In Section 2.2, we describe three
aseline classification metamodels applied to the BIC datasets:
upport vector machines, neural networks, and Gaussian process
lassification. Then, in Section 2.3, we introduce the concept of
ype 1 and type 2 adversarial attacks and describe why BIC-1
s a useful dataset for exploring adversarial attacks related to
echanics-based classification problems. Notably, all work de-
cribed here is performed with open source software, and details
or accessing the relevant code are provided in Section 5.

.1. Simulation overview

The basic premise of the BIC datasets is shown in Fig. 1. In this
ection, we more formally define the problem, describe the finite
lement simulations required to solve the problem, and describe
ow the simulation inputs and outputs are represented in the BIC
atasets.
2

2.1.1. Problem definition
To generate the BIC datasets, we model heterogeneous

columns and subject each to applied compression through a fixed
level of applied displacement. Then, we determine if the column
has exceeded its critical load at the level of applied displacement
and denote it as either ‘‘stable’’ or ‘‘unstable.’’ Each column has
a width h of 2 units, and a height L of 16 units. The material
roperties are piecewise constant and vary along the height of the
olumn following the prescription in the BIC input vector. This is
chematically illustrated in Fig. 1. The bottom of the column is
ixed (Dirichlet boundary condition), the left and right edges of
he column are free, and the top of the domain is moved to a
ixed level of applied displacement. In all cases, the fixed level of
pplied displacement dapplied is equal to

applied = −1.025 L εcr where εcr =
π2h2

3L2
(1)

which corresponds to the critical Euler buckling strain for a
homogeneous column with identical dimensions [32].

For all BIC datasets, we consider a compressible neo-Hookean
material with strain energy function

ψ =
1
2
µ

[
F : F−3−2 ln(det F)

]
+

1
2
λ

[
1
2
((det F)2−1)− ln(det F)

]
(2)

where ψ is strain energy, F is the deformation gradient, and µ
and λ are Lamé parameters equivalent to Young’s modulus E and
oisson’s ratio ν:

=
µ (3λ+ 2µ)

λ+ µ
ν =

λ

2 (λ+ µ)
. (3)

Because the columns have heterogeneous material properties,
some are unstable at dapplied while others are not.

2.1.2. Finite element implementation
In the finite element setting, we discretize the columns with a

960×120 structured mesh of quadratic triangular elements. This
esh size was deemed sufficient after mesh refinement studies.
o determine if the column is unstable at dapplied, we follow a well
stablished procedure [33,34]. First, we solve the finite element
roblem with a nonlinear variational solver. Then, we compute
he smallest eigenvalue of the corresponding stiffness matrix. If
he smallest eigenvalue is less than 0, dapplied exceeds the critical
uckling condition and the column is marked ‘‘unstable’’ [35].
therwise, the structure is marked as ‘‘stable.’’ All simulations
re run in FEniCS [36,37] and all eigenvalue analysis is performed
sing PETSc data structures and the SLEPc library [38–41]. These
oftware tools are all freely available.

.1.3. Data curation
Our open source datasets, BIC-1, BIC-2, and BIC-3, differ only

n the scope of allowable material properties. In other words, the
ifference between each dataset is the constraints placed on the
nput domain. For all datasets, each input is a 16 × 1 vector
here the entries of the vector dictate the Young’s Modulus E
f the corresponding portion of the physical column domain. In
IC-1, we only allow two possible discrete values for E: E = 1
r E = 4. In BIC-2, we allow three possible discrete values for E:
= 1, E = 4, or E = 7. In BIC-3, we allow continuous values

to three digits of precision) of E in the range E = 1 − 8. For all
imulations, ν = 0.3. BIC-1 consists of 65,536 simulation results.
This exhausts the entire possible input domain. BIC-2 consists
of 100,000 simulation results. This is less than 1% of the entire
possible input domain. BIC-3 also consists of 100,000 simulation
results. This is a tiny fraction of the entire possible input domain.

E. Lejeune Computer-Aided Design 131 (2021) 102948

W
r
o
a
s

a
u
e
p
s
B

2

t
G
e
[
p
i
k
p
m
m
l
n
o
b
o
A
p
p
u

2

s
[
m
t
a
s
a
w
t
w
t
S
t

2

w
a
p
T
v
E
m
o
t

e note that for BIC-2 and BIC-3, input parameters are selected
andomly, and the results presented in Section 3 are thus based
n a random sampling approach. It is possible that an alternative
pproach, such as Latin Hypercube Sampling [42,43] or a Sobol
equence [44] would subsequently improve model performance.
For each 16 × 1 vector input, there is a single output that

indicates if the column was stable or unstable at the fixed level
of applied displacement. An output value of 0 indicates stable,
and an output value of 1 indicates unstable. For the purpose of
presenting the metamodel and attack model results in Section 3
(where we report true positive rate and false positive rate), unsta-
ble is a ‘‘positive’’ result and ‘‘stable’’ is a ‘‘negative’’ result. In the
version of BIC that we release open source, we randomly separate
the data into test and training sets where the test sets contain 10%
of the data. We also note that the input values are standardized
across datasets. This means that the BIC datasets or parts of the
BIC datasets can be combined without any additional processing.

2.1.4. Note on symmetry
Due to the problem definition, vector inputs will yield iden-

tical outputs to their own reflection. Therefore, when generating
BIC-1, we only simulated one of each symmetric pair and sub-
sequently matched the simulation output to both pairs. This
means that we ran 32,896 simulations to cover the whole domain
rather than the 65,536 simulations required without accounting
for symmetry. Although we do not propose metamodels that are
constrained to give identical results for symmetric input domains
in this paper, it is our hope that the open source nature of the BIC
dataset will enable future exploration in this direction.

2.2. Baseline metamodels

At present, there are multiple available methods for approach-
ing classification problems. Typically, method selection is prag-
matic and dataset dependent [11]. In the mechanics literature
specifically, multiple different methods of creating computation-
ally cheap metamodels have been explored [45–47]. Here we
introduce three popular methods for classification: support vec-
tor machines, neural networks, and Gaussian process classifica-
tion [11,48]. In Section 3.1 we show baseline performance of each
method on the BIC-1, BIC-2, and BIC-3 datasets.

2.2.1. Support vector machines
Support vector machines are a popular method for classifi-

cation problems [49]. Support vector machines function by con-
structing hyperplanes in high dimensional space that separate the
data according to predicted class [50]. Training a support vector
machine model involves algorithmically selecting a hyperplane,
defined by ‘‘support vectors’’, that separates the two classes of
data as represented in the high dimensional space. Here we
implement our support vector machine model with the python
scikit-learn support vector classification module [51]. We use the
default function parameters with a radial basis function kernel.
In our non-exhaustive investigation, altering the default settings
did not improve the model’s predictive ability on the test data set.
The baseline performance of a support vector machine model on
the BIC-1, BIC-2, and BIC-3 datasets is presented in Section 3.1.

2.2.2. Neural networks
Neural networks are a popular method for both classifica-

tion and regression problems [52]. Neural networks function by
connecting an input layer of nodes, one or more hidden lay-
ers of nodes, and an output layer of nodes via a collection of
weighted activation functions. For the binary classification prob-
lem relevant to the BIC datasets, the input layer has 16 nodes,
and the output layer has 1 node that indicates if the pattern is
3

either ‘‘stable’’ or ‘‘unstable.’’ Training a neural network model
involves defining a network architecture and algorithmically se-
lecting the network weights that lead to the best delineation
between data classes. Here we implement a standard feedforward
neural network, the multi-layer perceptron classifier, with three
hidden layers with 200 nodes each. We implement our neural
network with the python scikit-learn multi-layer perceptron clas-
sifier module with a ‘lbfgs’ solver, a L2 penalty of α = 10−5,
nd otherwise default settings, which includes rectified linear
nit activation functions for the hidden layers [51]. In our non-
xhaustive investigation, the network architecture and fitting
arameters that we selected generalized best to our test data
et. The baseline performance of a neural network model on the
IC-1, BIC-2, and BIC-3 datasets is presented in Section 3.1.

.2.3. Gaussian process classification
Gaussian process classification is the probabilistic classifica-

ion counterpart to Gaussian process regression [53]. Notably,
aussian process regression has been a very popular metamod-
ling strategy in the recent computational mechanics literature
1,45]. Fundamentally, Gaussian process classification is a non-
arametric Bayesian method for interpolating data [53]. Train-
ng a Gaussian process classification model involves defining a
ernel structure and algorithmically optimizing the kernel hy-
erparameters. We implement our Gaussian process classification
odel with the python scikit-learn Gaussian process classification
odule with a radial basis function kernel with an initially set

ength scale of 10 and otherwise default settings [51]. In our
on-exhaustive investigation, our choice of kernel form and fit
ptimization parameters generalized best to our test data set. The
aseline performance of a Gaussian process classification model
n the BIC-1, BIC-2, and BIC-3 datasets is presented in Section 3.1.
lthough we do not explore it directly in this work, Gaussian
rocesses are especially appealing in part because they make
robabilistic predictions and thus offer a natural opportunity for
ncertainty quantification [54].

.3. Adversarial attacks

Recently, the concept of adversarial attacks has gained sub-
tantial attention in the broader machine learning literature
55,56]. The idea behind an adversarial attack in the context of
achine learning is that often machine learning based models

hat are highly successful at prediction remain ‘‘brittle’’ or vulner-
ble to the effects of small perturbation on the input parameter
pace [57]. For example, it has been demonstrated that by altering
single pixel in an image, it is possible to fool deep neural net-
orks which otherwise achieve high accuracy on the ImageNet
est data [10]. Here we define two types of adversarial attack that
e can explore with the BIC datasets: using an attack metamodel
o inform subtle changes to the physical system (type 1 attack,
ection 2.3.1) and using an attack model to select inputs that will
rick a pre-trained metamodel (type 2 attack, Section 2.3.2).

.3.1. Type 1 adversarial attack
The first type of adversarial attack that we introduce in this

ork (type 1 attack) is motivated by the idea that an adversarial
ctor may want to make a small change to the manufacturing in-
ut file that will cause a stable input pattern to become unstable.
here has been recent literature showing that this is a potential
ulnerability of parts made with additive manufacturing [58–61].
ssentially, adversarial actors may gain access to design files and
ake a small change to the file that is undetectable to a human
bserver once the part is manufactured, but will cause the part
o mechanically fail once it bears load [62]. This is particularly

E. Lejeune Computer-Aided Design 131 (2021) 102948

m
c
w
a

s
T
b
d
i
s
d
d
t
s
i
g
(
g
h
w
a
o
a
t
a

Fig. 2. The flow chart of a type 1 attack is shown here. To execute a type 1 attack, a certain number of model evaluations are first required to build an attack
etamodel. In a type 1 attack, the goal is to use the attack metamodel to first identify inputs that are stable (step 1), then identify subtle changes (i.e. single entry
hanges) to the inputs that will make the true nature of the input design go from stable to unstable (step 2). A successful attack (SA) executes this process correctly
ith respect to the ground truth. For each candidate input pattern, the outcome can be attack not possible (NP-1, NP-2), a missed attack (MA-1, MA-2), a failed
ttack (FA-1, FA-2), or a successful attack (SA).
Fig. 3. The procedure for executing a type 2 attack on a trained metamodel
is shown here. First, a new subset of data (attack data) is run through both
the ground truth model and the trained metamodel. Input patterns that the
metamodel classifies as ‘‘stable’’ while the ground truth is ‘‘unstable’’ are noted
(false negatives). Then, an attack model is trained to predict these rare cases.
The performance of the attack model is evaluated on its ability to predict the
false negatives of the original trained metamodel.

relevant for parts where small changes may lead to catastrophic
events such as unstable crack propagation or buckling.

To execute a type 1 attack, an adversarial actor will first
ample the direct model (ground truth) a fixed number of times.
hen, the adversarial actor will create an ‘‘attack metamodel’’
y training a machine learning model (see Section 2.2) on the
ata samples. Then, the adversarial actor will follow the steps
llustrated in Fig. 2. First, the attack metamodel will identify
table designs. Then, for each stable design, it will test 16 altered
esigns where each altered design is identical to the original
esign except for one entry. A successful attack (SA) predicts
hat a sample will go from stable to unstable by changing a
ingle entry and is correct with respect to the ground truth. As
llustrated in Fig. 2, we define the other possible attack outcomes
iven an initial design: attack not possible (NP), missed attack
MA), and failed attack (FA). If the adversarial actor samples the
round truth a higher number of times, the attack metamodel will
ave a higher performance i.e. the number of successful attacks
ill increase while the number of missed attacks and failed
ttacks will decrease. However, the need to gather a high number
f ground truth samples is likely undesirable for an adversarial
ctor. We are interested in understanding how many ground
ruth samples are required to make successful attack. Baseline
ttack model performance is demonstrated in Section 3.2.
4

2.3.2. Type 2 adversarial attack
The second type of adversarial attack that we introduce in this

work (type 2 attack) is motivated by the growing popularity of
computational models and metamodels in additive manufactur-
ing [63–68]. Once a metamodel is trained, an adversarial actor
may want to identify samples that will deliberately fool the
metamodel. Specifically, a type 2 attack is an attack where an
adversarial actor has identified an input pattern that according
to the ground truth will be classified as unstable, but a trained
metamodel of interest will incorrectly classify it as stable. In
Fig. 3, we show our simple approach for executing a type 2
attack. Given the ground truth and a trained metamodel, we run
new ground truth simulations to create a set of classified ‘‘attack
data.’’ Then, the ground truth class of the attack data is compared
to the predicted class of the trained metamodel. Based on this
comparison, we identify the input patterns where the ground
truth class is unstable but the trained metamodel prediction is
stable and mark them as the ‘‘positive’’ class. Then, we train
an attack model to predict this positive class. We evaluate the
performance of our attack model by measuring how successfully
it is able to identify cases that fool the trained metamodel in a
test dataset. Baseline attack model performance is demonstrated
in Section 3.3.

2.3.3. Note on why the BIC-1 dataset is convenient for assessing
adversarial attacks

In Sections 3.2 and 3.3, we show the baseline performance
of both type 1 and type 2 attacks on the BIC-1 dataset. The
BIC-1 dataset is a convenient dataset for benchmarking attack
performance because of the constraints on the input domain.
Due to these constraints, there are only 65,536 possible designs,
and every possible input has been simulated. This means that an
algorithm to select which patterns to test can be implementing
without running new simulations. To test the efficacy of adver-
sarial attacks on the BIC-2 and BIC-3 datasets, either the input
domain will have to be constrained to already simulated designs,
or new simulations will be required. Details for accessing the
code required to run additional simulations are given in Section
5. Notably, our algorithms for implementing both the type 1
and type 2 attacks are not particularly sophisticated. It is our
hope that by releasing the BIC datasets as open source, other re-
searchers will be able to build on this initial work and exceed our
baseline performance for both developing metamodels that are
resistant to adversarial attacks, and developing attack metamodel
and models.

E. Lejeune Computer-Aided Design 131 (2021) 102948

m
s
B
p
d

3

m
d
p
m
a
f
m
a
i
t
w
F
R

Fig. 4. ROC curves for metamodel performance on test data from the BIC-1 dataset. The left plot shows metamodels trained with 100 examples, the center plot
shows metamodels trained with 1000 examples, and the right plot shows metamodels trained with 10,000 examples. For each set of training data, the performance
of a Support Vector Machines (SVM), a Neural Network (NN), and a Gaussian Process Classifier (GPC) is shown. Consistently, the GPC metamodel performs best.
3. Results and discussion

In Section 3.1, we show the performance of a support vector
achine metamodel, a neural network metamodel, and a Gaus-
ian process classification metamodel on the BIC-1, BIC-2, and
IC-3 datasets. Then, in Sections 3.2 and 3.3, we show the baseline
erformance of type 1 and type 2 adversarial attacks on the BIC-1
ataset.

.1. Baseline metamodel performance

In Section 2.2, we introduced three different types of meta-
odels that are suitable for making predictions with the BIC
atasets. Here, we show the results of these metamodels for
redicting the test portion of each BIC dataset. To demonstrate
etamodel performance, we show the receiver operating char-
cteristic (ROC) curves and state the area under the curve (AUC)
or each model. This is a standard way of reporting the perfor-
ance of classification algorithms [69]. Essentially, the output of
classification algorithm is a continuous variable. Thus, denot-

ng between positive and negative criterion requires selecting a
hreshold criterion. In an ROC curve, true positive rate is plotted
ith respect to false positive rate at different decision thresholds.
or the unfamiliar reader, we provide a brief introduction to
OC curves and AUC in Appendix C. Most critically, AUC = 0.5

represents a classification algorithm that performs no better than
a random guess while AUC = 1.0 represents a classification
algorithm that performs perfectly.

In Fig. 4, we show baseline metamodel performance on the
BIC-1 dataset. We show performance of all three metamodel
types with different amounts of training data: 100 training points,
1000 training points, and 10,000 training points. For all three
metamodels, performance (as measured by AUC) improves as the
amount of training data increases. At all three levels of training
data, the Gaussian process classification algorithm performs best
with AUC = 0.911 at 100 training points, AUC = 0.986 at
1000 training points, and AUC = 0.998 at 10,000 training points.
In Fig. 5, we show the baseline metamodel performance on the
BIC-2 dataset and in Fig. 6 we show the baseline metamodel
performance on the BIC-3 dataset. Qualitatively, metamodel per-
formance across all three datasets is fairly consistent. For BIC-2,
the Gaussian process classification algorithm performs best with
AUC = 0.854 at 100 training points, AUC = 0.945 at 1000
training points, and AUC = 0.987 at 10,000 training points. For
BIC-3, the Gaussian process classification also performs best with
AUC = 0.870 at 100 training points, AUC = 0.956 at 1000
training points, and AUC = 0.988 at 10,000 training points.
5

These results suggest that in comparison to support vector ma-
chines and neural networks, Gaussian process classification may
be the best option for mechanical stability classification problems.
Though there is no direct evidence that this will be true beyond
the scope of this dataset, these results indicate that Gaussian
process classification is a method worthy of investigation for
mechanics related classification problems moving forward. We
anticipate that for many classification problems with more than
16 relevant input parameters, more training data will be required
to make predictions with the same level of accuracy as what
is shown here. We note that global sensitivity analysis enabled
by metamodels may also help identify important model input
parameters [70].

Overall, the relatively high performance of Gaussian process
classification for 100s–1000s of training points is not surpris-
ing [53]. The efficacy of Gaussian process classification for
physically-based problems is consistent with results reported
elsewhere in the literature [71–73]. However, one notable lim-
itation of Gaussian processes is that, unless specialized methods
are implemented, complexity scales cubically with the number
of training points [74]. This, combined with the fact that neural
networks often perform substantially better with a higher num-
ber of training points, means that if more training points are used
there will potentially be a crossover point where neural networks
become the preferred method for constructing metamodels on
the BIC dataset.

3.2. Type 1 attack example

In Section 2.3.1, we introduced the concept of a type 1 attack
where an adversarial actor will use the information that they
know about the ground truth model (training data) to construct
an adversarial metamodel that will be used to (1) identify stable
designs and then (2) identify single entry changes to the input
parameter vector that will cause the stable designs to become
unstable. Of the 6553 designs in the BIC-1 test data set, 1838 are
stable. Therefore, according to the definition illustrated in Fig. 2,
there are 4715 examples of attack not possible 1 (NP-1) in the
test data ground truth. For design that are initially stable, we
consider each single entry flip. If the single entry flip also leads
to a stable design, as is the case for 21,091 examples in the test
data ground truth, it is an example of attack not possible 2 (NP-
2). If the single entry flip leads to an unstable design, as is the
case for 8317 examples in the test data ground truth, it is an
example of a successful attack (SA). In Fig. 7, we show that as the
number of training samples is increased, the attack metamodel is
better able to capture the ground truth. In Fig. 7 we also show

E. Lejeune Computer-Aided Design 131 (2021) 102948
Fig. 5. ROC curves for metamodel performance on test data from the BIC-2 dataset. The left plot shows metamodels trained with 100 examples, the center plot
shows metamodels trained with 1000 examples, and the right plot shows metamodels trained with 10,000 examples. For each set of training data, the performance
of a Support Vector Machines (SVM), a Neural Network (NN), and a Gaussian Process Classifier (GPC) is shown. Consistently, the GPC metamodel performs best.
Fig. 6. ROC curves for metamodel performance on test data from the BIC-3 dataset. The left plot shows metamodels trained with 100 examples, the center plot
shows metamodels trained with 1000 examples, and the right plot shows metamodels trained with 10,000 examples. For each set of training data, the performance
of a Support Vector Machines (SVM), a Neural Network (NN), and a Gaussian Process Classifier (GPC) is shown. Consistently, the GPC metamodel performs best.
Fig. 7. These plots show the performance of attack metamodels executing type 1 attacks on test data from the BIC-1 dataset. The left plot shows the attack
performance compared to the ground truth with respect to the number of training examples used to train the metamodel. The right plot shows the absolute attack
performance with respect to the number of training examples used to train the metamodel. The results shown here are for a GPC metamodel. For the BIC-1 test
data, there are 8317 possible successful attacks (SA). Each potential outcome (SA, NP-1, NP-2, MA-1, MA-2, FA-1, FA-2) is illustrated in Fig. 2 flowchart.
that as the number of training samples is increased the number

of failed attacks and missed attacks decreases. Notably, there is

a sharp increase in the number of successful attacks between
6

100 and 2000 training points. Based on the performance of the

different metamodeling techniques shown in Section 3.1, we

chose Gaussian process classification for our attack metamodel.

E. Lejeune Computer-Aided Design 131 (2021) 102948
Fig. 8. ROC curves that show the performance of a type 2 attack model on test data from the BIC-1 dataset where a GPC metamodel is attacked. In the left plot,
the GPC metamodel is trained with 100 examples, in the center plot the GPC metamodel is trained with 1000 examples, and in the right plot the GPC metamodel
is trained with 10,000 examples. In each plot, the performance of a Neural Network attack model trained on 100, 1000, and 10,000 examples is shown.
Given the opportunity afforded by the open source BIC datasets,
it would be interesting to see if a different metamodel selection
identified by other researchers could outperform the baseline
results reported here by achieving higher performance with fewer
training points. Furthermore, here we chose the training data
points at random. It would be interesting to see if an informed
process for selecting training points could lead to a better attack
metamodel performance.

3.3. Type 2 attack example

In Section 2.3.2, we introduced the concept of a type 2 attack
where an adversarial actor will construct an attack model to
intentionally fool a trained metamodel into predicting that an
unstable design is actually stable. Our straightforward procedure
for constructing an attack model is illustrated in Fig. 3. Here we
show the performance of an attack model at executing a type
2 attack on our trained metamodel. Based on the results shown
in Section 3.1, we choose Gaussian process classification as our
trained metamodel. When the trained metamodel is trained with
100 data points, there are 283 possible type 2 attacks in the
6553 point test dataset. With 1000 training points there are 181
possible attacks, and with 10,000 training points there are 63
possible attacks. For each trained metamodel (100 training points,
1000 training points, 10,000 training points) we train three attack
models. As illustrated in Fig. 3, the attack model requires new
data for training. Our three attack models are trained with 100,
1000, and 10,000 new data points respectively.

For our attack model, we use a neural network with the
structure and parameters described in Section 2.2.2. Based on
our non-exhaustive investigation, a neural network with this
architecture outperformed other neural networks, support vector
machines, and Gaussian process classifiers. Similar to Section 3.1,
we report the performance of our attack model by plotting ROC
curves. ROC curves work well here in particular because the ‘‘pos-
itive attack’’ class is a rare event. The performance of our attack
model is shown in Fig. 8. For the metamodel trained with 100
points, all three attack models are able to make predictions that
are better than random. For the metamodel trained with 1000
points, the attack models trained with 1000 and 10,000 points
were able to make predictions that are better than random. For
the metamodel trained with 10,000 points, only the attack model
trained with 10,000 points was able to make predictions that are
better than random. In all cases, an attack model trained with
sufficient points is able to correctly identify new points where
a trained metamodel will incorrectly predict that an unstable
design is stable. These results show that even nearly perfect
classifiers (see Fig. 4) are vulnerable to type 2 attacks.
7

4. Conclusion

In this paper, we introduce three datasets for mechanical sta-
bility classification: BIC-1, BIC-2, and BIC-3. These datasets map
the heterogeneous material properties of a hyperelastic column to
a class of either ‘‘stable’’ or ‘‘unstable’’ at a defined level of applied
displacement. Critically, these datasets and the code to run the
underlying simulations are available open source, with access
details provided in Section 5. We then show baseline metamodel
performance on all three datasets in Section 3.1. Notably, in
this initial work, Gaussian process classification performed best.
Then, in Section 3.2, we showed baseline examples of a type 1
attack, where an attack metamodel is used to selectively alter
candidate designs to change their stability. In Section 3.3, we
showed baseline examples of a type 2 attack, where an attack
model is used to fool a trained metamodel. The efficacy of the
type 2 attacks in particular demonstrates that even nearly perfect
classification algorithms are vulnerable to targeted attacks.

Looking forward, we hope that the open source BIC datasets
will enable further investigation into machine learning classifica-
tion algorithms specific to mechanical data. Beyond what we have
covered in this paper, we anticipate that future opportunities in
improved metamodeling will arise from mixing the BIC datasets
together, defining algorithms that inherently handle symmetry,
defining algorithms informed by the mechanics of buckling prob-
lems, and intelligently selecting samples for the training data.
For the BIC-1 dataset, the full design space is provided, therefore
no additional model runs are required to implement a candidate
sampling algorithm. For the BIC-2 and BIC-3 datasets, the code to
generate new data is provided with access details in Section 5. We
also anticipate future opportunities in creating improved attack
models, and in creating metamodels that are more resistant to
type 2 attacks. Because we take a ‘‘brute force’’ method for im-
plementing both our type 1 and type 2 attacks, there is substantial
room for improvement in this area. Beyond the scope of this
paper, it would also be interesting to see if investigating stability
as a regression problem rather than a classification problem could
lead to more robust models. From an application perspective,
we anticipate that the methods presented here will be useful
for advancing the state of the art in additive manufacturing
ranging from simulating slender support structures [75] to novel
simulation techniques [76]. It will also be interesting to see if
the methods that perform best on the BIC datasets also perform
best on classifying other types of structural failure, and if models
trained on the BIC datasets are transferable to other types of
mechanically-based classification problems [77]. We hope that
more open source benchmark datasets specific to mechanical
design data will arise to meet the growing demand for machine

learning based approaches to mechanical predictions.

E. Lejeune Computer-Aided Design 131 (2021) 102948

t

l
h
d
o

D

c
t

A

s
i
w
w
v
A

Fig. A.9. Visualization of the BIC datasets input vectors. For each dataset, 50 randomly chosen ‘‘stable’’ and ‘‘unstable’’ designs are shown. Darker colors correspond
o segments with a higher modulus (range E = 1 − 8).
Table B.1
Summary of machine learning model parameters. All models investigated in this paper are created with scikit-learn [51],
see Section 5 for access to the code.
Support vector machine (svm.SVC)

Regularization parameter (C), L2
2 penalty 1.0

Kernel Radial basis function
Kernel coefficient gamma 1.0/(nfeatures × X .var())
Shrinking True
Tolerance 10−3

Class weight Proportional to balance in training set
Maximum number of iteration No limit

Neural network (MLPClassifier)

Input layer 16 nodes (size of BIC input)
Hidden layers 3 layers, 200 nodes each
Output layer 1 node
Activation function Rectified linear unit function (‘relu’)
Solver ‘lbfgs’ optimizer (quasi-Newton method)
L2 penalty regularization α 10−5

Tolerance 10−4

Maximum number of loss function calls 15 000

Gaussian process classification (GaussianProcessClassifier)

Kernel type Radial basis function
Initialized kernel length scale (optimized
during fitting)

10.0

Kernel length scale bounds 10−5
− 105

Optimizer ‘fmin_l_bfgs_b’, scipy.optimize.minimize
Maximum number of iterations for
approximating the posterior during predict

100
5. Supplementary materials

The BIC datasets are freely available under an open source
icense in the OpenBU digital repository: https://open.bu.edu/
andle/2144/40085 [31]. All of the code to generate the BIC
atasets and the results reported in this manuscript is available
n Github: https://github.com/elejeune11/BIC.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

We would like to thank the staff of the Boston University Re-
earch Computing Services and the OpenBU Institutional Repos-
tory (in particular Eleni Castro) for their invaluable assistance
ith generating and disseminating the BIC datasets. This work
as made possible though start up funds from the Boston Uni-
ersity Department of Mechanical Engineering, United States of
merica.
8

Appendix A. BIC example data

In Fig. A.9, we show 50 randomly selected examples of both
‘‘stable’’ and ‘‘unstable’’ input designs from each of the BIC
datasets. For each group, there is no single input parameter that
entirely dominates the stability behavior. However, for a given
‘‘stable’’ or ‘‘unstable’’ design, it is possible in some cases to intuit
the first buckling mode based on the distribution of material
properties and anticipate that it would lead to a ‘‘stable’’ or
‘‘unstable’’ column at the given level of applied displacement.
For example, in some cases, distinctly stiffer and softer areas
may lead to a first buckling mode that corresponds to bending
concentrated in the softer region. We note that for the chosen
level of applied displacement, the homogeneous column would
be classified as ‘‘unstable’’ (see Section 2.1.2).

Appendix B. Metamodel details

Here, we provide additional detail on metamodel implemen-
tation beyond what is given in Section 2.2. All machine learning
models described in this paper are created with scikit-learn [51].
Access details for the relevant code are provided in Section 5.
A summary of model parameters is provided in Table B.1. For
model selection and model parameter selection, our objective
was to identify the model that would lead to the lowest test
error. Broadly speaking, this means selecting the model that best
balances the bias vs. variance tradeoff [11]. Of the models covered

https://open.bu.edu/handle/2144/40085
https://open.bu.edu/handle/2144/40085
https://open.bu.edu/handle/2144/40085
https://github.com/elejeune11/BIC

E. Lejeune Computer-Aided Design 131 (2021) 102948

i
G
m
o
t
w
1
p
d
W
w
t
s

A
(

a
a
l
s

I
d
i
o
f
a
s
t
t
o

T

a

F

F
a
m

v
d
c
a
t

n this paper (support vector machines, neural networks, and
aussian process classification), neural networks are typically
ost at risk for overfitting the training data [78]. When a model is
verfitting, error on the training data will typically be lower than
he error on the test data. In the context of this paper, where we
ere primarily interested in making predictions based on 100 s–
000 s of training datapoints, we found that neural networks
erformance degraded due to overfitting when we tested both
eeper (more layers) and wider (more nodes per layer) networks.
e welcome additional exploration with alternate neural net-
ork architectures, in particular neural network architectures
hat require more control than what is presently possible in the
cikit-learn framework.

ppendix C. Background on receiver operating characteristic
ROC) curves and area under the curve (AUC)

In Section 3, we report both metamodel (Figs. 4, 5, 6) and
ttack model (Fig. 8) performance via receiver operating char-
cteristic (ROC) curves. This is standard in the machine learning
iterature [69]. Here we briefly describe ROC curves in more detail
pecific to the context of the BIC datasets.
In this publication, all models are binary classification models.

n the output files of the BIC datasets, the ‘‘unstable’’ case is
enoted with ‘‘1’’ and is considered positive. The ‘‘stable’’ case
s denoted with ‘‘0’’ and is considered negative. Therefore, for
ur metamodels, running our classification algorithm can lead to
our possible outcomes: TP true positive (ground truth is unstable,
lgorithm predicts unstable), FP false positive (ground truth is
table, algorithm predicts unstable), FN false negative (ground
ruth is unstable, algorithm predicts stable), and TN (ground
ruth is stable, algorithm predicts stable). Given these possible
utcomes, we define true positive rate (TPR) as

PR =
TP

TP + FN
(C.1)

nd false positive rate (FPR) as

PR =
FP

FP + TN
. (C.2)

or our attack model (Section 2.3.2, Figs. 3, 8), we define positive
s an ‘‘unstable’’ ground truth combined with a ‘‘stable’’ trained
etamodel prediction and negative as all other cases.
The output of each classification algorithm is a continuous

ariable. Thus, denoting between a positive and a negative pre-
icted outcome requires selecting a threshold criterion. The
hoice of threshold criterion effects the TPR and the FPR. For
perfect classification algorithm, it will be possible to select a

hreshold such that TPR = 1 and FPR = 0. For a classifier
with random performance (i.e. a random guess) we will observe
TPR ≈ FPR at any threshold criterion. A ROC curve is a plot of
TPR (y axis) with respect to FPR (x axis). For an ideal random
classifier, the ROC curve will be a straight line with formula
TPR = FPR. This line is illustrated in all ROC curves in this
manuscript. The choice of threshold will depend on user tolerance
for both false positives and false negatives. The threshold that
corresponds to the point on the curve closest to point (0, 1.0) will
have the lowest error. Reporting the area under the curve (AUC),
defined as the integral of TPR with respect to FPR, is a simple
way to summarize model performance. For a perfect classifier,
AUC = 1.0 and for a random classifier AUC = 0.5. The AUC
also reflects the probability that the classification algorithm will
score a randomly chosen positive example more highly than a
randomly chosen negative example [69]. In this work, we only
plot the ROC curves for the performance on test (unseen) data.

This method for evaluating metamodel (or attack model) per-
formance is especially useful for models that attempt to predict
9

rare events, where predictive algorithms can erroneously appear
highly successful by never predicting the rare event. In this work,
the attack model for a type 2 attack attempts to predict rare
events. And, for all BIC datasets, there is an uneven split between
the number of positive and negative examples. Further informa-
tion on ROC curves and AUC for model evaluation is available in
introductory machine learning literature [11].

References

[1] Costabal FS, Perdikaris P, Kuhl E, Hurtado DE. Multi-fidelity clas-
sification using gaussian processes: accelerating the prediction of
large-scale computational models. Comput Methods Appl Mech Engrg
2019;357:112602.

[2] Peirlinck M, Costabal FS, Sack K, Choy J, Kassab G, Guccione J, et al. Using
machine learning to characterize heart failure across the scales. Biomech
Model Mechanobiol 2019;18(6):1987–2001.

[3] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with
deep convolutional neural networks. In: Advances in neural information
processing systems. 2012, p. 1097–105.

[4] Sharma AK, Sahni S. A comparative study of classification algorithms for
spam email data analysis. Int J Comput Sci Eng 2011;3(5):1890–5.

[5] LeCun Y, Bottou L, Bengio Y, Haffner P, et al. Gradient-based learning
applied to document recognition. Proc IEEE 1998;86(11):2278–324.

[6] He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In: Proceedings of
the IEEE international conference on computer vision. 2015, p. 1026–34.

[7] Cheng H-D, Shan J, Ju W, Guo Y, Zhang L. Automated breast cancer
detection and classification using ultrasound images: A survey. Pattern
Recognit 2010;43(1):299–317.

[8] Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. Ieee; 2009, p. 248–55.

[9] Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. In:
Advances in neural information processing systems. 2017, p. 3856–66.

[10] Su J, Vargas DV, Sakurai K. One pixel attack for fooling deep neural
networks. IEEE Trans Evol Comput 2019;23(5):828–41.

[11] James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical
learning, Vol. 112. Springer; 2013.

[12] Hendrycks D, Dietterich T. Benchmarking neural network robustness to
common corruptions and perturbations. 2019, arXiv preprint arXiv:1903.
12261.

[13] Bessa MA, Glowacki P, Houlder M. Bayesian machine learning in
metamaterial design: Fragile becomes supercompressible. Adv Mater
2019;31(48):1904845.

[14] Lejeune E. Mechanical MNIST: A benchmark dataset for mechanical
metamodels. Extreme Mech Lett 2020;100659.

[15] Zohdi T. A machine-learning framework for rapid adaptive digital-twin
based fire-propagation simulation in complex environments. Comput
Methods Appl Mech Engrg 2020;363:112907.

[16] Wu J, Qian X, Wang MY. Advances in generative design. Comput Aided
Des 2019;111.

[17] Bessa M, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, et al. A
framework for data-driven analysis of materials under uncertainty: coun-
tering the curse of dimensionality. Comput Methods Appl Mech Engrg
2017;320:633–67.

[18] Cang R, Yao H, Ren Y. One-shot generation of near-optimal topol-
ogy through theory-driven machine learning. Comput Aided Des
2019;109:12–21.

[19] Guilleminot J, Dolbow JE. Data-driven enhancement of fracture paths in
random composites. Mech Res Commun 2020;103:103443.

[20] Gunpinar E, Coskun UC, Ozsipahi M, Gunpinar S. A generative design and
drag coefficient prediction system for sedan car side silhouettes based on
computational fluid dynamics. Comput Aided Des 2019;111:65–79.

[21] Teichert G, Natarajan A, Van der Ven A, Garikipati K. Machine learning
materials physics: Integrable deep neural networks enable scale bridging
by learning free energy functions. Comput Methods Appl Mech Engrg
2019;353:201–16.

[22] Teichert GH, Garikipati K. Machine learning materials physics: Surrogate
optimization and multi-fidelity algorithms predict precipitate morphology
in an alternative to phase field dynamics. Comput Methods Appl Mech
Engrg 2019;344:666–93.

[23] Zhu Y, Zabaras N, Koutsourelakis P-S, Perdikaris P. Physics-constrained
deep learning for high-dimensional surrogate modeling and uncertainty
quantification without labeled data. J Comput Phys 2019;394:56–81.

[24] Yang Y, Perdikaris P. Conditional deep surrogate models for stochastic,
high-dimensional, and multi-fidelity systems. Comput Mech 2019;1–18.

[25] Forrester AI, Keane AJ. Recent advances in surrogate-based optimization.
Prog Aerosp Sci 2009;45(1–3):50–79.

http://refhub.elsevier.com/S0010-4485(20)30141-X/sb1
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb1
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb1
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb1
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb1
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb1
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb1
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb2
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb2
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb2
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb2
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb2
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb3
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb3
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb3
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb3
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb3
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb4
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb4
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb4
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb5
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb5
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb5
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb7
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb7
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb7
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb7
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb7
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb8
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb8
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb8
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb8
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb8
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb9
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb9
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb9
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb10
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb10
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb10
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb11
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb11
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb11
http://arxiv.org/abs/1903.12261
http://arxiv.org/abs/1903.12261
http://arxiv.org/abs/1903.12261
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb13
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb13
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb13
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb13
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb13
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb14
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb14
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb14
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb15
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb15
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb15
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb15
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb15
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb16
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb16
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb16
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb17
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb17
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb17
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb17
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb17
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb17
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb17
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb18
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb18
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb18
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb18
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb18
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb19
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb19
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb19
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb20
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb20
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb20
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb20
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb20
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb21
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb21
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb21
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb21
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb21
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb21
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb21
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb22
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb22
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb22
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb22
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb22
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb22
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb22
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb23
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb23
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb23
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb23
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb23
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb24
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb24
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb24
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb25
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb25
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb25

E. Lejeune Computer-Aided Design 131 (2021) 102948
[26] Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker PK.
Surrogate-based analysis and optimization. Prog Aerosp Sci 2005;41(1):1–
28.

[27] Alber M, Tepole AB, Cannon WR, De S, Dura-Bernal S, Garikipati K, et
al. Integrating machine learning and multiscale modeling—perspectives,
challenges, and opportunities in the biological, biomedical, and behavioral
sciences. npj Digit Med 2019;2(1):1–11.

[28] Li A, Chen R, Farimani AB, Zhang YJ. Reaction diffusion system prediction
based on convolutional neural network. Sci Rep 2020;10(1):1–9.

[29] Wang K, Sun W. A multiscale multi-permeability poroplasticity model
linked by recursive homogenizations and deep learning. Comput Methods
Appl Mech Engrg 2018;334:337–80.

[30] Lejeune E, Linder C. Interpreting stochastic agent-based models of cell
death. Comput Methods Appl Mech Engrg 2019;112700.

[31] Lejeune E. Buckling instability classification (BIC). 2020, URL: https://open.
bu.edu/handle/2144/40085.

[32] Timoshenko SP, Gere JM. Theory of elastic stability. Courier Corporation;
2009.

[33] Lejeune E, Javili A, Linder C. An algorithmic approach to multi-layer
wrinkling. Extreme Mech Lett 2016;7:10–7.

[34] Lejeune E, Javili A, Linder C. Understanding geometric instabilities in thin
films via a multi-layer model. Soft Matter 2016;12(3):806–16.

[35] Javili A, Dortdivanlioglu B, Kuhl E, Linder C. Computational aspects of
growth-induced instabilities through eigenvalue analysis. Comput Mech
2015;56(3):405–20.

[36] Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, et al. The fenics
project version 1.5. Arch Numer Softw 2015;3(100).

[37] Logg A, Mardal K-A, Wells G. Automated solution of differential equations
by the finite element method: The FEniCS book, Vol. 84. Springer Science
& Business Media; 2012.

[38] Balay S, Abhyankar S, Adams M, Brown J, Brune P, Buschelman K, et al.
PETSc users manual. Argonne National Laboratory; 2019.

[39] Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, et al.
PETSc web page. 2019, https://www.mcs.anl.gov/petsc, URL: https://www.
mcs.anl.gov/petsc.

[40] Hernandez V, Roman JE, Vidal V. SLEPc: A scalable and flexible
toolkit for the solution of eigenvalue problems. ACM Trans Math Softw
2005;31(3):351–62.

[41] Roman JE, Campos C, Romero E, Tomas A. SLEPc users manual. Tech.
Rep. DSIC-II/24/02 - Revision 3.13, D. Sistemes Informàtics i Computació,
Universitat Politècnica de València; 2020.

[42] McKay MD, Beckman RJ, Conover WJ. A comparison of three methods
for selecting values of input variables in the analysis of output from a
computer code. Technometrics 2000;42(1):55–61.

[43] Olsson A, Sandberg G, Dahlblom O. On latin hypercube sampling for
structural reliability analysis. Struct Saf 2003;25(1):47–68.

[44] Sobol’ IM. On the distribution of points in a cube and the approximate
evaluation of integrals. Zh Vychisl Mat Mat Fiz 1967;7(4):784–802.

[45] Raissi M, Perdikaris P, Karniadakis GE. Machine learning of lin-
ear differential equations using gaussian processes. J Comput Phys
2017;348:683–93.

[46] Wang K, Sun W. Meta-modeling game for deriving theory-consistent,
microstructure-based traction–separation laws via deep reinforcement
learning. Comput Methods Appl Mech Engrg 2019;346:216–41.

[47] Wang K, Sun W, Du Q. A cooperative game for automated learn-
ing of elasto-plasticity knowledge graphs and models with ai-guided
experimentation. Comput Mech 2019;1–33.

[48] Friedman J, Hastie T, Tibshirani R. The elements of statistical learning, Vol.
1. Springer series in statistics New York; 2001.

[49] Joachims T. Text categorization with support vector machines: Learning
with many relevant features. In: European conference on machine learning.
Springer; 1998, p. 137–42.

[50] Hsu C-W, Chang C-C, Lin C-J, et al. A practical guide to support vector
classification. Taipei; 2003.

[51] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
et al. Scikit-learn: Machine learning in python. J Mach Learn Res
2011;12:2825–30.

[52] Gurney K. An introduction to neural networks. CRC press; 2014.
[53] Rasmussen CE. Gaussian processes in machine learning. In: Summer school

on machine learning. Springer; 2003, p. 63–71.
10
[54] Lee T, Turin SY, Gosain AK, Bilionis I, Tepole AB. Propagation of material
behavior uncertainty in a nonlinear finite element model of reconstructive
surgery. Biomech Model Mechanobiol 2018;17(6):1857–73.

[55] Papernot N, McDaniel P, Goodfellow I, Jha S, Celik ZB, Swami A. Practical
black-box attacks against machine learning. In: Proceedings of the 2017
ACM on Asia conference on computer and communications security. 2017,
p. 506–19.

[56] Tramèr F, Kurakin A, Papernot N, Goodfellow I, Boneh D, McDaniel P.
Ensemble adversarial training: Attacks and defenses. 2017, arXiv preprint
arXiv:1705.07204.

[57] Balda E, Behboodi A, Mathar R. Perturbation analysis of learning al-
gorithms: generation of adversarial examples from classification to
regression. IEEE Trans Signal Process 2019.

[58] Straub J. 3d printing cybersecurity: detecting and preventing attacks that
seek to weaken a printed object by changing fill level. In: Dimensional
optical metrology and inspection for practical applications VI, Vol. 10220.
International Society for Optics and Photonics; 2017, p. 102200O.

[59] Yampolskiy M, King W, Pope G, Belikovetsky S, Elovici Y. Evaluation
of additive and subtractive manufacturing from the security perspective.
In: International conference on critical infrastructure protection. Springer;
2017, p. 23–44.

[60] Yampolskiy M, King WE, Gatlin J, Belikovetsky S, Brown A, Skjellum A, et
al. Security of additive manufacturing: Attack taxonomy and survey. Addit
Manuf 2018;21:431–57.

[61] Yu S-Y, Malawade AV, Chhetri SR, Al Faruque MA. Sabotage attack detec-
tion for additive manufacturing systems. IEEE Access 2020;8:27218–31.

[62] Belikovetsky S, Yampolskiy M, Toh J, Gatlin J, Elovici Y. Dr0wned–cyber-
physical attack with additive manufacturing. In: 11th {USENIX} workshop
on offensive technologies ({WOOT} 17). 2017.

[63] Chen C-T, Gu GX. Generative deep neural networks for inverse materials
design using backpropagation and active learning. Adv Sci 2020;1902607.

[64] Yang C, Kim Y, Ryu S, Gu GX. Prediction of composite microstruc-
ture stress-strain curves using convolutional neural networks. Mater Des
2020;189:108509.

[65] Zohdi T. Modeling and simulation of cooling-induced residual stresses in
heated particulate mixture depositions in additive manufacturing. Comput
Mech 2015;56(4):613–30.

[66] Yu Y, Liu H, Qian K, Yang H, McGehee M, Gu J, et al. Material characteri-
zation and precise finite element analysis of fiber reinforced thermoplastic
composites for 4d printing. Comput Aided Des 2020;122:102817.

[67] Zohdi T. Dynamic thermomechanical modeling and simulation of the
design of rapid free-form 3d printing processes with evolutionary machine
learning. Comput Methods Appl Mech Engrg 2018;331:343–62.

[68] Zohdi TI. Additive particle deposition and selective laser processing-a
computational manufacturing framework. Comput Mech 2014;54(1):171–
91.

[69] Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett
2006;27(8):861–74.

[70] Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, et al.
Global sensitivity analysis: the primer. John Wiley & Sons; 2008.

[71] Di Achille P, Harouni A, Khamzin S, Solovyova O, Rice JJ, Gurev V. Gaussian
process regressions for inverse problems and parameter searches in models
of ventricular mechanics. Front Physiol 2018;9:1002.

[72] Lee T, Bilionis I, Tepole AB. Propagation of uncertainty in the mechanical
and biological response of growing tissues using multi-fidelity gaussian
process regression. Comput Methods Appl Mech Engrg 2020;359:112724.

[73] Raissi M, Perdikaris P, Karniadakis GE. Machine learning of lin-
ear differential equations using gaussian processes. J Comput Phys
2017;348:683–93.

[74] Liu H, Ong Y-S, Shen X, Cai J. When gaussian process meets big data: A
review of scalable gps. IEEE Trans Neural Netw Learn Syst 2020.

[75] Vaissier B, Pernot J-P, Chougrani L, Véron P. Genetic-algorithm based
framework for lattice support structure optimization in additive
manufacturing. Comput Aided Des 2019;110:11–23.

[76] Prabhune BC, Suresh K. A fast matrix-free elasto-plastic solver for pre-
dicting residual stresses in additive manufacturing. Comput Aided Des
2020;102829.

[77] Liu Z, Wu C, Koishi M. Transfer learning of deep material network for
seamless structure–property predictions. Comput Mech 2019;64(2):451–
65.

[78] Tetko IV, Livingstone DJ, Luik AI. Neural network studies. 1. Comparison
of overfitting and overtraining. J Chem Inf Comput Sci 1995;35(5):826–33.

http://refhub.elsevier.com/S0010-4485(20)30141-X/sb26
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb26
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb26
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb26
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb26
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb27
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb27
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb27
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb27
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb27
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb27
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb27
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb28
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb28
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb28
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb29
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb29
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb29
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb29
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb29
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb30
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb30
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb30
https://open.bu.edu/handle/2144/40085
https://open.bu.edu/handle/2144/40085
https://open.bu.edu/handle/2144/40085
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb32
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb32
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb32
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb33
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb33
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb33
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb34
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb34
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb34
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb35
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb35
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb35
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb35
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb35
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb36
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb36
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb36
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb37
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb37
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb37
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb37
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb37
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb38
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb38
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb38
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb40
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb40
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb40
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb40
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb40
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb41
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb41
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb41
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb41
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb41
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb42
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb42
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb42
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb42
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb42
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb43
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb43
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb43
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb44
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb44
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb44
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb45
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb45
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb45
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb45
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb45
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb46
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb46
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb46
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb46
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb46
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb47
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb47
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb47
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb47
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb47
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb48
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb48
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb48
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb49
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb49
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb49
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb49
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb49
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb50
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb50
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb50
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb51
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb51
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb51
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb51
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb51
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb52
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb53
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb53
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb53
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb54
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb54
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb54
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb54
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb54
http://arxiv.org/abs/1705.07204
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb57
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb57
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb57
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb57
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb57
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb58
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb58
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb58
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb58
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb58
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb58
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb58
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb59
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb59
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb59
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb59
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb59
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb59
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb59
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb60
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb60
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb60
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb60
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb60
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb61
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb61
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb61
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb62
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb62
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb62
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb62
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb62
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb63
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb63
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb63
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb64
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb64
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb64
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb64
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb64
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb65
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb65
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb65
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb65
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb65
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb66
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb66
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb66
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb66
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb66
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb67
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb67
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb67
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb67
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb67
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb68
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb68
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb68
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb68
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb68
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb69
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb69
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb69
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb70
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb70
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb70
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb71
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb71
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb71
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb71
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb71
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb72
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb72
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb72
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb72
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb72
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb73
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb73
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb73
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb73
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb73
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb74
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb74
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb74
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb75
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb75
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb75
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb75
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb75
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb76
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb76
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb76
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb76
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb76
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb77
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb77
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb77
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb77
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb77
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb78
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb78
http://refhub.elsevier.com/S0010-4485(20)30141-X/sb78

	Geometric Stability Classification: Datasets, Metamodels, and Adversarial Attacks
	Introduction
	Methods
	Simulation overview
	Problem definition
	Finite element implementation
	Data curation
	Note on symmetry

	Baseline metamodels
	Support vector machines
	Neural networks
	Gaussian process classification

	Adversarial attacks
	Type 1 adversarial attack
	Type 2 adversarial attack
	Note on why the BIC-1 dataset is convenient for assessing adversarial attacks

	Results and discussion
	Baseline metamodel performance
	Type 1 attack example
	Type 2 attack example

	Conclusion
	Supplementary materials
	Declaration of competing interest
	Acknowledgments
	Appendix A. BIC example data
	Appendix B. Metamodel details
	Appendix C. Background on receiver operating characteristic (ROC) curves and area under the curve (AUC)
	References

