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a b s t r a c t

Metamodels, or models of models, map defined model inputs to defined model outputs. Typically,
metamodels are constructed by generating a dataset through sampling a direct model and training
a machine learning algorithm to predict a limited number of model outputs from varying model
inputs. When metamodels are constructed to be computationally cheap, they are an invaluable tool
for applications ranging from topology optimization, to uncertainty quantification, to multi-scale
simulation. By nature, a given metamodel will be tailored to a specific dataset. However, the most
pragmatic metamodel type and structure will often be general to larger classes of problems. At present,
the most pragmatic metamodel selection for dealing with mechanical data has not been thoroughly
explored. Drawing inspiration from the benchmark datasets available to the computer vision research
community, we introduce a benchmark data set (Mechanical MNIST) for constructing metamodels of
heterogeneous material undergoing large deformation. We then show examples of how our benchmark
dataset can be used, and establish baseline metamodel performance. Because our dataset is readily
available, it will enable the direct quantitative comparison between different metamodeling approaches
in a pragmatic manner. We anticipate that it will enable the broader community of researchers
to develop improved metamodeling techniques for mechanical data that will surpass the baseline
performance that we show here.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Predictive mechanical models are foundational to engineering
design and analysis [1]. Therefore, method development towards
improving the predictive ability of mechanical simulation has and
continues to be a highly active area of research [2]. High-fidelity
computational models are used to make predictions that enable
innovation in fields ranging from structural [3], to biomechanical
engineering [4,5]. Because these models are often quite computa-
tionally expensive, researchers frequently construct metamodels
as a part of their broader simulation framework [6]. Metamod-
els (also referred to as surrogate models) are computationally
cheap models of the original model that map defined model
inputs to defined model outputs, often referred to as quantities
of interest (QoI) [7]. Though metamodels typically only predict
a small portion of the total model output with some associated
error, they typically take orders of magnitude less time to eval-
uate than the direct models that they are approximating [8].
These computationally cheap metamodels have enabled research
in fields such as optimization [9,10], uncertainty quantification
[11,12], and multi-scale simulation [13–15], where an intractable
number of direct model evaluations would otherwise be required
[16]. For approximating mechanical simulations, researchers have
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used metamodeling techniques such as standard Gaussian Pro-
cess Regression [17], and neural networks [18]. Furthermore,
there has been substantial recent research in developing physics
informed machine learning methods that synthesize available
physical knowledge and available data to make predictions [19,
20].

Though these techniques have been reasonably successful, the
most pragmatic metamodel type and structure for dealing with
mechanical data is far from thoroughly explored. The motivation
for developing improved strategies for constructing metamodels
relevant to mechanical data is twofold. First, metamodels enable
unprecedented exploration of the model parameter space [21,22]
and enhanced metamodel performance will lead to improve-
ments in the computational methods that rely on them [23].
Second, similar to synthetic datasets in computer vision [24], the
synthetic datasets generated by mechanical models are a proxy
for real world data. For many problems in mechanics, acquiring
curated datasets of experimental data is much more resource
intensive than generating curated datasets from simulation [25,
26]. Therefore, working with synthetic datasets, and subsequently
metamodels, is an initial step in method development and a
motivation for the future strategic collection of experimental
data.

Through emerging metamodeling techniques have enormous
potential to enhance simulation, strategies for constructing meta-
models remain ad hoc. Namely, metamodels are typically trained
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Fig. 1. Inspired directly by the MNIST dataset of handwritten digits used by the computer vision community, Mechanical MNIST is a dataset relevant to heterogeneous
materials undergoing large deformation: (a) Mechanical MNIST uses the MNIST grayscale bitmap images to dictate material properties in a finite element simulation
of a two-dimensional block being stretched; (b) From these simulations, multiple different forms of data (ex: full field displacement, total change in strain energy)
are generated and contribute to the Mechanical MNIST dataset. Additional load cases are presented in Appendix A.1.

to capture meaning from privately held and/or difficult to in-
terpret datasets generated with in-house software [27]. Though
this approach is often necessary, it makes it difficult to compare
between different metamodeling strategies and thus develop best
practices for pragmatic metamodel selection specific to mechan-
ical data. The objective of this paper is to introduce a benchmark
data set that will enable improved metamodeling techniques
for problems involving heterogeneous material undergoing large
deformation. In addition to introducing this dataset, we also show
examples of metamodels trained to this data that subsequently
dictate a baseline for metamodel performance. We draw inspira-
tion directly from the MNIST dataset used by the computer vision
research community [28], and construct a mechanically relevant
equivalent — Mechanical MNIST. Looking forward, we hope that
this work will be one of many benchmark toy problems avail-
able to researchers interested in metamodeling of mechanical
simulations.

The remainder of this paper is organized as follows. First, in
Section 2.1, we describe our method for running the simulations
to generate Mechanical MNIST. Then, in Section 2.2, we describe
how this data can be used to train a metamodel. Briefly, in Sec-
tion 2.3 we also discuss alternative approaches to metamodeling
beyond the scope of this paper. In Section 3, we present the
results of training different metamodels to Mechanical MNIST
data. In Section 3.1, we predict final change in strain energy
from material properties, and in Section 3.2 we predict ma-
terial properties from final displacement. Critically, Mechanical
MNIST is freely available online and access details are described
in Supplementary materials.

2. Methods

In this Section, we describe how Mechanical MNIST is gen-
erated and the metamodeling strategies that we tested in this
work. We note that the code used to generate Mechanical MNIST
and the code used to create the metamodels from the Mechanical
MNIST dataset are both freely available. Access information is
available in Section 5.

2.1. Data generation

As illustrated in Fig. 2, Mechanical MNIST is generated by first
converting the MNIST bitmap images to heterogeneous blocks
of material. For simplicity, we use a compressible Neo-Hookean
material model:

ψ =
1
2
µ

[
F : F − 3 − 2 ln(det F)

]

+
1
2
λ

[
1
2
((det F)2 − 1) − ln(det F)

]
(1)

where ψ is strain energy, F is the deformation gradient, and µ
and λ are Lamé parameters equivalent to Young’s modulus E and
Poisson’s ratio ν:

E =
µ ( 3λ+ 2µ )

λ+ µ
ν =

λ

2 ( λ+ µ )
. (2)

To convert the MNIST bitmap images to material properties, we
divide the material domain such that it corresponds with the
grayscale bitmap and then specify E as

E =
b

255.0
(100.0 − 1.0) + 1.0 (3)

where b is the corresponding value of the grayscale bitmap that
can range from 0–255. Poisson’s ratio is kept fixed at ν = 0.3
throughout the domain. This strategy means that the Mechanical
MNIST material domains contain a soft background material with
‘‘digits’’ that are two orders of magnitude stiffer.

Then, we run a finite element simulation where the bottom of
the domain is fixed (Dirichlet boundary condition), the left and
right edges of the domain are free, and the top of the domain is
moved to a set of given fixed displacements. This is illustrated in
Fig. 1a. In keeping with the size of the MNIST bitmap (28 × 28
pixels), the domain is a 28 × 28 unit square. We prescribe
displacement at the top of the domain up to 50% of the initial
domain size. The applied displacements d are:

d = [ 0.0, 0.001, 0.01, 0.1, 0.5, 1.0, 2.0, 4.0, 6.0,

8.0, 10.0, 12.0, 14.0 ] (4)

and data is generated at each displacement step. We run all finite
element simulations using the FEniCS computing platform [29,
30]. Mesh refinement studies were conducted, and we deter-
mined that a mesh with 39,200 quadratic triangular elements
is sufficient to capture the converged solution while not need-
lessly using computational resources. This mesh corresponds to
50 quadratic triangular elements per bitmap pixel. In addition to
the uniaxial extension load case discussed here, we have shear,
equibiaxial extension, and confined compression load cases in
the Mechanical MNSIT collection. Additional information on these
load cases is presented in Appendix A.1.

From these simulations we generate data on the total change
in strain energy ∆ψ , total reaction force, and full field domain
displacement. We store this data at each level of applied displace-
ment. In summary, Mechanical MNIST contains the following data
separated into test and training groups:

• original MNIST grayscale bitmaps stored in text files — each
row of the file contains one image reshaped to a 1d array
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Fig. 2. (a) Illustration of the data that makes up the Mechanical MNIST dataset; (b) examples of different input and output data pairs that can be chosen from
the Mechanical MNIST dataset; (c) Schematic illustration of a feedforward neural network (FNN) and a convolutional neural network (CNN), two metamodeling
techniques explored in this paper.

• change in strain energy at every step of applied displace-
ment — each row of the file contains a 1d array of ∆ψ at
each step

• change in x reaction force at every step of applied displace-
ment — each row of the file contains a 1d array of the total
x reaction force computed on the top surface of the block

• change in y reaction force at every step of applied displace-
ment — each row of the file contains a 1d array of the total
y reaction force computed on the top surface of the block

• change in x position at the center of each initial ‘‘pixel’’ at
every step of applied displacement — each row of the file
contains x displacement values reshaped to a 1d array (there
is one text file per applied displacement step)

• change in y position at the center of each initial ‘‘pixel’’ at
every step of applied displacement — each row of the file
contains y displacement values reshaped to a 1d array (there
is one text file per applied displacement step)

Information on accessing the supporting code to load and analyze
this data is provided in Section 5.

2.2. Baseline metamodels

With the Mechanical MNIST dataset, we consider two main
formats of input data mapped to output data. In both cases, the
input data will be full-field information i.e. information on a
28 × 28 grid (initial bitmap, x displacement map, y displace-
ment map). The output data will then either be a single variable
(∆ψ , reaction force) or full-field information (initial bitmap, x
displacement map, y displacement map). It is also possible to
predict multiple variables (ex:∆ψ at every load step) or multiple
pieces of full-field information (ex: both x and y displacement
maps). We keep the same split between test and training data as
the original MNIST dataset. In the remainder of this section we
briefly introduce the metamodeling techniques that we use for
the baseline results shown in Section 3.

2.2.1. Feedforward neural network
There are multiple examples in the literature of feedforward

neural networks (FNNs) used to generate metamodels of physical
simulation [31] and mechanical data [32]. The basic architecture
of a feed-forward neural network is illustrated in Fig. 2c. Briefly,
the FNN maps input feature vectors x to output values y. Fun-
damentally, a neural network is composed of ‘‘neurons,’’ or basic
units that take a weighted sum of inputs, and apply an activation
function to the sum. In a FNN, information flows from a flattened
input vector through hidden layers of connected neurons to a
final output layer [33]. The FNN has several parameters, θ, and
process of ‘‘training’’ the FNN involves using a software library to
determine what θ should be. In this work, we construct FNNs with
both the PyTorch library [34] and the scikit-learn library [35].

2.2.2. Convolutional neural network
Recently, convolution neural networks (CNNs) have gained

substantial popularity for generating metamodels of physical sim-
ulation [36]. The basic architecture of a convolutional neural
network is illustrated in Fig. 2c. Similar to FNNs, CNNs start with
an input layer, contain hidden layers, and finish with an output
layer. However, rather than the flat input that goes into a FNN,
the input to a CNN is an image (in this case a 28 × 28 image),
and the hidden layers typically include both convolution layers
and pooling layers. Convolution layers map a single array (the
image) to multiple arrays by filtering the image with a set of
independent kernels. Pooling layers progressively reduce the size
of the arrays by applying a filter that reduces dimensionality [37].
Both convolutional and pooling layers are illustrate in Fig. 2c.
This architecture, where the structure of the image is preserved,
means that CNNs are potentially better suited to capture spatial
relationships than FNNs [38]. In this work, we construct a CNN
with the PyTorch library [34].
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Fig. 3. Illustration of test error when predicting total change in strain energy
∆ψ at the final level of applied displacement (50% of initial length) from initial
pixel bitmaps. Left: Feedforward neural network (FNN) with 2.5% mean error;
Right: Convolutional neural network (CNN) with 1.9% mean error. Similar plots
for the alternative load cases are presented in Appendix A.1.

2.3. Note on alternative approaches

Although implementing a physics informed machine learn-
ing method is beyond the scope of this paper, we note that
this area of research is highly relevant to the development of
metamodels for mechanical data [39–41]. In particular, recent
work focused on constraining neural networks based on physical
laws shows substantial promise for making predictions partic-
ularly in systems where there is limited available data [12,42].
Furthermore, model order reduction, a technique for decreasing
computational complexity, is an alternative approach beyond the
scope of this paper [43–45]. One major motivation for sharing
the full Mechanical MNIST dataset and the finite element scripts
used to generate the data is that it is a strategy for pragmatic
comparison between entirely data based machine learning ap-
proaches, physics informed machine learning approaches, and
even potentially model order reduction strategies. The efficacy of
machine learning techniques is judged by their predictive power.
Therefore, comparisons made with benchmark datasets are a
powerful way to demonstrate the utility of novel methods.

3. Results and discussion

In this Section, we present baseline results of predictions for
the Mechanical MNIST data. We note that while the performance
of our metamodels is good, it is likely far from optimal. The
motivation for sharing this dataset is that we hope Mechanical
MNIST will serve as a benchmark for alternate metamodeling
strategies to capture heterogeneous material undergoing large
deformation. From an entirely pragmatic perspective, alterna-
tive metamodeling strategies are noteworthy if and when they
outperform the baseline results shown here.

3.1. Predicting a single QoI

The original MNIST dataset takes 28 × 28 pixel images of
handwritten digits and classifies each image as a digit from 0–9.
Our analogy to the original MNIST dataset is a regression problem,
where the input is the same 28 × 28 pixel images and the
output is a single value ∆ψ which reflects the total change in
strain energy when the block is stretched to 50% of its original
length (uniaxial extension load case). Inspired by models used
to classify the original MNIST dataset, we reformulate a FNN
that achieved approximately 97% accuracy on the original MNIST
dataset and a CNN that achieved approximately 99% accuracy on
the original MNIST dataset to address our regression problem.

Then, we evaluate the performance of the FNN and CNN on our
Mechanical MNIST dataset.

The performance of the FNN and the CNN are shown in Fig. 3.
Here we report the mean percent error (MPE). The test error for
the FNN was 2.5% and the test error for the CNN was 1.9%. The
training error for the FNN was 2.4% and the training error for the
CNN was 1.9%. The plots in Fig. 3 show the predicted value of ∆ψ
with respect to the target value of∆ψ . These results, in particular
the results of the CNN, represent the baseline performance of a
metamodel fit to the Mechanical MNIST data. We also note that
we tried similar NN architectures to the final one chosen for both
the FNN and CNN but did not notice substantial improvement
in test error. We anticipate that an alternative neural network
architecture, or potentially an ensemble method will lead to
improved performance in the future.

3.2. Full field prediction

Here we show an example of a full field prediction. We pre-
dict the initial material properties from the final displacement
field (a common goal of inverse problems). The results of this
comparison are shown in Fig. 4. Across the entire test set, the
mean absolute test error for the initial material property pre-
diction was 13 bitmap intensity units. For context, the standard
deviation of bitmap pixel values is 79 with range 0–255. For the
metamodel, we use a simple FNN constructed with the MLPRe-
gressor function in Python scikit-learn [35]. Similar to the results
presented in Section 3.1, we view these results as an example
of baseline performance. Further exploration of alternative neural
network architectures and/or alternative metamodeling methods
will likely yield lower test error.

The Mechanical MNIST dataset presents a toy problem that
allows for the exploration of hypothetical scenarios where dif-
ferent types of data are available. For example, the prediction
of initial material properties from displacement assumes that
the initial material properties are unknown. The metamodeling
techniques explored in this Section treat the finite element model
used to generate the Mechanical MNIST data as a black box. We
note briefly that alternative techniques such as inverse modeling
would likely be able to outperform these black box approaches
if the problem could be formulated with substantial domain
knowledge [46]. We include additional discussion on the use of
the Mechanical MNIST dataset in Appendix A.2.

4. Conclusion

Inspired by benchmark datasets available to the computer
vision research community [28,52], we introduce a dataset, Me-
chanical MNIST, relevant to metamodeling of heterogeneous ma-
terials undergoing large deformation. We first describe how this
dataset was generated, and then describe our methods for creat-
ing baseline metamodels with the dataset. Notably, we are able to
predict change in strain energy on the test data from the initial
bitmap with a mean percent error of 1.9%. Because our dataset
is readily available, we anticipate that future metamodeling en-
deavors potentially put forward by other research groups will
exceed this performance. Though Mechanical MNIST represents
a toy problem, we anticipate that metamodeling techniques (not
the trained models themselves) that have high predictive power
on Mechanical MNIST will be well suited for tackling related
problems in creating metamodels of heterogeneous materials
undergoing large deformation.

There are many interesting and highly related research ques-
tions beyond the scope of this initial work, many of which are
directly inspired by ongoing research in computer vision. For
example, MNIST classification can be improved via multiple data
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Fig. 4. Illustration of the performance of a FNN on a single example from the test set of predicting initial material properties from final displacement. In this
example, Mean Absolute Error (MAE) is 16 bitmap intensity units. On average across the entire test dataset, MAE is 13 bitmap intensity units. This can be compared
to the range 0–255 and the standard deviation of 79 for bitmap intensity units.

Fig. 5. The four loading cases present in the Mechanical MNIST collection [47] are: Uniaxial Extension [48], Shear [49], Equibiaxial Extension [50], and Confined
Compression [51].

augmentation strategies [53–55]. For the original MNIST, an aug-
mented bitmap typically maps to the same output class. For
Mechanical MNIST, an augmented bitmap will map to different
quantitative outputs. Broadly speaking, data augmentation and
sensitivity to noise ‘‘attacks’’ specific to regression problems is
an ongoing area of research [56]. Likewise, the identification
of algorithms that can work with as little data as possible is
particularly relevant to mechanical data [57]. As pointed out in
Section 2.3, these methods will potentially incorporate domain
knowledge.

In addition to addressing these compelling problems, future
work will involve generating and curating additional datasets of
both computational and experimental data to address mechani-
cally relevant problems beyond the limited scope of Mechanical
MNIST in its present form. Currently, the Mechanical MNIST col-
lection contains four load cases with a Neo-Hookean constitutive
model and spatially heterogeneous material. Future contributions
to the collection will tackle alternative constitutive laws, alter-
native constitutive parameter ranges, material anisotropy, and
simulations of varying fidelity and dimension. We note that the
code used to generate Mechanical MNIST is freely available (see
Supplementary materials) and the Mechanical MNIST collection
is shared with a CC BY-SA 4.0 license which allows other re-
searchers to freely share and adapt the dataset. As more curated
datasets become available it will be interesting to see, from an
entirely pragmatic perspective, if specific neural network archi-
tectures or alternate metamodeling techniques tend to perform
best on mechanical data.

5. Supplementary materials

Mechanical MNIST is available through the OpenBU Institu-
tional Repository (Collection: https://open.bu.edu/handle/2144/
39371, Uniaxial Extension: https://open.bu.edu/handle/2144/38
693, Shear: https://open.bu.edu/handle/2144/39429, Equibiaxial
Extension: https://open.bu.edu/handle/2144/39428, and Confined
Compression: https://open.bu.edu/handle/2144/39427). The code

used to generate these datasets and the baseline metamodel ex-
amples is available on the Mechanical MNIST GitHub Repository
(https://github.com/elejeune11/Mechanical-MNIST).
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Appendix

A.1. Mechanical MNIST: additional load cases

In the main body of the text, we introduced the Mechanical
MNIST dataset with an emphasis on the uniaxial extension load
case. In addition to uniaxial extension, the Mechanical MNIST
dataset contains (at the time of this publication) three additional
load cases, illustrated in Fig. 5. We anticipate that the Mechanical
MNIST collection will continue to grow to cover additional areas
of interest such as alternative constitutive laws and simulations
of varying fidelity.

Following the procedure described in Section 2.2.2, we show
baseline metamodel performance on each dataset. Specifically,
we train multiple CNNs with the same architecture separately
on each Mechanical MNIST load case. The baseline performance
of the CNN on each dataset is summarized in Fig. 6. Briefly,
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Fig. 6. Left: baseline CNN performance on Mechanical MNIST Shear; Center: baseline CNN performance on Mechanical MNIST Equibiaxial Extension; Right: baseline
CNN performance on Mechanical MNIST Confined Compression. The mean percent error (MPE) is stated within the title of each figure.

Fig. 7. Illustration of the performance of a FNN on a single example from the test set for predicting final displacement from initial displacement. Mean Absolute Error
on the test data is 0.44 length units, which we can compare to initial block side length of 28 length units and the standard deviation of pixel-center displacement
which is 4.3 length units.

baseline performance of the CNN on the Shear dataset is 2.60%
training error, and 2.69% test error. Baseline performance of the
CNN on the Equibiaxial Extension dataset is 1.59% training error,
and 1.61% test error. Baseline performance of the CNN on the
Confined Compression dataset is 1.76% training error, and 1.83%
test error. Notably, the performance of the CNN is fairly consistent
across datasets.

A.2. Mechanical MNIST: beyond metamodels and inverse problems

In addition to the examples highlighted in the main body of
the text, the Mechanical MNIST dataset can be set up to test
multiple different types of predictive model. An example of this
is shown in Fig. 7. In this example, the full field displacement at
the final load step is predicted from an initial perturbation of the
same loading type. Again, we use a simple FNN constructed with
the MLPRegressor function in Python scikit-learn [35]. Though
Mechanical MNIST lacks much of the complexity of real world
data, it is a starting point for developing machine learning based
tools to predict deformation under large loading from small per-
turbations that could ultimately be relevant to applications such
as non destructive testing [58,59].

Beyond this example, another option for reformulating the
input and output of the metamodel would be to use the full
Mechanical MNIST dataset with multiple loadings described in
Appendix A.1 to set up a classification problem where full field
displacement is used to predict the loading class (uniaxial ex-
tension, shear, equibiaxial extension, or confined compression).
It would be interesting to investigate how (and if) data from
one load case could be leveraged to make predictions about
other load cases. Researchers can also add different amounts and
types of noise to the Mechanical MNIST dataset to better cap-
ture real world data acquisition. Looking forward, we hope that
beyond metamodels, Mechanical MNIST will serve as a synthetic
dataset that is a placeholder for real world data during method
development.
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