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Understanding the mechanical link between
oriented cell division and cerebellar morphogenesis

Emma Lejeune, *ab Berkin Dortdivanlioglu, a Ellen Kuhl c and
Christian Linder ac

The cerebellum is a tightly folded structure located at the back of the head. Unlike the folds of the

cerebrum, the folds of the cerebellum are aligned such that the external surface appears to be covered

in parallel grooves. Experiments have shown that anchoring center initiation drives cerebellar foliation.

However, the mechanism guiding the location of these anchoring centers, and subsequently cerebellar

morphology, remains poorly understood. In particular, there is no definitive mechanistic explanation for

the preferential emergence of parallel folds instead of an irregular folding pattern like in the cerebral

cortex. Here we use mechanical modeling on the cellular and tissue scales to show that the oriented

granule cell division observed in the experimental setting leads to the characteristic parallel folding

pattern of the cerebellum. Specifically, we propose an agent-based model of cell clones, a strategy for

propagating information from our in silico cell clones to the tissue scale, and an analytical solution

backed by numerical results to understand how differential growth between the cerebellar layers drives

geometric instability in three dimensional space on the tissue scale. This proposed mechanical model

provides further insight into the process of anchoring center initiation and establishes a framework for

future multiscale mechanical analysis of developing organs.

1 Introduction

The cerebellum is a major feature of the vertebrate brain and is
important for functions such as coordination, cognition, and
muscular activity.1 The fully developed cerebellum exhibits a
complex three-dimensional structure where the folded cerebellar
cortex externally appears as finely spaced parallel grooves, shown
in Fig. 1b.2 Understanding the development of these cerebellar
folds, referred to as folia, is an active area of research. Initially,
during development, the surface of the cerebellum is smooth.
The folia of the cerebellum then arise hierarchically following a
tightly coordinated sequence of genetically regulated events.3–5

At the start of foliation, structures termed anchoring centers
form at the base of each fissure. Once these anchoring centers
are established, they limit granule cell progenitor dispersion,
which contributes to the spatial heterogeneity of different
folia.6 Although the importance of these anchoring centers is
known, the mechanism triggering the location and timing of
anchoring center initiation is not fully understood.5 Recent
work has suggested that anchoring center initiation is driven by

tissue-scale mechanical forces that arise due to differential
growth.7,8 In our previous work, we proposed growth-induced
surface wrinkling as a plausible explanation for anchoring
center initiation.7 This idea follows from many other examples
of mechanical instability driving organ morphogenesis,9–12

Fig. 1 (a) Sagittal section of the brain with the cerebellum highlighted;
(b) external view of the cerebellum in the coronal plane, note the aniso-
tropy in the foliated pattern; (c) illustration of the foliation mechanism:
initially anchoring centers form on an un-patterned surface which sub-
sequently develops potentially heterogeneous folds with anchoring centers
at the base.
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including in the cerebrum.13–17 However, to the author’s knowl-
edge, there has been limited exploration of mechanically driven
morphogenesis in the cerebellum to date.7,8,18,19

In this work, we focus on a simple question: how does the
orientation of cell division influence anchoring center initiation?
From the experimental literature, we know that granular cells in
the external granular layer divide preferentially but not exclu-
sively in the anterior–posterior (A–P) direction at a much higher
rate than cells in the internal granular layer.6 What is unknown,
is how specifically this oriented cell division may lead to uniaxial
folia, particularly in the context of geometric instability driven by
differential growth. Multi-scale mechanical modeling offers a
unique opportunity to explore this link. We approach this
problem with two models. Our first model is an agent-based
model of granule cell progenitor clones where cell growth and
division algorithms are motivated by experimental results from
the literature. We introduce a strategy for post-processing the
cellular-scale agent-based model results such that they feed into
the second tissue-scale model which treats the cerebellum as a
continuum. In our second model, we study the influence of
physically realistic anisotropic growth on surface wrinkling.
This is done through both incremental stability analysis20 and
numerical modeling with isogeometric analysis.21 By approaching
this problem with fully three-dimensional models, we are able to
study how the symmetry of the cerebellum emerges, rather than
treating this symmetry as inherent and only presenting a model
in two-dimensional space. The three-dimensional model also
offers a better platform for future comparison to the developing
cerebrum where different cellular scale behavior leads to different
morphology on the tissue scale.

The remainder of the paper is organized as follows. In
Section 2, we discuss our methods for computational modeling

of cell clones, connecting cell clone models to the tissue scale,
and predicting the onset of the wrinkling instability with
anisotropic film growth. In Section 3, we show representative
simulation and analytical results and discuss the implications
for cerebellar morphogenesis. Concluding remarks are given in
Section 4.

2 Methods

An overview of the computational framework presented here is
illustrated in Fig. 2. In Section 2.1, we describe the features of
our agent-based cell model that are matched to experimental
observations. Then, in Section 2.2, we describe our procedure
for post-processing the agent-based model to inform macro-
scale behavior. Finally, in Section 2.3, we describe our macro-
scale model for understanding the buckled mode shape at the
onset of geometric instability.

2.1 Computational modeling of cell clones

Agent-based cell models are a class of computational models
where the actions and interactions of individual cells are pre-
scribed by algorithmic rules. With this structure, collective system
behavior is free to emerge.22 In this work, we use a mechanically
driven agent-based modeling framework where mechanical equi-
librium is maintained by satisfying the peridynamic equation of
motion.23 Further details of this broader framework are available
in Appendix A.1 and our previous publication.24 In the remainder
of this section, we will describe the algorithmic rules imple-
mented to capture experimental observations from the literature
related to cell growth and cell division in the external granule layer
of the developing cerebellum.

Fig. 2 (a) Individual instances of cell division angle and growth rate are drawn from probability distributions in a manner consistent with experimentally
observed behavior; (b) cells are modeled in an agent-based setting and agent-based simulations are post-processed to convey information to the
macroscale; (c) macroscale continuum modeling predicts the buckled mode shape at the onset of geometric instability.
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First, we consider the cell growth algorithm. In the developing
cerebellum, the results of experimental clonal analysis indicate
that the cells are not growing in sync.6,25 In the computational
setting, synchrony is the default behavior. Therefore, we need to
prescribe cell growth such that cells will grow and divide asyn-
chronously. To do this, we begin each simulation with cells that
are non-uniform initial sizes. Each cell i will have an initial radial
growth value of gi randomly computed as

gmin ¼ 0 gmax ¼
ffiffiffi
2

3
p
� 1:0 gi � U gmin; gmaxð Þ (1)

where gmax is the size at which cells will divide, and U is the
uniform distribution. The growth rate ri of each cell i is then
generated from a probability distribution as

ri B N(rmean,rstd) if ri o rmin - ri := rmin (2)

where N is the normal distribution. Radial growth is then
applied to cell i as

gt+1
i = gt

i + ri. (3)

With this algorithm, ri remains constant for the entirety of
one cell cycle, and cells with higher values of ri grow at a faster
rate. The combination of different initial sizes and growth rates
leads to overall asynchronous population growth, which is con-
sistent with experimental observations. In future work, more
specific and biologically realistic algorithmic rules to describe
cell growth throughout the cell cycle can be implemented in
this framework.

In Fig. 3, we show that our chosen algorithm results in
asynchronous growth for a population of 200 cells arising from
a single cell. We measure synchrony by adapting a technique
available in the literature that relies only on tracking the
change in number of cells DCN.26 We plot DCN between step
k � 1 and k defined as

DCN = log2 CNk � log2 CNk–1 (4)

and the associated moving maximum over a window equivalent
to one cell cycle. If the cells were dividing perfectly in sync,

the moving maximum of DCN would remain equal to 1.
From the plot in Fig. 3, it is clear that the moving maximum
decreases sufficiently such that the growth algorithm is
asynchronous.

Next, we consider the cell division algorithm. When cells
divide, they divide in a specified direction. In three-dimensional
space, this is represented as a unit vector x. We treat x as a
random variable drawn from an underlying probability distribu-
tion. Hypothetically, this could be an empirical distribution that
follows directly from experimental data. However, there is pre-
sently insufficient information available from experiments to
meaningfully do this. What is known from experiments is that
the direction of cell division in the developing cerebellum is
not uniform, and that the division plane (division angle is
the normal vector of the division plane) is more likely to be
perpendicular than parallel to the anterior-posterior axis though it
is not exclusively in a single orientation. To capture this behavior
in a highly simplified manner, we choose a three-dimensional
von Mises–Fisher probability distribution written as

f ðx; m; kÞ ¼ k
4p sinhk

exp klTx
� �

(5)

where k 4 0 is the concentration parameter and m is the mean
direction set as a unit vector l = [1,0,0]T.27 With k - 0, this
approaches a spherical uniform distribution. The expression
1=

ffiffiffi
k
p

is analogous to the standard deviation in a normal distri-
bution. In the numerical setting, we generate random vectors x
with the Ulrich–Wood algorithm.28,29 To visualize this distribu-
tion in a manner similar to reported experimental observations,6

we plot the distribution of the division plane for sagittal, coronal,
and transverse cuts with 100 000 simulated random variables
in Fig. 4. From comparing Fig. 4 to the experimental results
reported in Legué et al.,6 we find that a simulated distribution
with a value of k E 2–4 is most relevant to the developing
cerebellum. In Section 3, we will show representative simula-
tion results with different values of k.

2.2 Connecting the results of the cell clone model to the
tissue scale model

On the tissue scale, we treat the cerebellum as a continuum.
In our continuum model, we implement tissue growth simply as
a growth-induced deformation gradient F. To do this, we adapt
our recently proposed technique of computing an approximate
deformation gradient F from the results of a discrete agent-based
model.30 The basic set up for this approach is illustrated in
Fig. 2b. We compute F from our agent-based model by tracking
the change in position of cells from the start to end of the
simulation. Essentially, we treat all cells that are present at the
start of the simulation as fiducial markers. When the fiducial
marker cells divide, fiducial marker status is passed to one of the
resulting daughter cells at random. This is shown in Fig. 2b
where the darker cells represent the fiducial marker cells. We
analyze the change in position of these cells in a post-processing
step as follows.

For each fiducial marker j in j = {1. . .m}, consider all marker
pairs j–k that connect marker j to markers k in k = {1. . .m}, k a j.

Fig. 3 Consistent with experimental results, we implement unsynchro-
nized cell population growth with rmean = 0.01, rstd = 0.005, and rmin =
0.001. We test the population level synchrony by examining the change in
cell number per step.26 Here, we plot the moving maximum with a window
of one average cell cycle.
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With these n = m(m � 1)/2 pairs, we consider pair-connecting
stretch vectors k0 at the start of the simulation and kt at
each subsequent simulation step t. Then, we define an array
of initial stretch vectors K0 and an array of current stretch
vectors Kt as

K0 = [k1
0k

2
0. . .kn

0] Kt = [k1
t k

2
t . . .kn

t ] (6)

where both arrays have dimension 3 � n. Then, we introduce
the approximate growth-induced deformation gradient at step t
Ft with dimension 3 � 3 to relate these two matrices as

FtK0 = Kt. (7)

This results in an over-determined system of equations
where we can solve for the best-fit for Ft as

Ft = KtK
T
0(K0K

T
0)�1. (8)

Notably, this simple post-processing procedure relies only
on the ability to track the change in position of cell centers.
This means that it can be readily applied to other agent-based
models. Future advances in experimental techniques and cell
tracking methodology may eventually allow this procedure to
be applied directly to experimental data.31

2.3 Tissue scale modeling of the wrinkling instability

On the tissue scale, we treat the developing cerebellum as a
continuous block of material. The goal is to understand the
onset of geometric instability driven by the compression that
arises due to differential growth between the internal and
external layers. This is similar to our previous work, where we
modeled the cerebellum as a two-dimensional tri-layer system

where the top layer represented the external granular layer, the
intermediate layer represented the Purkinje cell layer, and the
bottom layer represented the internal granule cell layer.7 In
our previous work, we showed that wrinkling will occur with
the external granular layer acting as a film and the combined
soft Purkinje layer and internal granular layer acting as a
substrate. In this paper we are interested in understanding
buckling behavior in the full three-dimensional case, without
making the limiting assumption that the buckling mode
must be uniaxial. To do this, we model the cerebellum as a
three-dimensional bi-layer where the film represents the
rapidly growing external granular layer and the substrate
approximates the combined internal layers, with a combined
stiffness lower than the stiffness of the film, illustrated in Fig. 2.
Then, we study this system analytically via an incremental
stability analysis and numerically by tracking the stability of
isogeometric analysis (IGA) simulations. In this work, we are
concerned with the onset of the instability and the initial
buckling pattern, and we do not delve into post-buckling
behavior. In this regime, we can study the onset of the
instability with an elastic material model while the assumption
of elastic material behavior is likely violated in the post-buckling
regime.8,18

First, we define the deformation gradient F = rXj where
j maps points from the undeformed configuration X to
the deformed configuration x. In the analytical setting, F is
homogeneously applied to the whole bi-layer domain through
essential boundary conditions. In the numerical setting, we
multiplicatively decompose the deformation gradient as F =
FeFg where Fe is the elastic component and Fg is the growth

Fig. 4 Consistent with experimental results, we implement a non-uniform division direction distribution. For a three-dimensional von Mises-Fischer
distribution with m = [1,0,0]2 and k = 2.0, we examine the distribution of observed division planes projected onto two-dimensional cuts in the sagittal,
coronal, and transverse directions. In the lower row, ‘‘horizontal’’ refers to division planes with angles 01–301, ‘‘oblique’’ refers to division planes with
angles 301–601, and ‘‘vertical’’ refers to division planes with angles 601–901 in the two-dimensional axis of the cut. The solid red line in the upper plots is
proportional to the empirical probability density of the simulated distribution. The information is presented this way such that it is possible to roughly
compare the chosen simulation distribution to experimentally observed behavior.6
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component, and apply Fg either homogeneously to both film
and substrate (analogous to the compression at the boundaries
case) or exclusively to the film. In our incremental stability
analysis, we study the system where both the film and substrate
experiences in-plane compression such that homogeneous
elastic deformation of the system is simply defined as F.
Because this is not entirely identical to the case of differential
growth,32 we compare the incremental stability analysis to
numerical results that reflect both the case of homogeneous
compression and the case of differential growth in Section 3.2.
Based on the agent-based simulations that will be discussed in
more detail in Section 3.1, we focus on transversely isotropic
compression.

To begin the incremental stability analysis, we consider a
perturbation u defined as an incremental deformation super-
imposed on a finite deformation x.20 The finite deformation x is
defined such that it already satisfies the equilibrium equations.
The deformation gradient including u is written as

�F ¼ @ðxþ uÞ
@X

¼ Fþ @u

@X
! dF ¼ @u

@X
: (9)

We then obtain a first order approximation of the incre-
mental free energy using a power series expansion around
dF as

�cð�FÞ ¼ cðFÞ þ @c
@F

: dFþOðd2Þ (10)

where c is the free energy function for an incompressible
neo-Hookean material defined as

c(F) = W(F) � pG(J) (11)

with W(F) as the elastic contribution, J = det F, and p as
the Lagrange multiplier included to enforce incompressibility.
Neglecting the higher order terms in eqn (10) and accounting
for p - p + dp in eqn (11), the constitutive relation is derived
from the free energy �c( %F) as

�P ¼ @
�c
@F

(12)

where %P is the first order approximation of the first
Piola–Kirchhoff stress tensor for the perturbed deformation.
The total first Piola–Kirchhoff stress is then defined as
%P = P + dP, and computing the increment dP results in the
equation

dP ¼ @
2W

@F2
: dF� dpF�T þ pF�TdFTF�T (13)

where the incompressibility of the material (typical for modeling
soft biological tissue) results in the constraint

dJ = tr(F�TdF) = 0. (14)

By definition, Div P = 0 is automatically satisfied by the
solution x. Therefore, the governing equilibrium equation can
be concisely written as

Div dP = 0. (15)

Given this set up, we assume a general form of the solution
in the film for u and p as

u1 ¼ AerX3 sinðkX1Þ cosðrX2Þ

u2 ¼ BerX3 cosðkX1Þ sinðrX2Þ

u3 ¼ CerX3 cosðkX1Þ cosðrX2Þ

p ¼ mDerX3 cosðkX1Þ cosðrX2Þ:

(16)

The exponential dependence in the X3 direction allows the
sinusoidal perturbation to decay in the substrate as X3 - �N.
Then, we use eqn (14), eqn (15), and the appropriate boundary
conditions to solve numerically for strain and mode shape at
the onset of the instability for a given film–substrate stiffness
ratio, film thickness h, and a desired form of F. Further details of
this procedure are given in Appendix A.2. Representative results of
this analysis are presented in Section 3.2. As noted previously, the
compression case is not perfectly equivalent to the differential
growth case. To address this, we also conduct numerical simula-
tions using isogeometric analysis where the instability is driven by
inhomogeneous differential growth33 and compare the results of
these simulations to our analytical solution.

3 Results and discussion

There are two main results from implementing our models.
First, in a manner consistent with predictions from experi-
mental observations,6 we are able to demonstrate that oriented
cell division leads to anisotropic population growth. These
results are presented in Section 3.1. Second, we are able to
show that the anisotropic growth that arises from oriented cell
division leads to a uniaxial mode of geometric instability con-
sistent with cerebellar morphology. These results are presented
in Section 3.2.

3.1 Oriented cell division leads to three-dimensional
anisotropic population growth

In Section 2.1, we introduced our agent-based model with
asynchronous growth and oriented cell division. In Fig. 5, we
show the qualitative results of simulations where a population
of cells arises from a single initial cell. In this figure, we plot all
of the daughter cells that arise from the first four cells with the
same color to maintain an analogy to experimental clonal
analysis. From these qualitative results, it is already clear that
as the underlying probability distribution of cell division angle
becomes more oriented, modeled by increasing k, population
growth becomes more uni-directional anisotropic.

Next, we quantitatively investigate our agent-based model
with the method described in Section 2.2. To do this, we begin
with a 3 � 3 � 3 block of 27 cells, and then grow and divide the
cells according to the prescribed rules until the cell population
has doubled. By tracking the change in position of these cells,
we are able to compute an approximate deformation gradient F
at every step of the simulation. For an individual simulation,
the discrete nature of cell division and the non-uniform growth
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rates will lead to changes in F that are generally neither smooth
nor monotonic. However, when we consider average behavior
across several simulations, we can clearly observe smooth and
monotonic changes in F as the cell population grows. This
averaged behavior is most physically relevant to propagating
information from the cellular scale to the tissue scale.

In Fig. 6, we show quantitatively how population growth is
influenced by oriented cell division. In the plot where k = 0.0,
we see that Fxx = Fyy = Fzz. Therefore, population growth is
isotropic and F can be represented as

F = I + Ze1#e1 + Ze2#e2 + Ze3#e3 (17)

where Z is a constant. When k is high, for example the plot
where k = 16.0, population growth approaches transverse iso-
tropy and F can be represented as

F = I + Ze1#e1 (18)

where I is the identity tensor, Z is a constant, and e1 is a basis
vector. However, the behavior that most closely resembles that
of the developing cerebellum is observed in an intermediate
range of k values. In Fig. 6, k = 1.0, k = 2.0, k = 4.0, and k = 6.0
are representative intermediate values. For these cases, popula-
tion growth is neither fully isotropic nor transversely isotropic.
Instead, F is best represented as

F = I + aZe1#e1 + bZe2#e2 + bZe3#e3 (19)

where a and b are constants with a 4 b.
In Fig. 7, we plot Fxx, Fyy, and Fzz and the bi-layer system

compressive strain equivalent ratio exx/eyy with respect to 1=
ffiffiffi
k
p

at
the end of multiple simulations. In this plot, we can clearly see the
transition between transversely isotropic (1=

ffiffiffi
k
p

is small) and
isotropic (1=

ffiffiffi
k
p

is large) growth. Since we are most interested in
k within the range k E 2–4, we are clearly most interested in the
corresponding intermediate ranges of exx/eyy. The results in this

Fig. 5 Illustration of growing cell populations with non-synchronous growth and von Mises–Fisher division angle distributions. After the second round
of cell division (4 daughter cells) all future daughter cell generations are plotted with the same color. As k increases, population growth becomes more
uni-directional anisotropic. This figure illustrates in silico clonal analysis.
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section lead us to consider how the physically relevant form of F
represented in eqn (19) will manifest itself on the macroscale.

3.2 Oriented cell division with asynchronous cell growth leads
to a uniaxial buckling mode

From Section 3.1, we generate a transversely isotropic tensor
F driven by oriented cell division. Now, we are prepared to

investigate the buckled shape of the system at the onset of the
instability for physically relevant ratios of equivalent compres-
sive strain exx/eyy. In Section 2.3, we described our methodology
for computing the buckled shape at the onset of the instability
for a three-dimensional bilayer system with anisotropic growth.
In Fig. 8, we show the results of the analysis. When compression
is equi-biaxial, the buckled shape has a characteristic checker-
board pattern. Otherwise, the uniaxially buckled shape is the
first to emerge. This is consistent with results reported in the
literature.35–37 In the context of cerebellar morphogenesis, this
result is striking because it shows that even for ‘‘intermediate’’
ratios of exx/eyy, equivalent to the growth described in eqn (19),
the buckled shape at the onset of the instability is uniaxial.
Specifically, a uniaxial mode with wrinkles perpendicular to the
dominant direction of colony expansion will arise. Furthermore,
the tissue-scale analysis shows that if all the cells grew perfectly
in sync, the uniaxial mode may not develop because the buckling
instability could be triggered by the entire cell population
doubling in size before a cell division event would have the
opportunity to produce population scale anisotropy. Our multi-
scale model directly ties the observed pattern of oriented cell
division with predominant division plane perpendicular to the
anterior-posterior direction6 to the characteristic oriented parallel
grooves of the cerebellum.

In Fig. 9, we show the results of using our computational
framework to more specifically simulate the developing cere-
bellum. First, we randomly generate cell division plane orienta-
tions to match the experimental observations detailed in Legué
et al.6 Then, we run multiple agent-based simulations and

Fig. 6 Plots of the components of approximate deformation gradient Fxx, Fyy, and Fzz with respect to approximate volume change det F for varying k.
Each simulation begins with a 3 � 3 � 3 block of cells and ends once the number of cells has doubled. Each curve represents the average of 300
simulations and off-diagonal terms are not plotted because they average to 0.

Fig. 7 Plots of final simulation results once the initial cell number has doubled.
The left axis shows the components of approximate deformation gradient
Fxx, Fyy, and Fzz with respect to 1=

ffiffiffi
k
p

while the right axis shows the ratio lx/ly

(identical to lx/lz) with respect to 1=
ffiffiffi
k
p

. Because the plots in Fig. 6 are nearly
linear, simulation results at one point in time are a meaningful representation.
Each point shows the mean and standard deviation of 300 simulations.
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compute the growth induced deformation gradient F. Finally,
we implement the growth induced deformation F in a tissue

scale isogeometric analysis model of a cylindrically curved
domain. In Fig. 9d, we simulate a small amount of post-buckling
deformation, essentially the initiation of cerebellar folds. These
results strengthen the connection between experimentally observed
oriented cell division and cerebellar morphogenesis.

4 Conclusion

The main objective of this work was to explore the connection
between oriented cell division and cerebellar morphology. To
do this, we began in Section 2.1 with an agent-based cell model
where the algorithms for cell growth and division are selected to
capture experimentally observed behavior. Then, in Section 2.2,
we introduced a strategy for propagating the results of our
agent-based model to a macroscale continuum model. Finally,
in Section 2.3, we introduced our solution method for analyzing
the buckled shape of the cerebellar cortex given the anisotropic
film growth driven by oriented cell division. From this analysis,
we found that physically realistic oriented cell division leads to
a macroscale uniaxial first instability mode that is consistent
with the morphology of the cerebellum. Notably, this is true
even though physically realistic oriented cell division does not
lead to entirely uni-directional anisotropic growth.

The ideas presented here are a starting point for future com-
putational investigation. In particular, here we only consider
instability initiation in our tissue-scale investigation. Further
exploration of substantial post-buckling behavior is a challeng-
ing and compelling problem. Notably, once the initial instabi-
lity is established, anchoring centers form at the base of each
fissure and significant coordinated change on the cellular scale
occurs.5 Therefore, additional non-linear mechanisms must be
included in the computational model to properly capture the
full formation and post-buckling evolution of cerebellar folds.

Fig. 8 This plot shows the values of pairs of compressive strain (exx,eyy) at
the onset of the instability from both the linear stability analysis (red line
labeled l.s.a) and representative numerical results. For the numerical
results, ‘‘case 1’’ refers to film growth only with growth in the e3 direction,
‘‘case 2’’ refers to film growth only with no growth in the e3 direction, ‘‘case
3’’ refers to film and substrate growth with growth in the e3 direction, and
‘‘case 4’’ refers to film and substrate growth with no growth in the e3

direction. The numerical results are obtained via eigenvalue analysis
in isogeometric analysis simulations.33,34 The dashed lines highlight the
symmetry in both the analytical and numerical solutions. The qualitatively
representative results pictured are for stiffness ratio Ef/Es = 10 and eyy 4 exx,
exx = eyy, and exx 4 eyy clockwise. In our model of the cerebellum, the uniaxial
mode will arise for all scenarios where exx 4 eyy.

Fig. 9 (a) The cell division angle is draw from a probability distribution chosen to appear similar to the experimental results in Legué et al.;6 (b) illustrated
results of a single simulation with the division angle drawn from the distribution shown in (a); (c) a plot of the components of F generated with the same
method as the results shown in Fig. 6; (d) the results of a tissue scale isogeometric analysis simulation where the growth induced deformation gradient
shown in (c) is applied to the outer layer of a cylindrically curved domain.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
6 

Fe
br

ua
ry

 2
01

9.
 D

ow
nl

oa
de

d 
by

 B
os

to
n 

U
ni

ve
rs

ity
 o

n 
9/

23
/2

01
9 

12
:1

3:
51

 A
M

. 
View Article Online

https://doi.org/10.1039/c8sm02231c


2212 | Soft Matter, 2019, 15, 2204--2215 This journal is©The Royal Society of Chemistry 2019

Though elastic instability likely explains the initiation of folds,
elastic deformation alone likely cannot explain the full process
of cerebellar morphogenesis. Future work will build on this
initial computational framework to move significantly beyond
instability initiation.

In future work, the agent-based model could be adapted
to capture a more physiological cell behavior through calibra-
tion with further experimental data and through the incorpora-
tion of additional physical phenomena such as cell migration
and the occurrence of multiple cell shapes and types with
extracellular fibers. On the continuum scale, further multi-
physics38–40 computational analysis with a tri-layer exact
geometry with material anisotropy would also enhance our
conclusions and our understanding of the mechanics driving
cerebellar morphogenesis. Beyond the physiological case, this
multi-scale modeling framework could be used to understand
how genetically driven changes that are known to influence
cell growth and cell division subsequently alter cerebellar
morphogenesis in the pathological case. Ultimately, advanced
future work can take advantage of the freedom provided by
the computational setting to implement coupled simula-
tions across multiple scales and explore the post-buckling
behavior of the developing cerebellum on the macroscopic
scale as an emergent property of cellular division on the micro-
scopic scale.
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Appendix

The purpose of the appendix is to provide further detail to the
models introduced in Section 2. Further information relevant
to Section 2.1 is provided in Section A.1, and further informa-
tion relevant to Section 2.3 is provided in Section A.2.

A.1 Agent-based cell model

Here we elaborate on the agent-based model introduced in
Section 2.1. We briefly provide the set of equations necessary to
implement our model. The mechanical components of the agent-
based model are based on peridynamics, a theoretical and
computational framework that is implemented numerically as
a mesh-free method where each node represents an individual
cell.41,42 Further information is also available in our prior work
and in the broader peridynamics literature.24,43–46

To begin, we introduce the concept of baseline cell inter-
action distance d* defined as

dj* = 2(1 + gj)d0r0. (20)

where g is radial growth, r0 is initial radius, and d0 is a constant
chosen such that cells only interact with their immediate
neighbors. Then, we define the horizon of node j, Hj, as

Hj = {k| 8yj � yk8 o dj*}. (21)

where yj is the position of node j in the current configuration.
We also introduce the concept of dual horizon H0 as

Hj
0 = {k| j AHk}. (22)

The discrete form of the equation of motion at static equili-
brium is then written as

0 ¼
X
k2Hj

0
fjk yj; yk

� �
DVk �

X
k2Hj

fkj yj; yk

� �
DVk (23)

where DV is the growth adjusted nodal volume defined as

DVj = (1 + gj)
nDV0

j (24)

and f is the force density. The remainder of the equations in
this appendix are introduced in order to define force density,
analogous to defining a constitutive law. We define the stretch
free separation distance between nodes as

||xjk|| = (1 + gj)rj + (1 + gk)rk (25)

where r is cell radius and g is radial growth. Then, we define the
stretch between nodes j and k as

sjk ¼
jjyk � yjjj � jjxjk jj

jjxjk jj
(26)

which is used to define bond damage gjk as

gjk ¼
1 if so smax

0 otherwise

(
(27)

where smax is the maximum allowable stretch. This enters the
influence function o as

ojk = gjk. (28)

We then define horizon weighted volume m as

mj ¼
X

k2Hj

ojk jjxjk jj2DVk : (29)

We define bond elongation e as

ejk = ||yk � yj|| � ||xjk|| (30)

dilation y as

yj ¼
n

mj

X
k2Hj

ojk jjxjk jjejkDVk (31)

and deviatoric bond elongation ed as

edjk ¼ ejk �
yjjjxjk jj

n
(32)

where n = 3 is the dimension. Then, we define the magnitude of
force density that arises at node k due to node j as

tkj ¼
nkyj

mj
ojk jjxjk jj þ

nðnþ 2Þm
mj

ojke
d
jk (33)
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where k and m are the Lamé parameters. Finally, force density is
computed as

fjk yj; yk

� �
¼ tjk �

yk � yj

jjyk � yjjj

fkj yj; yk

� �
¼ tkj �

� yk � yj

� �
jjyk � yjjj

:

(34)

In Table 1 we list the parameters chosen for the simula-
tions presented in Section 3.1 of this paper. After every step of
algorithmically applied cell behavior (i.e. cell growth or cell
division), the entire system is relaxed back to mechanical
equilibrium defined by eqn (23) using an adaptive dynamic
relaxation procedure.47

A.2 Incremental stability analysis of a three-dimensional
neo-Hookean bilayer under anisotropic compression

The equations governing the instability problem for the bilayer
are derived from the exact solutions to the incremental equa-
tions of equilibrium in the neighborhood of a finite solution. As
introduced in eqn (11), the contributions to free energy func-
tion of a neo-Hookean material are simply defined as

WðFÞ ¼ m
2
ðF : F� 3Þ and G ¼ J � 1: (35)

Here we consider the uniform stretches l, Z, and g in the X1,
X2, and X3 directions, respectively. The deformation gradient F
is defined as

F = le1#e1 + Ze2#e2 + ge3#e3 (36)

and the first Piola–Kirchhoff stress P is computed as P = mF �
pF�T in the homogeneously deformed state prior to the onset of
the instability. The incremental first Piola–Kirchhoff stress dP is

defined in eqn (13) as dP ¼ @
2W

@F2
: dF� dpF�T þ pF�TdFTF�T .

The equilibrium equation Div dP = 0 is written in terms of F
defined in eqn (36) as

pþ l2m
l2

u1;11 �
dp;1
l
þ mu1;22 þ p

u2;12

lZ
þ mu1;33 þ p

u3;13

lg
¼ 0

mu2;11 þ p
u1;21

lZ
þ pþ Z2m

Z2
u2;22 �

dp;2
Z
þ mu2;33 þ p

u3;23

Zg
¼ 0

mu3;11 þ p
u1;31

lg
þ mu3;22 þ p

u2;32

Zg
þ pþ g2m

g2
u3;33 �

dp;3
g
¼ 0

(37)

and the incompressibility constraint is written as

u1;1

l
þ u2;2

Z
þ u3;3

g
¼ 0: (38)

The Lagrange multiplier p is determined by the traction-free
surface condition P33 = 0, specifically P33 = mg � pg�1 = 0, which
leads to p = mg2. The form of the infinitesimal perturbations in
the film u and dp are then given as

uf1¼ Af
1e

r1X3þAf
2e

r2X3þAf
3e

r3X3þAf
4e

r4X3
� �

sinðkX1ÞcosðrX2Þ

uf2¼ Bf
1e

r1X3þBf
2e

r2X3þBf
3e

r3X3þBf
4e

r4X3
� �

cosðkX1ÞsinðrX2Þ

uf3¼ Cf
1e

r1X3þCf
2e

r2X3þCf
3e

r3X3þCf
4e

r4X3
� �

cosðkX1ÞcosðrX2Þ

dpf ¼ mf Df
1e

r1X3þDf
2e

r2X3þDf
3e

r3X3þDf
4e

r4X3
� �

cosðkX1ÞcosðrX2Þ:
(39)

Then, we insert the perturbations given in eqn (39) into the
equilibrium equation eqn (37) and the incompressibility con-
straint in eqn (38), and solve for the non trivial solutions of r.
The non trivial solutions of r are

r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

k2

l2
þ r2

Z2

� �s
r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ r2

p
r3 ¼ �r2 r4 ¼ �r1:

(40)

Substituting eqn (39) including all solutions of r into the
incremental equilibrium equation, eqn (37), we are left with
the unknown coefficients Af

2, Af
3, Bf

2, Bf
3, Df

1, and Df
4. For the

film (0 r X3 r h) with the shear modulus mf, we enforce dP = 0
at the surface X3 = h due to the traction free boundary condi-
tion as

~M

Af
2

Bf
2

Df
1

2
6664

3
7775 ¼ ~N

Af
3

Bf
3

Df
4

2
6664

3
7775 (41)

where

M ¼

r2 þ
g2k2

r2l2
g2rk
r2lZ

�2r1k
a1l

krg2

r2lZ
r2 þ

r2g2

r2Z2
�2rr1
a1Z

�2kg
l

�2rg
Z

2r21
a1g
� 1

g

0
BBBBBBBBB@

1
CCCCCCCCCA

(42)

N ¼

r3 þ
g2k2

r3l2
g2rk
r3lZ

�2r4k
a4l

krg2

r3lZ
r3 þ

r2g2

r3Z2
�2rr4
a4Z

�2kg
l

�2rg
Z

2r24
a4g
� 1

g

0
BBBBBBBBB@

1
CCCCCCCCCA

~M ¼ME1 with E1 ¼ diag er2h; er2h; er1h
� �

~N ¼ NE2 with E2 ¼ diag er3h; er3h; er4h
� �

Table 1 Parameters used to implement the cellular scale simulations

Parameter Value Source

E 1 kPa Plausible value
n 0.45 Nearly incompressible material
r0 10 mm Approximate cell size
d0 1.05 Horizon size parameter
smax 1.15 Fixed value consistent with previous work24
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a1 = r1
2� r2� k2 and a4 = r4

2� r2� k2. Next, we compute uf
1, uf

2,
and uf

3 at the film–substrate interface X3 = 0+. Using eqn (41), we
write it in terms of [Af

2,Bf
2,Df

1]T as

uf1

uf2

uf3

2
6664

3
7775 ¼ TðK þ LSÞ

Af
2

Bf
2

Df
1

2
6664

3
7775 (43)

where

K ¼

1 0
�k
a1l

0 1
�r
a1Z

�gk
r2l

�gr
r2Z

r1

a1g

0
BBBBBBBB@

1
CCCCCCCCA

L¼

1 0
�k
a4l

0 1
�r
a4Z

�gk
r3l

�gr
r3Z

r4

a4g

0
BBBBBBBB@

1
CCCCCCCCA

T¼

sin kX1ð ÞcosðrX2Þ 0 0

0 cosðkX1Þsin rX2ð Þ 0

0 0 cosðkX1Þcos rX2ð Þ

0
BBB@

1
CCCA

S¼ ~N�1 ~M:

(44)

Using eqn (41) and (43), we relate the incremental first
Piola–Kirchhoff stress at the film–substrate interface X3 = 0 to
the perturbations as

dPf
13

dPf
23

dPf
33

2
6664

3
7775 ¼ mfTGT�1

uf1

uf2

uf3

2
6664

3
7775 (45)

where G = (M + NS)(K + LS)�1. Turning now to the substrate
with shear modulus ms, we take advantage of the assump-
tion that the substrate is an infinite half-space. The general
solution in eqn (39) will apply to the substrate with r3 = 0
and r4 = 0 since the perturbations are required to vanish
as X3 - �N. Similar to eqn (45), the incremental first Piola–
Kirchhoff stress at the film–substrate interface X3 = 0� is
written as

dPs
13

dPs
23

dPs
33

2
6664

3
7775 ¼ msTMK�1T�1

us1

us2

us3

2
6664

3
7775: (46)

Finally, we enforce the condition that the traction and the
perturbations must be consistent across the film–substrate
interface X3 = 0+ and X3 = 0�, i.e. the relationship

us1

us2

us3

2
6664

3
7775 ¼

uf1

uf2

uf3

2
6664

3
7775 (47)

must hold which allows us to subsequently equate eqn (45)
and (46) as

MK�1 � mf
ms
G

� � uf1

uf2

uf3

2
6664

3
7775 ¼ Q

uf1

uf2

uf3

2
6664

3
7775 ¼ 0: (48)

The eigenvalue problem to detect the onset of the instability
and the associated buckled mode is then defined as det(Q) = 0.
The first eigenmode is calculated by minimizing the critical
strain exx = 1 � l over all possible values of k and r that satisfy
det(Q) = 0, given the applied directional stretch Z defined in
eqn (36). In Fig. 8, we observe that the critical strain is asso-
ciated with uniaxial sinusoidal wrinkling in the dominant direc-
tion of applied compression, i.e. k/r - N. It is only when l = Z
that the equi-biaxial instability mode arises.
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