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A B S T R A C T

When biological cells divide, they divide on a given angle. It has been shown experimentally that the orientation
of cell division angle for a single cell can be described by a probability density function. However, the way in
which the probability density function underlying cell division orientation influences population or tissue scale
morphogenesis is unknown. Here we show that a computational approach, with thousands of stochastic
simulations modeling growth and division of a population of cells, can be used to investigate this unknown. In
this paper we examine two potential forms of the probability density function: a wrapped normal distribution
and a binomial distribution. Our results demonstrate that for the wrapped normal distribution the standard
deviation of the division angle, potentially interpreted as biological noise, controls the degree of tissue scale
anisotropy. For the binomial distribution, we demonstrate a mechanism by which direction and degree of tissue
scale anisotropy can be tuned via the probability of each division angle. We anticipate that the method presented
in this paper and the results of these simulations will be a starting point for further investigation of this topic.

1. Introduction

Significant effort has been made toward developing rules for
predicting division angle in an individual cell (Gillies and Cabernard,
2011). For example, external cues such as peptide gradients (Lamb
et al., 2014), applied stretch (Wyatt et al., 2015), and applied force
(Nestor-Bergmann et al., 2014) have all been shown to influence
division angle. Geometric factors such as cell geometry (Su et al.,
2015) and cell packing geometry (Gibson et al., 2011) also play a role.
In studies of cell division orientation, it is typical to report a histogram
of different experimentally observed division angles corresponding to a
fixed experimental set up, similar to the histogram shown in Fig. 1c.
Based on this experimentally observed variability and the fact that the
subcellular mechanism driving cell division are noisy (Akanuma et al.,
2016; Bosveld et al., 2016; Corrigan et al., 2015; Juschke et al., 2013),
it follows that cell division angle is best understood as a random
variable. However, it is still unknown how the stochastic cell division
angle influences morphogenesis on the population and tissue scales
(Matamoro-Vidal et al., 2015; Minc and Piel, 2012). Here we take a
simulation based initial approach to answering this fundamental
question: how does the underlying distribution of division orientations
influence morphogenesis? Fig. 2.

To better understand how division angle orientation influences
morphogenesis, we begin with a mechanics based model of a population

of cells where individual cells are represented as deformable spheres. We
apply growth, and when cells exceed a threshold size they divide according
to some probability distribution defined by angle ϕ, illustrated in Fig. 1b.
Our main quantitative simulation result is visualized in Fig. 1d, where the
ellipses are visualizations of the average growth tensor for a simulated cell
population. In this paper, we chose to study two different distributions of
ϕ inspired by compelling scenarios from the literature. First, based on the
observations in (Théry et al., 2007) and (Minc et al., 2011), where cell
shape is tightly controlled, we note that ϕ is predicted correctly by theory
only when some level of gaussian noise is included in the theoretical
model. This motivates us to test a wrapped normal distribution of ϕ in
order to understand how the level of noise will impact morphogenesis.
Second, based on the observation in (Williams et al., 2014), that cells in
genetically normal epidermal sheets undergo almost exclusively planar
and perpendicular division, we are motivated to study a binomial
distribution of ϕ. With this binomial distribution with two perpendicular
modes, we test how changing the probability of each mode will influence
morphogenesis. Using our framework, ϕ as a function of many division
angle determining rules beyond these two examples can be studied.

The remainder of the paper is organized as follows. We begin in
Section 2 by describing our methods for simulating cell population
growth and division, the specifics of the division angle distributions
that we test, and our method for computing the average growth
induced deformation from our stochastic simulations. In Section 3,
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we report and interpret our simulation results. Finally, we conclude in
Section 4.

2. Methods

Theoretical and computational modeling is a powerful tool for
understanding biological systems (Ambrosi et al., 2011; Taber, 1995).
In particular, modeling can be used to connect cellular-scale mechan-
isms with events on the tissue scale (Lowengrub et al., 2010; Stolarska
et al., 2009) and understand complex systems in vivo (Di Ventura et al.,
2006). For example, computational models can be used to study
changes in biological tissue during development (Giorgi et al., 2014;
Lejeune et al., 2016), the progression of disease in the lungs (Eskandari
et al., 2016) and cardiovascular system (Göktepe et al., 2010; Zohdi
et al., 2004), tumor growth and progression towards cancer (Frieboes
et al., 2010; Wise et al., 2008), and wound healing (Tepole and Kuhl,
2016; Tepole, 2016). Computational modeling can also be used to
study fundamental mechanisms controlling tissue growth and cellular

organization such as growth suppressing contact inhibition (Drasdo
et al., 1995; Galle et al., 2009), monolayer growth and formation
(Byrne and Drasdo, 2008; Galle et al., 2006), the relationship between
stress and growth (Ambrosi et al., 2012), and differential adhesion
(Hogeweg, 2000). In this paper, we use a computational model of a
population of unconstrained growing and dividing cells to specifically
investigate the influence of division angle on population morphology.

We begin this section by describing the formulation of our
mechanics based model in Section 2.1. Using our computational model,
we can investigate the influence of many different rules for determining
cell division angle. Here we investigate two different distributions, a
wrapped normal distribution and a binomial distribution, detailed in
Section 2.2. Finally, we describe a method for quantitatively comparing
the results of multiple stochastic simulations in Section 2.3 where we
describe how to compute the approximate average deformation for
each simulation.

2.1. Discrete mechanics-based computational model

To study the influence of cell division angle on cell population
morphology, we rely on a mechanics based computational framework
where each cell is represented discretely by a central node. For our
computational framework, we use peridynamics, a method which
formulates the classical balance equations in integral form (Silling,
2000; Silling et al., 2007; Ren et al., 2016). Specifically, we use a
version of state based dual-horizon peridynamics adapted for biological
growth and cell division (Lejeune and Linder, in press). In our model,
cells grow and divide according to a prescribed growth law and cell
division condition, and relax towards mechanical equilibrium itera-
tively via the peridynamic equation of motion.

We formulate the equation of motion and constitutive law at every
node j, where the index k refers to all of the other nodes that enter the
equations centered at node j. Here, the symbol * indicates terms which
are different from the traditional implementation of peridynamics
because they accommodate cell growth and cell division. In the
peridynamic equations of motion, we first define the concept of horizon

. The horizon of node j, j, is the domain within which nodes k will
receive force exerted by node j. The size of this domain is determined
by parameter

δ g δ* = (1 + )i i i
0

(1)

for any node i, where gi is radial growth and δi
0 is an initial horizon size

that will encompass the node's immediate neighbors. Using this
definition of δ*j , the presence of node k in the horizon is determined as

y y δ= {k | ∥ − ∥ < *}j k j j (2)

where y refers to nodal position in the current configuration. Because
we are using dual-horizon peridynamics, we also define the dual-
horizon of node j as

′ = {k | j ∈ }j k (3)

where all nodes k within ′j exert a force on node j. In the peridynamic
formulation, nodes only interact with other nodes within their horizon
and dual-horizon (Ren et al., 2016). We also define the growth adjusted
volume of a node i as

V g VΔ * = (1 + ) Δi
n

i i (4)

where n is the problem dimension, in this paper n=2. Using these
quantities, we can define the quasi-static equation of motion in the
discrete form as

∑ ∑f y y f y yV V0 = * ( , ) Δ * − *( , ) Δ *
k∈ ′

jk j k k
k∈

kj j k k
j j (5)

where f *
jk is the force density exerted on j and f− *

kj is the reaction force
density exerted on j due to force that j exerts on k. Using adaptive

Fig. 1. Biological cells undergo cell division (a) where a single cell splits into two cells; A
discrete model of a dividing cell (b) defines division orientation by some angle ϕ; The
angle ϕ is a random variable defined by a prescribed probability distribution where ϕ is
equivalent to ϕ π+ (c); As a population of cells grows, tracking the relative positions of

each cell can be used to describe the resulting morphology (d).

Fig. 2. This figure illustrates nodes j and k , with positions yj and yk , horizon sizes δ*j and

δ *k” , and horizons j and k . The force densities at each node, f , are computed based on

the constitutive law formulated with Eqs. (6–15). At equilibrium, Eq. (5) is satisfied and
total force density at each node is equal to zero.

E. Lejeune, C. Linder Journal of Theoretical Biology 418 (2017) 1–7

2



dynamic relaxation (Kilic and Madenci, 2010), we solve this equation
multiple times over the course of our simulation.

Next, we define the constitutive law needed to compute f *. Here,
our constitutive law is linear elastic and includes a radial growth term
g. We start by defining separation distance ξ∥ * ∥jk that depends on the
radius r and growth g of two adjacent nodes as

ξ g r g r∥ * ∥ = (1 + ) + (1 + ) .jk j j k k (6)

In the traditional implementation of peridynamics, ξjk would refer to
the vector connecting nodes in the initial configuration. Here, we define
ξ*

jk as the “bond” between node j and node k, where it only serves a
notational purpose, intended to be analogous to the traditional
implementation of peridynamics.

The first step to defining our constitutive relation is determining
which nodes enter it. As a starting point, we know that nodes k outside
the horizon and dual-horizon of node j will not contribute. Then, we
determine which bonds are “broken” and which bonds are “unbroken” by
checking the stretch between potentially interacting nodes. Using our
definition for ξ∥ * ∥jk given in Eq. (6), we define stretch between nodes as

y y ξ

ξ
s* =

∥ − ∥ − ∥ * ∥

∥ * ∥
.k j jk

jk (7)

For every node within j we check if s* at load step t is below a critical

value smax and define γ* as

ξγ t s s*( *, ) = 1 if * <
0 otherwise

.jk
max

⎧⎨⎩ (8)

In this definition, previously broken bonds are allowed to re-form which
is a realistic assumption for biological materials. A typical value of smax
used in simulation is 1.15. Then, we define an influence function ξω*〈 *〉jk
using state based notation (Silling et al., 2007) where ω is defined for
every bond ξ*

jk as

ξ ξω γ t*〈 *〉 = *( *, ) .jk jk (9)

We introduce ω* as a term separate from γ* for consistency with the
literature, and to note that other choices for influence function, such as
one that decays exponentially with distance, are possible (Littlewood,
2015). Using our influence function, we define the weighted volume of
the horizon at node j as

∑ ξ ξm ω V* = *〈 *〉 ∥ * ∥ Δ * .j
k∈

jk jk
2

k
j (10)

We define the extension state of bond ξ*
jk simply as

ξ y y ξe*〈 *〉 = ∥ − ∥ − ∥ * ∥ .jk k j jk (11)

Then, using the extension state and weighted volume we determine the
dilation at node j as

∑ ξ ξ ξθ n
m

ω e V* = *
*〈 *〉 ∥ * ∥ *〈 *〉 Δ *j

j k∈
jk jk jk k

j (12)

where n=2 is the problem dimension. Using bond extension state and
nodal dilation, we determine the deviatoric extension state for bond ξ*

jk at
node j as

ξ ξ
ξ

e e
θ

n
*〈 *〉 = *〈 *〉 −

* ∥ * ∥
.d

jk jk
j jk

(13)

Finally, we calculate the magnitude of bond force density acting on node
k due to node j as

ξ ξ ξ

ξ ξ

t
n κ θ

m
ω

n n μ
m

ω e

*〈 *〉 =
*

*
*〈 〉∥ * ∥ +

( + 2)
*

*〈 〉 *〈 〉d

kj jk
j

j
jk jk

j
jk jk

(14)

where e *d is computed with θ*j and κ and μ are Lamé parameters
selected such that ν = 0.45 to capture the incompressibility of biological
tissue while avoiding the numerical issues that arise when ν = 0.5
(Krischok and Linder, 2015). The magnitude of bond force density
acting on node j due to node k, t *jk, is computed with the same

procedure. Using these magnitudes we compute f *
jk and f *

kj as

f y y

f y y

t

t

* ( , ) = * ·

*( , ) = * · .

y y

y y

y y

y y

jk j k jk
−

−

kj j k kj
−( − )

−

k j

k j

k j

k j (15)

With the constitutive relation defined, we are able to solve Eq. (5).
In addition to growing (increase in cell radius), the cells in this

simulation must be able to divide when they exceed a threshold size
defined as g = 2 − 1max in n=2. We define g0 as the growth of the
parent cell and compute gd, growth of each of the two daughter cells, as

g g= 1
2

(1 + ) − 1 .d 0
2

(16)

Cell division angle ϕ, discussed further in Section 2.2, defines unit
vector m. After division, the location of daughter cells j and k are
defined as

y y m
y m

g r

y g r

= + (1 + )
= −(1 + ) .

d

d

j 0 0

k 0 0 (17)

For better numerical stability and potentially closer results to reality,
division may also be carried out in a multi-step process, illustrated in
Fig. 1. As a multi-step process, separation distance between dividing
cells is increased over several steps and gd is altered at each step such
that the area of both daughter cells minus the area of overlap remains
constant. And, for better numerical stability, the cells are prevented
from dividing in unison. Our treatment of cell division is similar to
other techniques defined in the literature (Drasdo and Höhme, 2005;
Drasdo and Loeffler, 2001; Kreft et al., 2001). After each cell division
step, the peridynamic framework is used to bring the system back to
mechanical equilibrium.

2.2. Probability distribution of the division angle

When cells divide, they do so at a given orientation, defined simply
in 2D by angle ϕ. Hypothetically, any probability distribution suitable
for circular coordinates could be used to define ϕ, and ϕ could be
dependent on any global or local parameters and conditions. Here, we
examine two simple cases where ϕ is defined by a probability
distribution and every time a cell divides during the simulation ϕ is
computed as an independent random variable sampled from the
chosen probability distribution. In the first case that we test, ϕ is
defined by a wrapped normal distribution, where the probability
density function of the unwrapped distribution is

f x μ σ
σ π

e( | , ) = 1

2

x μ
σ2

2

− ( − )
2

2

2

(18)

with mean μ and standard deviation σ. To convert a random variable
sampled from this distribution, μ σ( , ) we define ϕ as a function of the
standard normal distribution

ϕ β π= rem(0.0 + (0, 1), 2 ) (19)

ϕ
ϕ π ϕ π
ϕ π π ϕ
ϕ π ϕ π

≔
if − /2 < ≤ /2

− if /2 <
+ if ≤ − /2 .

⎧
⎨⎪
⎩⎪

The results of generating random variables using this procedure are
visualized in Fig. 3 where histograms of ϕ and the equivalent ϕ π− are
plotted at different levels of β. As β → ∞, the distribution of ϕ
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approaches a circular uniform distribution, although for practical
purposes values of β around π /2 are sufficiently large such that the
distribution is approximately circular uniform, as illustrated in Fig. 3d.

For the second case, ϕ is defined by a binomial random variable
where we instead define β as the probability that ϕ ϕ= 1 and β1 − as
the probability that ϕ ϕ= 2. To determine ϕ, we sample a uniform
random variable in the range 0 − 1, written as (0, 1) and determine ϕ
as

ϕ
ϕ β
ϕ β

=
if (0, 1) <
if (0, 1) ≥ .

1

2
⎪

⎪⎧⎨⎩ (20)

For the results presented in Section 3.2, ϕ π= /21 and ϕ = 02 . As with
the previous distribution, ϕ is wrapped around the circle and ϕ is
equivalent to ϕ π− , specifically ϕ = 0 is equivalent to ϕ π= and
ϕ π= /2 is equivalent to ϕ π= − /2. The results of testing these two
probability distributions for ϕ are presented in Section 3.

2.3. Computing average deformation

In continuum models of biological systems, volumetric growth is
typically described by growth-induced deformation gradient (Ambrosi
and Mollica, 2002; Ambrosi and Preziosi, 2008; Muñoz et al., 2007;
Rodriguez et al., 1994; Zöllner et al., 2012). When growth is homo-
geneous and the system is neither externally loaded nor constrained,
the deformation gradient and the growth-induced deformation gradi-
ent are identical. He we define an analogy to deformation gradient,
which we call average deformation F, that we use to interpret our
simulation results. Being able to summarize the results of a single
simulation with F, which is a 2×2 matrix in two dimensions, facilitates
the quantitative comparison of thousands of simulations. We compute
average deformation F by tracking the relative position of cell centers.
At the start of the simulation, cells are connected by n stretch vectors λi

0
where i n= {1… }, illustrated in Fig. 4a. Over the course of the
simulation, the number of cells increases during every division event.
Fig. 4b illustrates a single λ0 vector initially connecting cell j and cell k,

that after m division events corresponds to a set of vectors connecting
the 2m daughter cells of j to the 2m daughter cells of k. This means that
a single vector in the initial configuration corresponds to 2 × 2 = 4m m m

vectors in the current configuration. Therefore, for each vector λ0i that
connects two cells at the start of the simulation, there will be p = 4m

current configuration t vectors λ
t
q
i where q p= {1… }.

To compute the average deformation F, we define an array of initial
stretch vectors Λ0 as

λ λ λ

λ λ λ λ λ λ

Λ = [ …

… …… … ] .

p

p p

0 0
1

0
2

0

0
1

0
2

0 0
1

0
2

0n n n

1 1 1

2 2 2 (21)

The vectors λ0i
will each be repeated p times with n p× total vectors

making up Λ0. Then we define an array of current stretch vectors Λt as

λ λ λ

λ λ λ λ λ λ

Λ = [ …

… …… … ] .

t t t t
p

t t t
p

t t t
p

1 2

1 2 1 2
n n n

1 1 1

2 2 2 (22)

Given these arrays, we can define average deformation in the current
configuration Ft with the equation

FΛ Λ= .t t0 (23)

To solve this over-determined system of equations (in 2D Ft is a 2×2
matrix and λ is a 2×1 vector), we use the normal equation

F Λ Λ Λ Λ= ( ) .t t
T T
0 0 0

−1 (24)

In Fig. 4c, Ft is visualized as an ellipse. The orientation and scale of the
ellipse are determined by the principal stretches (eigenvalues) and
principal directions (eigenvectors) of Ft . The computed value of Ft is
used to quantify the simulation results presented in Section 3. When F
is written rather than Ft , it refers to average deformation at the end of
the simulation, t t= final.

3. Results and discussion

The main outcome of simulating cell populations with the cell
division angle probability distributions defined in Section 2.2 is an
understanding of two potential mechanisms controlling population
morphology. In Section 3.1, we show that the degree of anisotropy in
macroscale deformation can be controlled by the amount of noise
present in determining ϕ. In Section 3.2, we show an alternative
mechanism for controlling cell population morphology through a
binomial distribution of ϕ.

Fig. 3. When cells divide, they divide on some axis determined by angle ϕ. The angle ϕ is
a random variable defined by a probability distribution. The circular histograms illustrate
wrapped normal distributions where ϕ is equivalent to ϕ π− . In all plots, the distribution

of ϕ is defined by Eq. (19), the mean is 0 and β in (a) is π /16, in (b) is π /8, in (c) is π /4 and
in (d) is π /2. In (d), the value of β is sufficiently large such that the distribution
approximates a circular uniform distribution.

Fig. 4. As illustrated in (a) the number of cells increases over the course of the
simulation. In (a), each cell is color coded to match the cell that it originated from. The
vector λ0 shown in (b) is the distance between two cells at the start of the simulation.

Each vector λ0 corresponds to 4m λ vectors also shown in (b) where m is the number of

cell division events that have occurred. By relating Λ0 and Λ through Eq. (23), it is

possible to compute an average deformation of the material defined by F. In (c),
examples of possible shapes of F are shown. An isotropic F is visualized as a circle.
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3.1. Wrapped normal distribution

Given the distribution of ϕ defined in Eq. (19) and illustrated in
Fig. 3, we aim to understand how the level of noise β influences
population morphology. Because ϕ is a random variable, simulation
results are stochastic. Therefore, at a given value of β we perform
multiple simulations. To quantify simulation results, we use the metric
F, defined in Section 2.3. For each set of input variables, we run multiple
stochastic simulations and report the simulation results as the compo-
nents of F averaged over multiple runs. For all the simulations in this
section, there is an initial population of 37 nodes equally spaced in a
hexagonal configuration. In Fig. 5, we compare three different values of
β, β = 0.0, β π= /8 and β π= /2 by plotting the ratio of Fxx to Fyy,
averaged over ten simulations. The ellipses in Fig. 5 are visualizations of
F corresponding to the point on the line where they are plotted. The
results when plotting β = 0.0 and β π= /2 confirm intuition: when β is
simply a fixed value, population growth is highly anisotropic and when
β π= /2 the nearly uniform distribution of ϕ results in isotropic
population growth. For the case where β π= /8, the simulation results
show an intermediate degree of anisotropy. In order to better investigate
this intermediate regime of β, we conduct a parameter sweep.

Fig. 6 shows hows varying β influences the components of F. We
plot the components Fxx and Fyy with respect to β at two different
levels of growth averaged over 200 simulations at each level of β. When
area growth A A= 3 0, with A0 equal to initial area, each cell divides
once by the end of the simulation. When A A= 5 0, each cell divides
twice. Below the graph, we show the corresponding visual representa-
tions of F starting with the initial configuration when A A= 0. For all
values of β the components of F when A A= 0 are F F= = 1.0xx yy . And,
in all cases, the off-diagonal components of F are approximately 0.
From these results, we can see that at low levels of β, F is highly
anisotropic. When β ≈ 0, the value of Fyy remains close to 2 , which is
the value of Fyy prior to the occurrence of the first division event.
Furthermore, small values of β do not significantly reduce the
anisotropy as the curves are relatively flat when β is small. For
sufficiently high β, approximately β1.25 < , the components Fxx and
Fyy are approximately equal and therefore growth is isotropic. This is
consistent with the observation that at this level of β, the distribution of
ϕ approaches a circular normal distribution, as illustrated in Fig. 3. For
the approximate range β0.05 < < 1.25 growth is anisotropic and
dependent on β: as the amount of noise increases, anisotropy
decreases. And, by comparing the results when A A= 3 0 and A A= 5 0
we can clearly see that more division events allow for more anisotropy
to arise. A (relatively crude) approximate method for determining the

components of F without conducting any simulations would be to draw
a line from F A= /( 2 )xx at β = 0.05 to F A=xx at β = 1.25 and find Fxx
at a given value of β using the approximate fit. Then, Fyy would be
computed as F A F= /yy xx. From these simulations, the main result is that
we can connect noise in ϕ, a cellular scale contribution, to macroscale
growth. This is important because is shows a pathway between internal
and external cues that influence noise in biological processes and
morphogenesis.

3.2. Binomial distribution

An alternative mechanism for controlling morphogenesis through ϕ
emerges when we study the distribution defined in Eq. (20). Similar to the
approach taken for the results presented in Fig. 6, we have the
distribution from Eq. (20) defined in terms of parameter β where varying
β controls the division angle. In Fig. 7, we plot the components Fxx and
Fyy with respect to β at A A= 3 0 and A A= 5 0. Each point on the plot
represents the average value of 200 simulations. Below the graph, we
show the corresponding visual representations of F. Once again, for all
values of β the components of F when A A= 0 are F F= = 1.0xx yy . And, in
all cases, the off-diagonal components of F are approximately 0. From the
results illustrated in Fig. 7, it is clear that at one extreme, where β = 0,
growth will be highly anisotropic, with Fxx exceeding Fyy. Identical to the
results seen in Section 3.1 F ≈ 2yy at this extreme. At the other extreme,
with β = 1.0, the opposite is true: Fyy exceeds Fxx. This is entirely
consistent with intuition, because fundamentally in both cases β is just set
equal to some fixed value. In the center of the graph, where β = 0.5,
growth is isotropic with F F A= =xx yy . And, it is clear that by tuning β,
i.e. the respective probabilities of each fixed division angle, the degree and
direction of anisotropy in macroscale growth can be tightly controlled. A
fairly accurate and approximate method for estimating results without
conducting simulations could be conducted by defining Fxx as a line
connecting the point β F A( = 0, = / 2 )xx to the point β F( = 1.0, = 2 )xx ,
solving for Fxx from β and computing Fyy as F A F= /yy xx. By investigating
the binomial distribution of ϕ, we have shown another mechanism by
which cell population morphology can be controlled. This scenario is an
important test case for beginning to understand the implications of
experimentally observed bimodal distributions of ϕ.

4. Conclusion

The main objective of this work was to explore how the probability
distribution of the cell division angle influences cell population
morphology. Our results indicate that the underlying distribution
dictating the division angle controls the direction and degree of
anisotropy on the population scale. In Section 3.1 we demonstrate
that the level of noise entering the division angle controls average
population growth, with more noise decreasing the degree of aniso-
tropy in a consistent manner. This knowledge can be used to interpret
experimental studies reporting the preferred division angle of a single
cell: given some mean and standard deviation of single cell division
angle, we can use our results to make predictions about the expected
population morphology. In Section 3.2 we show that varying the
probability of two possible division angles is an alternative potential
mechanism for tuning morphology that may be relevant for planar cell
structures such as epithelia. This mechanism may also be particularly
relevant for studying cells that tend to divide either parallel or
perpendicular to some chemical gradient or external load.

It is also worth mentioning that the technique presented in Section
2.3 is general to any discrete model of cells, it does not have to be
applied to the one presented in Section 2.1 or use the growth and
division laws presented in Section 2.2. For a given cell type, the
computational model used can be as detailed and specific as is feasible
and realistic. This work is only just the beginning of serious considera-
tion of the macroscale implications of the probability distribution of
cell division angle. Future work with this framework may address

Fig. 5. For populations of cells that divide according to ϕ defined by the distribution
illustrated in Fig. 3, where ϕ β= 0.0 + (0, 1) wrapped, population morphology is

influenced by β. In this plot, the ratio F F/xx yy is plotted with respect to β where each

line shows the average of 10 simulations. The ellipses superimposed on the plot illustrate
the principal components and directions of F, and the dashed vertical lines show cell
division events. Morphology changes as g increases and more cell division events occur.
By comparing β = 0, β π= /8, and β π= /2 it is clear that low values of β result in more

anisotropy.
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topics such as alternative growth and division laws, how individual cell
anisotropy may influence macroscale growth, or how cell division
behavior may connect to other forms of mechanically driven emergent
behavior such as buckling and wrinkling (Dortdivanlioglu et al., 2017).
Overall, our results indicate that the distribution of cell division angle
emerges as a critical factor in morphogenesis and presents a basis for

further investigation of the topic.
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Fig. 6. Population morphology can be controlled by the amount of noise present in the cell division angle. The level of noise is represented by β, where ϕ β= 0.0 + (0, 1) wrapped. At
low levels of noise, β ≈ 0, growth will be highly anisotropic. As β increases and the distribution of ϕ becomes more uniform, growth becomes isotropic. The amount of anisotropy in

growth is quantified by examining the components of F and visualized by plotting F as an ellipse. For each set of ellipses, the upper row shows A A= 0, the middle row shows A A= 3 0
and the lower row shows A A= 5 0 where A0 is area at the start of the simulation. Each point on the plot represents the average of 200 simulations, the error bars indicate one standard

deviation, and the off-diagonal components of F, Fxy and Fyx, are both ≈0.

Fig. 7. An alternative path to controlling cell population morphology is though multiple potential division angles. Here, ϕ is determined by a binomial distribution where the probability
of ϕ π= /2 is β and the probability of ϕ = 0 is β1 − . When β = 0 growth is anisotropic with the ϕ = 0 direction dominant, when β = 0.5 growth is isotropic, and when β = 1 growth is

anisotropic with the ϕ π= /2 direction dominant. The amount of anisotropy in growth is quantified by examining the components of F and visualized by plotting F as an ellipse. For each

set of ellipses, the upper row shows A A= 0, the middle row shows A A= 3 0 and the lower row shows A A= 5 0 where A0 is area at the start of the simulation. Each point on the plot

represents the average of 200 simulations, the error bars indicate one standard deviation, and the off-diagonal components of F, Fxy and Fyx, are both ≈0.
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