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Understanding cell geometric and mechanical properties is crucial to understanding how cells sense and
respond to their local environment. Moreover, changes to cell mechanical properties under varied micro-
environmental conditions can both influence and indicate fundamental changes to cell behavior. Atomic
Force Microscopy (AFM) is a well established, powerful tool to capture geometric and mechanical prop-
erties of cells. We have previously demonstrated substantial functional and behavioral differences
between aortic and pulmonary valve interstitial cells (VIC) using AFM and subsequent models of VIC
mechanical response. In the present work, we extend these studies by demonstrating that to best inter-
pret the spatially distributed AFM data, the use of spatial statistics is required. Spatial statistics includes
formal techniques to analyze spatially distributed data, and has been used successfully in the analysis of
geographic data. Thus, spatially mapped AFM studies of cell geometry and mechanics are analogous to
more traditional forms of geospatial data. We are able to compare the spatial autocorrelation of stiffness
in aortic and pulmonary valve interstitial cells, and more accurately capture cell geometry from height
recordings. Specifically, we showed that pulmonary valve interstitial cells display higher levels of spatial
autocorrelation of stiffness than aortic valve interstitial cells. This suggests that aortic VICs form different
stress fiber structures than their pulmonary counterparts, in addition to being more highly expressed and
stiffer on average. Thus, the addition of spatial statistics can contribute to our fundamental understand-
ing of the differences between cell types. Moving forward, we anticipate that this work will be meaning-
ful to enhance direct analysis of experimental data and for constructing high fidelity computational of
VICs and other cell models.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Cell mechanical and geometric properties play an important
role in how cells sense and interact with their surrounding envi-
ronment (Luo et al., 2016). Quantifying these properties is crucial
for understanding the specific roles of mechanical forces in biolog-
ical tissues (Haase and Pelling, 2015; Lejeune and Linder, 2017;
Rigato et al., 2015), including quantifying variation between differ-
ent cell types (Cross et al., 2008). For example, in the mechanically
demanding heart valve tissue micro-environment, valve interstitial
cells (VICs) respond to mechanical stimuli due to altered hemody-
namic conditions and subsequently contribute to tissue remodel-
ing (Ayoub et al., 2011, 2017). Therefore, understanding how
VICs feel their surroundings is crucial for robustly predicting how
heart valve surgical interventions can lead to tissue remodeling
(Rego and Sacks, 2017; Sacks et al., 2017), and measuring
mechanobiological variations between VICs derived from different
sources provides insight into characteristic physiological and
pathological changes (Merryman et al., 2006, 2007).

Atomic force microscopy (AFM) is a popular and well estab-
lished tool to quantify both cell topography and intrinsic cell
mechanical properties on two-dimensional substrates (Gavara,
2017). To measure mechanical properties, an AFM probe is used
for micro-indentation. The cantilever tip indents the cell at discrete
grid points and the force response curve for each indentation is
used to approximate the value of local cell stiffness, reported as
apparent elastic modulus (Merryman et al., 2007; Mathur et al.,
2001). To measure cell topography, the scanning probe is dragged
over the surface of the cell and height is recorded at densely spaced
points along the path of the probe (Merryman et al., 2007;
Radmacher et al., 1992). Typically, data from these experiments

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2019.06.028&domain=pdf
https://doi.org/10.1016/j.jbiomech.2019.06.028
mailto:msacks@oden.utexas.edu
https://doi.org/10.1016/j.jbiomech.2019.06.028
http://www.sciencedirect.com/science/journal/00219290
http://www.elsevier.com/locate/jbiomech
http://www.elsevier.com/locate/jbiomech
http://www.JBiomech.com


160 E. Lejeune, M.S. Sacks / Journal of Biomechanics 93 (2019) 159–166
is presented visually, as cell height and stiffness maps, and
quantitatively, through the mean and standard deviation of these
measured values (Yeow et al., 2017). Furthermore, cell indentation
by AFM has been modeled extensively (Nguyen et al., 2016). Our
group has used AFM in the study of VICs, both directly
(Merryman et al., 2007), and in simulations (Sakamoto et al.,
2016, 2017).

As AFM data is recorded at multiple points in space, it is natural
to turn to the field of spatial statistics to analyze, and ultimately
model, the resulting spatially distributed data. Spatial statistics is
specifically intended to handle data where the assumption of inde-
pendence among observations is violated (Ripley, 2005). For exam-
ple, spatial statistics is used to characterizing spatial
autocorrelation, the co-variation of properties within space, and
detect patterns and anomalies in spatially distributed data
(Goodchild, 1986). The field of spatial statistics also covers meth-
ods for more sophisticated interpolation techniques to make
enhanced predictions at unmeasured locations (Stein, 1999). The
most common application of spatial statistics is in analyzing geo-
graphic data and creating geographic models, where specialized
statistical analysis software packages are used in both research
and industry (Steiniger and Hunter, 2012). Though spatial statistics
is a natural toolset for handling spatially distributed data, such as
that generated by AFM studies of biological materials, to the
authors’ knowledge, this application has yet to be explored in
detail.

In the present work, we show how the toolset of spatial statis-
tics can be meaningfully applied to the problem of analyzing the
spatially mapped data from AFM cell studies. Specifically, we intro-
duce three example methods from the spatial statistics literature:
single variable measurements of spatial autocorrelation, empirical
semivariograms, and Gaussian process regression. Then, we show
the results of applying these methods to AFM studies of aortic
valve interstitial cells (AVICs) and pulmonary valve interstitial cells
(PVICs). Critically, these methods quantitatively reveal different
spatial autocorrelation behaviors in AVIC and PVIC stiffness. These
results suggest that differences between AVIC and PVIC stiffness
are a result of both intrinsic stress-fiber stiffness, and also how
sub-cellular components are spatially distributed within the cell.
The results of this study and the methods presented can also be
extended to the general AFM studies of cell mechanics.
2. Methods

In this section, we briefly introduce three non-standard meth-
ods to spatially interpret AFM data. The first two methods that
we introduce, computing Moran’s I and plotting an empirical semi-
variogram, are useful for understanding spatial autocorrelation in
experimentally recorded data. Essentially, they show how similar
the measured values are at spatially close locations. The third
method that we introduce, Gaussian process regression, is a prag-
matic strategy for interpolating spatial data. If statistically signifi-
cant spatial autocorrelation is detection with the first two
methods, then Gaussian process regression can be used to predict
unseen values y� at unsampled locations x� in order to construct
robust models of cells with heterogeneous material properties.
Fig. 1. (a) an AFM probe is used to measure cell stiffness by indenting the cell at
discrete grid points; (b) an AFM probe is used to measure cell height by tracing over
the surface of the cell.
2.1. Experimental data source

The AFM data for this work was taken from (Merryman et al.,
2007), in which information on the experimental methods has
been extensively detailed. Briefly, porcine AVICs and PVICs were
isolated from the same animal. The AV and PV leaflets were dis-
sected, leaflet surfaces were scraped to remove endothelial cells,
and the leaflets were digested and strained to isolate the VICs. Both
populations were plated separately in 250 ml culture flasks in
complete media. A monolayer of seeded VICs from each valve type
were structurally mapped by AFM. VIC stiffness was measured in
the so-called tapping mode and the AFM probe was modeled as a
conical tip with a probe opening angle of 35�. The apparent stiff-
ness of the cell was calculated based on the Hertzian model. For
each VIC type, multiple indentations at different points were made
over the surface of the cell and each force-indentation depth curve
was fit to determine the apparent stiffness E. In summary, the
resulting AFM data contains scalar values of interest y (height, stiff-
ness) measured at discrete positions xi ¼ ðxi1; xi2Þ. In the examples
presented in Section 3, the scalar values y are apparent Young’s
modulus E (Fig. 1a) and cell height h (Fig. 1b). It should be noted
that these techniques are sufficiently general such that they can
be directly applied to other experimentally measured scalar quan-
tities of interest.

2.2. Moran’s I

One standard single variable measurement of spatial autocorre-
lation in a data set is Global Moran’s I (Mitchel, 2005; Moran,
1950). Given a single cell with stiffness sampled by AFM indenta-
tion at n locations, I is defined as

I ¼ n
S0

Pn
i¼1

Pn
j¼1wijðyi � �yÞðyj � �yÞPn

i¼1ðyi � �yÞ2 ð1Þ

where yi is the scalar variable of interest, �y is the mean of all yi; wij

is defined as a matrix of weights in which immediate neighbors
have value 1 with wii ¼ 0, and S0 is defined as

S0 ¼
Xn
i¼1

Xn
j¼1

wij: ð2Þ

If there is no spatial autocorrelation, then I ! 0. Negative spatial
correlation corresponds to �1 < I < 0 and positive spatial auto-
correlation corresponds to 0 < I < 1. To interpret I, we test for sta-
tistical significance by comparing the measured value of I to the null
hypothesis that the values in the data set are not spatially corre-
lated (Mitchel, 2005; Moran, 1950). To do this, we compute the
expected value E½I� and variance V½I� for the uncorrelated case

E½I� ¼ �1
n� 1

V½I� ¼ E½I2� � E½I�2 ð3Þ

where E½I2� is computed as
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E½I2� ¼
n½ðn2�3nþ3ÞS1�nS2þ3S20�
h i

� S3½ðn2�nÞS1�2nS2þ6S20�
h i

ðn�1Þðn�2Þðn�3ÞS20
h i

ð4Þ
with

S1 ¼ 1
2

Xn
i¼1

Xn
j¼1

ðwij þwjiÞ2 ð5Þ

S2 ¼
Xn
i¼1

Xn
j¼1

wij þ
Xn
j¼1

wji

 !2

ð6Þ

S3 ¼
1
n

Xn
i¼1

ðyi � �yÞ4

1
n

Xn
i¼1

ðyi � �yÞ2
 !2 : ð7Þ

Then, the z-score of the observed value of I under the null hypoth-
esis is

zI ¼ I � E½I�ffiffiffiffiffiffiffiffiffi
V½I�p ð8Þ

and statistically significant zI indicates that we can reject the null
hypothesis of no spatial autocorrelation. At a p-value of 0:001, we
reject the null hypothesis when jzij > 3:291.

2.3. Empirical semivariograms

In addition to single variable measurements of spatial autocor-
relation, we can visualize spatial variability in AFM data by creat-
ing an empirical semivariogram. A semivariogram is a plot that
shows the variation in measured data as a function of the distance
between data points (Matheron, 1963). For each pair of data points,
point i and point j, the distance between them is jjxi � xjjj and the

variation between them is defined as 1
2 jjyi � yjjj2 (Fig. 2) (Diblasi

and Bowman, 2001). The raw data is divided into bins N with cen-
ter h and width 2d as

Nðh� dÞ � fðxi; xjÞ : h� d < jjxi � xjjj < hþ d; i; j ¼ 1; . . . ;ng
ð9Þ

where xi denotes the position of a data point. Essentially, pairs of
points are grouped by similar separation distances. Then the empir-
ical semivariogram ĉðh� dÞ is defined as

ĉðh� dÞ :¼ 1
2jjNðh� dÞjj

X
ði;jÞ2Nðh�dÞ

jjyi � yjjj2 ð10Þ
Fig. 2. A semivariogram contains information about correlations in spatially distributed
Right: the value 1

2 jjyi � yjjj2 is plotted with respect to the distance between xi and xj for e
the value 1

2 jjyi � yjjj2 approaches 0 as jjxi � xjjj approaches 0.
where the number of points in a bin is jNðh� dÞj and yi is the scalar
quantity measured at each point. Through this equation, ĉ captures
the average difference between sample pairs at a fixed separation
distance. When data is spatially correlated, the semivariogram will
show that values of y are more similar when the distance between
them is smaller (Fig. 2). When spatial autocorrelation is present,
1
2 jjyi � yjjj2 approaches zero as jjxi � xjjj approaches zero.

For additional analysis, a semivariogram model can be fitted to
an empirical semivariogram when there is sufficient data present.
In a semivariogram model, there are three key parameters: the
range, the sill, and the nugget. The range indicates the distance
over which data points are spatially autocorrelated, the sill indi-
cates the value on the y axis of the semivariogram at the x value
range, and the nugget (often set to 0) captures measurement error
and variations over distances smaller than the minimum sampling
distance. The interested reader is referred to the literature for more
information on semivariogram models (Cressie, 1993; Mälicke and
Schneider, 2018).
2.4. Gaussian process regression

The two methods introduced in Sections 2.2 and 2.3 are useful
for determining if spatial correlation is present in AFM data. When
the data is spatially correlated, it is appropriate to develop a model
that can be used to predict the measured values y between the
locations where the experimental data is recorded. Gaussian pro-
cess regression (GPR), often referred to as kriging, is a non-
parametric kernel-based supervised learning method that is com-
monly used to predict spatially correlated measurements
(Rasmussen and Williams, 2006). With the AFM data, this means
using position xi to predict location specific scalar value yi. This
allows for the prediction of yi at locations where xi has not been
measured.

Here we describe an established pragmatic strategy to conduct
Gaussian process regression. First, we define a training set D of n
observed data points, D ¼ fðxi; yiÞ j i ¼ 1; . . . ;ng where x denotes
an input vector, in this case the position of a sample, y denotes a
scalar output, in this case either measured height or stiffness. We
define an unseen or ‘‘test” data set D� of n� points with input x�

and output y�. A Gaussian process is defined via a mean function
(in this case we scale our data and assume zero mean) and positive
definite covariance matrices that relates values with features x that
are close together. We define K as the n� n matrix of covariances
evaluated at all pairs of training points, define K� as the n� n�
matrix of covariances evaluated at all pairs of training and test
points, and define K�� as the n� � n� matrix of covariances evalu-
ated at all pairs of test points. We assume that observations y are
potentially noisy, with y ¼ f ðxÞ þ ewhere e is additive independent
data. Left: scalar value yi is measured at each location xi marked by an orange cross;
ach location pair xi and xj. The example illustrates spatially correlated data because
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identically distributed Gaussian noise. Then, we write the joint dis-
tribution of the test and training locations under the prior as

y
f �

� �
	 N 0;

K þ r2
nI K�

KT
� K��

" # !
ð11Þ

where N is a multivariate normal distribution. We use this equa-
tion to derive the predicted value of f � in terms of the values which
are known as

f �jX; y;X� 	 N �f �; covð�f �Þ
� �

: ð12Þ
If we consider a single test point x� where k� is the vector of covari-
ances between the test point and the n training points, the pre-
dicted mean and variance of f � are

�f � ¼ kT
� ðK þ r2

nIÞ
�1
y ð13Þ

V½f �� ¼ kðx�; x�Þ � kT
� ðK þ r2

nIÞ
�1
k�: ð14Þ

Essentially, the training data set is used to construct a Gaussian field
which is then used to make predictions on the test data set and sub-
sequent unmeasured locations (Fig. 3).

Given this structure, the GRP model is fully specified by choos-
ing the kernel function and the optimal kernel hyperparameters. A
pragmatic way to choose the kernel and hyperparameters is to sep-
arate the available data into test and training data sets and select
the GPR model that performs best at predicting the test data given
the training data. The model that performs best will have the low-
est test error, where test error is a function of the known values y�

and the predictions �f �. Additional information on separating
between test and training samples for AFM data is given in
Appendix A. Ultimately, GPR will likely lead to a better approxima-
tion of cell properties between the measured data points than
strategies such as linear interpolation, illustrated in Appendix B.

3. Results

As introduced in Section 1, AFM is commonly used to make spa-
tially distributed measurements of cell stiffness and cell height.
Here, we re-visit an experimental analysis of AVICs and PVICs
where it was previously shown using standard methods that the
two cell types have different average mechanical properties
Fig. 3. Schematic of a Gaussian process f. The values in squares are known while
values in circles are unknown.

Table 1
Moran’s I and zI for Aortic Valve (AV) cells and Pulmonary Valve (PV) cells. The cells mark
length scale of sampling. We note that AV-2 shows statistically significant spatial autocor

Cell No. I zi

AV-1 0:095 1:15
AV-2 0:27 2:39
AV-3 �0:012 0:092
AV-4 �0:082 �0:31
AV-5 �0:023 �0:11
(Merryman et al., 2007). From our analysis, we obtain novel
insights into the characteristics of AVICs and PVICs. First, we report
global Moran’s I and associated z-score zI , for measurements of sca-
lar stiffness represented by apparent elastic modulus E for five aor-
tic valve cells and six pulmonary valve cells (Table 1). None of the
five AVICs showed statistically significant spatial correlation in
stiffness (p < 0:001) at the length scale of sampling while six out
of six PVICs showed statistically significant spatial autocorrelation.
We then show a representative histogram and semivariogram for
an AVIC with low spatial autocorrelation and a PVIC with high spa-
tial autocorrelation (Fig. 4). Though the histograms look qualita-
tively similar, the semivariograms look qualitatively different.
This is consistent with the empirical semivariogram plots for the
other AVICs and PVICs (Fig. 5). Overall, AVICs show much higher
variance for every lag distance, and the decrease in variance at
small lag distances is much less pronounced than in the PVICs.
Though the sample size is relatively small, the difference between
the two cell types is consistent, both in the present study and in
related studies.

Next, we show the results of using Gaussian process regression
to interpolate both height data and stiffness data. First, we show
the interpolated heights for a single cell measured by AFM
(Fig. 6). Mean absolute test error under 0:2lm, reported in
Appendix A, was a good approximation for the error with this
method. In addition, we show the interpolated stiffness values
for a single cell measured by AFM (Fig. 7). Using leave one out cross
validation, where all but one data points are included in the model
at a time, we can get an understanding of model error on unseen
data. For the cell shown, PV-4, which had high spatial autocorrela-
tion, the mean absolute error was under 3 kPa. Additional analysis
of this error is given in Appendix B. For the cells which show no
significant spatial correlation, i.e. the AVIC cells, GPR is not a good
strategy to model spatial variations in stiffness because stiffness
will not be well predicted by position.
4. Discussion

4.1. Major findings

The methods described in this paper are simple yet powerful
tools to interpret and model spatial heterogeneity in AFM data.
With the simple methods described in Section 2, we are able to
both quantify experimentally observed spatial autocorrelation
and introduce a strategy towards better capturing spatially varying
data. When we compute Moran’s I for stiffness measurements in
multiple AVICs and PVICs, following the method in Section 2.2,
we are able to show that there are differences in spatial autocorre-
lation between the two cell types. Creating empirical semivari-
ograms, following the method in Section 2.3, further exposes the
fundamental distinction between the two cell types and illustrate
the distance over which PVIC stiffness is correlated.

For the experimental measurements that display spatial auto-
correlation, Gaussian process regression is a suitable method for
interpolating data points. As emphasized in Section 2.4, care must
ed with H show statistically significant spatial autocorrelation with p < 0:001 at the
relation with p < 0:05.

Cell No. I zi

H PV-1 0:42 6:33
H PV-2 0:50 7:68
H PV-3 0:57 9:25
H PV-4 0:70 10:29
H PV-5 0:39 6:24



Fig. 4. Upper left: histogram for an AVIC; Upper right: semivariogram for an AVIC where there is no statistically significant spatial correlation (Table 1); Lower left: histogram
for a PVIC; Lower right: semivariogram for a PVIC where there is statistically significant spatial correlation (Table 1).

Fig. 5. Left: empirical semivariograms for five AVICs; right: empirical semivariograms for five PVICs. For the AVICs, low lag distance does not correspond to low semivariance.
For the PVICs, low lag distance corresponds to low semivariance which indicates that values are spatially correlated.
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be taken when considering the separation of test and training data.
The pragmatic approach put forward here for dealing with the
directionally dependent spacing of AFM height data is appealing
because of its simplicity. Furthermore, we show an example of
GPR being used to interpolate cell stiffness in PVICs. We anticipate
that GPR and similar enhanced interpolation strategies will be key
to creating realistic computational cell models that account for
spatial heterogeneity in cell geometry and properties. When cell
properties are not spatially correlated, alternative methods must
be introduced to create representative cell models (Ostoja-
Starzewski, 2006).

The present findings reinforce and extend previous results that
show differences in themean cell stiffness, aSMA levels, stress fiber
stiffness, and extracellular matrix remodeling capabilities between
aortic and pulmonary VICs Merryman et al. (2006, 2007), Sakamoto
et al. (2016, 2017). In particular, previous studies have found via
micropipette aspiration and AFM indentation that PVICs are less
stiff than AVICs, AVICs express higher aSMA levels, intrinsically
stronger stress fibers, and will typically remodel collagen gels at
an accelerated rate. In this work, it was observed that PVICs exhibit
much higher levels of spatial correlation in stiffness than their
AVIC counterparts (Fig. 5). Essentially, AVICs have a more hetero-
geneous stiffness. This indicates that some sub-cellular stress-
fiber formation activity is likely quite different between the two
cell types. One possible explanation for this is that the stress fiber
architecture of AVIC form more focal adhesion compared to the
‘‘smoother” spatial features of the PVICs. The underlying mecha-
nism driving this difference could be connected to highly localized
stress fiber formation in AVICs. We also note that another mecha-
nisms driving this difference may be that AVICs and PVICs
responds differently to cell culture conditions due to different
degrees of deviation from their native chemical and mechanical
environment. Future research will be needed to clarify these
insights and compare the behavior of these isolated cells to cells
in the native tissue.

4.2. Broader findings

Putting this in a broader perspective, distinguishing between
cells types and detecting changes in cell state and behavior is crit-
ical for understanding tissue and organ scale function (Ayoub et al.,
2017; Rego et al., 2018). Given that VICs are present in all heart
valves, yet likely subject to dramatically different valve-specific
mechanical loading conditions throughout their lifetime (Ayoub
et al., 2018), quantitative methods for determining the difference
between cell types are quite meaningful. With this enhanced



Fig. 6. Gaussian process regression interpolation of height data from an AFM study
on an aortic valve cell. The black lines indicate the raw experimental data while the
surface is the GPR model. Note that the z axis is magnified.

Fig. 7. Gaussian process regression interpolation of stiffness data from an AFM
study on a pulmonary valve cell. The black markers indicate the locations where
experimental data is available. Based on further analysis given in Appendix B, the
mean absolute error of this method on unseen data (in this case held out test data)
is under 3 kPa.
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strategy for quantifying experimental data, it is possible to both
detect these differences and more robustly consider their implica-
tions in the broader context of multiscale modeling (Lee et al.,
2017; Lejeune and Linder, 2018; Lejeune et al., 2019). Furthermore,
this clear demonstration of spatial heterogeneity within individual
cells shows that experiments with techniques such as micropipette
aspiration may be missing critical information about the heteroge-
neous distribution of mechanical properties within the cell
(Sakamoto et al., 2016).

Looking forward, capturing and modeling the spatial variation
in cell properties is an important step towards understanding both
cell mechanics and cell-substrate/cell-matrix interaction. Funda-
mentally, this methodology will lead to a better understanding of
how sub-cellular components come together and contribute to
the mechanical behavior of the whole cell. And, it will contribute
to our understanding of how spatially heterogeneous cell behavior
ultimately influences tissue function. In addition, information on
spatial heterogeneity of cell stiffness will lead to enhanced compu-
tational models for calculating the forces that cells experience that,
unlike many approaches, will not assume cell stiffness is homoge-
neous. Computational models will be particularly useful for com-
paring isolated cells to cells in the native tissue environment.
Furthermore, additional understanding of the inherent hetero-
geneity in biological samples will interface well with methods
for rapidly acquiring AFM measurements (Hartman and
Andersson, 2017; HHuang and Anderssonuang and Andersson,
2012).

4.3. Conclusions

In conclusion, applying tools from spatial statistics to AFM data
will provide substantial new insight and lead to a deeper under-
standing of the properties of biological cells. We were able to
demonstrate that pulmonary valve interstitial cells display higher
levels of spatial autocorrelation of stiffness than aortic valve inter-
stitial cells. Thus, the addition of spatial statistics can contribute to
our fundamental understanding of the differences between these
cell types. The methods presented in this paper are also only a
small subset of what is available in the spatial statistics literature.
For example, Geary’s C and Getis-Ord Gi� are other single variable
measurements of spatial autocorrelation (Geary, 1954; Getis and
Ord, 1992), and AFM indentation may be used to approximate
indentation parameters beyond apparent elastic modulus
(Putman et al., 1994). Furthermore, there are extensions of these
techniques to understand correlations in both space and time
(Sherman, 2011). Biomechanics researchers working with spatially
heterogeneous AFM data should consider these approaches in their
analysis.
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Appendix A. Separating test and training data for Gaussian
Process Regression

A pragmatic strategy for constructing a GPR model is to sepa-
rate data into a test set and a training set and evaluate model per-
formance as the error on the test set. Much of this workflow is
accomplished by a package such as sklearn-learn (Pedregosa
et al., 2011). Here we note that it is important to consider what a
meaningful split of test and training data is given the nature of
the available data. More specifically, consider the AFM height mea-
surements where the scanning probe is moved in a line along the
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sample surface (Fig. 1). As the tip passes over the cell, multiple data
points are recorded with a fixed y-value so the data is quite dense
in the x-direction. The tip then passes over another line with a
fixed y-value such that the distance between data points is much
greater in the y-direction than in the x. If we first consider the
AFM height data in one y plane, where the data available is quite
dense and uniformly spaced, separating test and training data is
straightforward. To demonstrate this, we show the decrease in
mean absolute test error as the number of training samples is
increased and the resulting closer match between the predicted
height of the GPR model and the measured height (Fig. A.8).

Next, we consider the AFM height data in both the x and y
planes. If we separate the test and training data without consider-
ing that the data is unevenly spaced, the reported test error is arti-
ficially low and the GPR parameters may be tuned such that the
model is overfitting (Fig. A.9 left). Instead, to get a more realistic
impression of test error and to select the GPR model parameters
that will best predict unseen data, we must separate test and train-
ing error by grouping entire ‘‘strips” of data with identical y-
coordinates corresponding to one pass of the AFM tip probe. When
we do this, we see that the test error decreases with each addi-
tional ‘‘strip” of data and is notably higher than with the previous
uninformed test and training data separation method (Fig. A.9
Fig. A.8. Left: the mean absolute error (MAE) of the test predictions decreases as the n
compared to raw data; Right: GPR model fit with 50 sample points compared to raw da

Fig. A.9. Left: MAE of the test predictions approaches zero as the number of naively se
number of strips of training points increases.

Fig. B.10. Left: Comparison between MAE of the test predictions for GPR and linear
Comparison between MAE of the test predictions for GPR and linear interpolation as th
right). Furthermore, the best performing kernel may be different
than the case where no special consideration is given to the sepa-
ration of test and training data. The resulting GPR model can then
be used to interpolate height data in the regions between each pass
of the AFM tip (Fig. 6 right). When the data is evenly spaced in both
dimensions, as is the case with the AFM stiffness data available,
this additional consideration is not necessary.
Appendix B. Comparing Gaussian Process Regression to linear
interpolation

When the AFM data is quite densely spaced, for example in the
x-direction of height measurements, the strategy for inferring val-
ues between measured data points is less important. However,
when the spacing between data points is larger, for example in
the y-direction of height measurements and the grid of stiffness
measurements, critically evaluating how to infer these values mat-
ters. To illustrate this, we compare the mean absolute error (MAE)
in height prediction computed with GPR and linear interpolation
with respect to the number of training points (Fig. B.10 left) and
the number of training strips (Fig. B.10 right). Though there is no
apparent difference between the two methods for the incorrect
test and training data separation, discussed in Appendix A, there
umber of training points increases; Center: GPR model fit with five sample points
ta.

lected training points increases; Right: MAE of the test prediction decreases as the

interpolation as the number of naively selected training points increases; Right:
e number of strips of training points increases.



Fig. B.11. Left: Comparison between MAE of the test predictions for GPR and linear interpolation as the fraction of data included in the training set increase; Right: Plot of
linear interpolation of stiffness (the nearest interpolated point is used to fill in the extrapolated regions).
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is a notable difference for the correct test and training data separa-
tion. Interpolation with GPR results in a lower MAE, and the MAE
for GPR appears to decrease with respect to the addition of more
training data in a way that the linear interpolation strategy does
not. Similar behavior is observed for interpolating stiffness, where
MAE reliably decreases with the addition of more training data for
GPR but not for linear interpolation (Fig. B.11 left). Of course, there
are many other potential strategies besides GPR and linear interpo-
lation (Friedman et al., 2001). For future endeavors in computa-
tional modeling of cells based on AFM data, we recommend
critically evaluating multiple data-specific strategies for interpo-
lating between measured data points. Noting the difference
between GPR (Fig. 7) and linear interpolation (Fig. B.11 right)
emphasizes this point.
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