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Abstract. Jonathan Bernard’s trichordal folding operations relate tri-
chords with a maximum of shared interval content. This paper generalizes
this to any cardinality of chord, focusing on the case of tetrachordal fold-
ing. A tetrachordal folding holds one trichordal subset fixed and inverts
another around a shared dyad, so that the two tetrachords share five
interval classes and two trichordal subsets. These operations generalize
naturally from pitch space to pitch-class space and to set classes. The
last section of the paper demonstrates the analytical application of tetra-
chordal folding networks on Morton Feldman’s “For Stephan Wolpe.”

Keywords: Pitch-class set theory · folding · interval content · Morton
Feldman.

1 Trichordal folding

In his work on Edgar Varése, Jonathan Bernard [2] defines “infolding” and “un-
folding” operations that relate trichords of different types. He uses a successive-
interval notation which I will adopt here, generalizing over transposition. The
following definition is essentially Bernard’s, with some new notation.

Definition 1 Let a pitch-space trichord A be given by successive intervals (a1, a2),
for a1, a2 ∈ Z, then there are four unfolding operations.

unf1a(A) = (a1, a1 + a2)

unf1b(A) = (a1 + a2, a1)

unf2a(A) = (a1 + a2, a2)

unf2b(A) = (a2, a1 + a2)

(1)

There are also two infolding operations.

infa(A) =

{
(a1, a2 − a1), if a1 ≤ a2
(a2, a1 − a2), if a2 ≤ a1

infb(A) =

{
(a2 − a1, a1), if a1 ≤ a2
(a1 − a2, a2), if a2 ≤ a1

(2)

Altogether these are the complete set of folding operations.
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Figure 1 shows an example of these operations, which we can interpret as
taking any one note from the trichord and inverting it around one of the other
two notes (hence the six possibilities). The a and b versions of each operation are
clearly always going to be related by inversion, so we can immediately simplify
these operations by generalizing over inversions, as Bernard [2] does. Therefore if
we consider unfolding and infolding as a relation, folding, we immediately have:

Proposition 1 Folding is a symmetrical relation.

Proposition 2 If A = (a1, a2) is in the folding relation with B, then so is the
inversion of A, (a2, a1).

(1, 4) (5, 4)
A unf1a(A)

(4, 5)
unf1b(A)

(1, 3)
infa(A)

(3, 1)
infb(A)

(1, 5)
unf2a(A)

(5, 1)
unf2b(A)

Fig. 1. Examples of unfoldings and infoldings of a chord.

This study pursues generalizations and applications of Bernard’s idea taking
the key feature to be that folding operations always preserve all the intervals
of the set except at most one. These operations therefore express the minimum
possible change in interval content (as represented for pitch-class sets, e.g., by
Forte’s interval vector [4]). While Definition 1 follows Bernard in defining fold-
ings in pitch space (using intervals in Z), I will be primarily interested in the
generalization to pitch-class sets defined below. Most of the results in this section
and the next nonetheless apply in both domains.

The next section will generalize folding operations to tetrachords and higher
cardinalities with these priorities in mind, and the third section applies tetra-
chordal folding networks to an analysis of Morton Feldman’s “For Stephan
Wolpe.”

For a trichord, (a1, a2), there are three possible ways to exchange one interval
with a new one specified in Definition 1. Either we exchange a2 for 2a1+a2 (unf1),
a1 for a1 + 2a2 (unf2), or a1 + a2 for ±(a2 − a1) (inf).

Notice that sets will be generalized over transposition throughout this study
(hence the use of interval strings to define them) but not necessarily over inver-
sion or octave equivalence. However, it is possible to transfer all of the definitions
of foldings to pitch or pitch-class sets proper (not generalized over transposition)
by fixing the transposition of the fixed dyad (or fixed trichord, in the case of
tetrachordal foldings below), as the illustration in Figure 1 does.

In Bernard’s applications of the folding operation the most important feature
is that they are defined on interval strings, so he can interpret them as operating
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on trichords in pitch space. However they easily generalize to operations of set-
classes. To do so, we reconceive the operations as acting on ordered sets as in [7],
relaxing the assumption that order is conferred by registral position and allowing
a1 and a2 to take negative values. Bernard’s distinction between “unfolding” and
“infolding” then becomes less meaningful, and we rename the operations simply
as foldings indexed by the order position of the moving note followed by the
order position of the note it is inverted around. Hence:

Definition 2 There are six trichordal folding operations defined on interval
strings, (a1, a2), with a1, a2 ∈ Z12. These are defined as in Definition 1, but
with sums taken modulo 12, as fold21 = unf1a, fold31 = unf1b, fold23 = unf2a,
fold13 = unf2b, fold12 = infa, fold32 = infb,

Definition 3 Two trichordal set classes, A and B, relate by folding, or A � B if
any pitch-space representatives of A and B relate by one of the folding operations
from Definition 1.

Proposition 3 If two set classes, A and B, are related by folding, A � B, then
for any pitch-space representative of A, there is a pitch-space representative of
B that relates to it by folding.

Proof. It suffices to show that applying transposition, inversion, octave shift, or
permutation to A results in the same operation applied to B (and possibly a
change of the exact unfolding or infolding relation). The first two are straight-
forward. Octave shift refers to adding or subtracting multiples of 12 to/from
individual pitches. For instance, replacing (a1, a2) with (a1, a2 + 12) (last note
moves up by octave). This clearly will simply induce some octave shift in B.
Finally, given a permutation on A we can apply the same permutation to the
indices of the folding operation and leave B unchanged. ut

Figure 2 displays the network of trichordal set classes relating by � using a
2-dimensional parameterization of the interval vector. I chose the parameteriza-
tion arbitrarily with the goal of disambiguating all of the set classes and avoiding
crossing edges. In addition this parameterization shows the symmetry of the net-
work under the M5 automorphism of Z12 [8] by having the horizontal dimension
dependent only on #ic1 and #ic5.

Note that we could extend the network in Figure 2 to include doubled ic1 and
ic5 dyads, (001) and (005). However, other doubled dyads, whole tone chords, and
diminished triads cannot exist in the same network. More generally, the sets in
a given network have to have the same minimal embedding equal temperament.
A whole-tone chord has 6-tET as a minimal embedding ET, and a doubled
minor third, (003), has 4-tET as a minimal ET. This is because the interval of a
semitone (or fourth or fifth, etc.) can never be produced by sums and differences
of intervals in a smaller minimal embedding universe. This applies in pitch space
as well as pitch-class space. For instance, the pitch-space chord (5,5) does not
interact with the chords that have 12-tET as their minimal universe, even though
its pitch-class equivalent (2,5) does.
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Fig. 2. Trichordal folding network.

2 Tetrachordal folding

Bernard [1, 2] explores the possibility of extending the folding operations to
tetrachords, but his definition is far too loose, resulting in an unwieldy number
of relations. If our goal is to preserve the property of maximizing similarity of
interval content, however, an effective generalization is ready at hand. In the
trichordal foldings, we hold one dyad constant while moving the third note so as
to preserve one of the intervals it makes with the other two notes, by inverting
it. This process guarantees that two of the three intervals will remain the same.
This immediately generalizes to tetrachords: hold three of the notes constant,
and choose another trichordal subset containing the fourth note. Invert this
trichordal subset around the dyad it shares with the first trichord. Then exactly
one note moves, preserving two of the trichordal subsets (up to inversion), and
by extension, five of the six intervals.

This definition of tetrachordal folding makes a useful and manageable rela-
tion. The possibilities are listed in Table 1 and Figure 3 provides an example
on a set in pitch space. The choice of two out of four trichordal subsets leads
to twelve possible folding relations, which can be reduced to six by inversional
equivalence. We can immediately see that the properties of trichordal folding
described in the previous section generalize to tetrachordal folding, including
Propositions 1, 2, and 3.

A similar generalization to larger sets is immediately evident, but there is an
important caveat. For a set of size n, when we choose two (n− 1) subsets, their
intersection (of size n − 2) must be inversionally symmetrical for the operation
to be well defined. For n− 2 = 1, 2 this is guaranteed, but for n ≥ 5 it becomes
a significant restriction, more so for larger n. Interestingly for n = 5 in 12-tET
all set classes have at least one inversionally symmetrical trichordal subset, so
pentachordal folding operations are worth exploring, but I will pursue this no
further at present.
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Table 1. Tetrachordal folding operations on an intervallically defined set (a1, a2, a3),
permuted to keep all the intervals positive for a3 > a1 and a1 > a3 respectively.

Operation Definition Operation Definition Interval change

fold2(13) (a2, a1, a3) fold4(13) (a3, a1, a2) (a2 + a3)→ (a1 + a3)
fold3(24) (a1, a3, a2) fold1(24) (a2, a3, a1) (a1 + a2)→ (a1 + a3)
fold1(23) (a2, a1, a3 − a1) fold4(23) (a3 − a1, a1, a2) (a1 + a2 + a3)→ |a3 − a1|

or (a2, a3, a1 − a3) or (a1 − a3, a3, a2)
fold1(34) (a2, a3, a1 + a2) fold2(34) (a1 + a2, a3, a2) (a1)→ (a1 + 2a2 + a3)
fold3(12) (a2, a1, a2 + a3) fold4(12) (a2 + a3, a1, a2) (a3)→ (a1 + 2a2 + a3)
fold3(14) (a1, a3 − a1, a1 + a2) fold2(14) (a1 + a2, a3 − a1, a2) (a2)→ |a3 − a1|

or (a3, a1 − a3, a2 + a3) or (a2 + a3, a1 − a3, a3)

(5, 4, 6)
A

fold2(13)(A)
(4, 5, 6)

fold4(13)(A)
(6, 5, 4)

fold3(24)(A)
(5, 6, 4)

fold1(24)(A)
(4, 6, 5)

fold1(23)(A)
(4, 5, 1)

fold4(23)(A)
(1, 5, 4)

fold1(34)(A)
(4, 6, 9)

fold2(34)(A)
(9, 6, 4)

fold3(12)(A)
(4, 5, 10)

fold4(12)(A)
(10, 5, 4)

fold3(14)(A)
(5, 1, 9)

fold2(14)(A)
(9, 1, 5)

1011 911 151 519 619 41

Fig. 3. An example of tetrachordal folding operations on an open-position dominant
seventh chord in pitch space.

Figure 4 shows the network of tetrachordal folding operations on non-degenerate
tetrachords without doublings. Again, I choose an arbitrary parameterization
that disambiguates all of the set classes, avoids crossing edges, and shows the
M5 automorphism as a mirror symmetry around a vertical axis. Note that the
network is not planar, so it is impossible to eliminate all crossing edges. It is
also impossible to disambiguate all of the set classes based on the interval vector
alone, because of the all-interval tetrachords (0146) and (0137), which have the
same interval vector. Therefore, I also include (in the horizontal dimension) a
count of two trichord types, the major/minor triad (037) and its M5 partner
(014). This means that edges representing the same change of interval classes
are not always exactly the same distance in the horizontal dimension.

The tetrachordal folding operations always preserve two out of four trichordal
subsets and five out of six intervals by design. A natural question is whether they
are the only such operations. In pitch space, this is in fact the case, but not in
pitch-class space.

Proposition 4 Two tetrachordal pitch sets A and B, not related by transposi-
tion or inversion, are related by a folding operation if and only if they share two
trichord types (generalized over inversion) as subsets and five interval types.

Proof. The forward implication (only if) is true by construction. It is only nec-
essary to prove the converse.
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Fig. 4. Tetrachordal folding network.

Assume then that A has trichordal subsets, α and β, and B has subsets of the
same types, and the two sets share five interval types. Let B′ be either B itself
or an inversion of B that contains α, and let β′ be the subset of B′ related to β
by transposition and/or inversion. Either β′ = Tτ (β) for some interval τ or β′ =
Iσ(β) for some inversional index σ. For both cases, let α have the interval series
(a1, a2) and A be (a1, a2, a3) such that β is (a2, a3). Note that there is no loss of
generality through free choice of permutation (allowing, e.g., that a1, a2, a3 can
take negative values).

By construction, β′ must share a dyad with α; let this be an interval b.
The first possibility is that β′ shares the same dyad with α as β, and b = a2,
which means that the five intervals shared by A and B, a1, a2, a3, a1 + a2, and
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a2 +a3, and the one belonging only to A, a1 +a2 +a3, are all potentially unique.
Otherwise, there is a redundancy in the interval β′ shares with α. Either b = (a1
or a1 + a2) (as a subset of α) = (a3 or a2 + a3) (as a subset of β′), or a1 = a2
or a1 + a2 = a2.

First consider the last two possibilities. If a1 = a2, then α is symmetrical.
Transpose or invert B′ to map β′ onto β. α and its transposition or inversion will
still have a common dyad, so the sets will relate by a flip of α. If b = a1+a2 = a2,
then a1 = 0 and α has a doubled note. Freely choosing between the doubled
notes, this situation then coincides with the the regular b = a2 scenario.

For the remaining possibilities first assume that β′ = Tτ (β). If b = a2 6= a1
then B′ = A, contradicting the premise. For all of the other possibilities, we
can find an additional inversion of β that shares a dyad with β′, or an inversion
of α sharing a dyad with α. (I leave it to the reader to work out the details.)
Therefore A � B.

Finally assume that B′ =Iσ(β). For b = a2 6= a1 we have A � B. For a1 = a3
or a1 + a2 = a2 + a3, we have that α is an inversion of β, and hence also A � B.
In the remaining two cases we violate the interval-sharing premise. Consider
b = a1 + a2 = a3; B then has two copies of a2 whereas A has two copies of
a1 + a2, in addition to the other distinct intervals 2a2 ∈ B and 2(a1 + a2) ∈ A.
The remaining case b = a1 = a2 + a3 is essentially the same swapping the roles
of a3 and a1. ut

An interesting consequence of this proof is in the last condition: it is possible
for two tetrachords to share two trichordal subsets but not five intervals, in
which case they are not directly related by folding, specifically when there is
some duplicated interval in the one set and a different duplicated interval in the
other. An example would be (0135) and (0136), which each have (013) and (025)
subsets, but the first has an (024) subset with two copies of ic2 and an ic4, and
the other an (036) subset with two copies of ic3 and an ic6.

This proof only holds in pitch space. Most of it transfers to pitch-class space,
except one conclusion: it is possible for β′ to overlap α in the interval that makes
a2 and be a non-trivial transposition of β if a2 is a tritone. Therefore, when
dealing with set classes, there is one operation that is not a folding but has the
same properties of preserving five intervals and two trichord types. Specifically,
for a tetrachord containing a tritone, transpose one of the notes not belonging
to it by tritone. This preserves both intervals with the tritone, and just changes
one, the interval between the two non-tritone notes.

We can also generalize this to other cardinalities, as T-shift. Specifically:

Definition 4 Let pitch-class set A of size n have a Tx-symmetrical subset of
size n−2. A T-shift of A fixes a size n−1 subset that includes the Tx-symmetrical
subset, and moves the remaining note by some multiple of x.

Figure 4 shows the T-shift operations on tetrachords not equivalent to fold-
ings with dashed lines.

This motivates the following, which I leave as conjectures.
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Conjecture 1. Let A and B be pitch sets of cardinality n. Then A and B share
two subsets of cardinality n − 1 and

(
n
2

)
− 1 intervals if and only if they relate

by a folding operation.

Conjecture 2. Let A and B be pitch-class sets of cardinality n. Then A and B
share two subsets of cardinality n − 1 and

(
n
2

)
− 1 intervals if and only if they

relate by a folding operation or a T-shift operation.

3 Application to Morton Feldman’s “For Stephan Wolpe”

The first 12 minutes of Morton Feldman’s work for chorus and vibraphones,
“For Stephan Wolpe,” repeat a single progression of ten chords in four-part
chorus with small variations, primarily in rhythm, transposition, and voicing
(changing the registral ordering and octaves of the notes without changing the
set type), reflecting his concept of “crippled symmetry” [3, 5]. The set classes
that Feldman uses exist in a relatively compact region of the folding network,
as shown in Figure 5. Successive chords are usually two or three steps apart, the
only exception being both progressions involving the exceptional (0057) chord.
If we skip over this chord then the entire progression is in steps of 2 or 3.

The special property of these progressions is that exactly one trichord is
shared between successive chords in all cases except the last progression, (0136)-
(0135), which share two. In almost all cases the shared trichord is (015) – here
again the exception is the penultimate (0136) chord. This shares an (016) with
the preceding (0156) and (013) and (025) with the following (0135). Figure 5
shows regions defined by shared trichords between the chord types that Feldman
uses.

The first version of the progression, given in Figure 6 is representative, con-
taining the voicings used most frequently in all subsequent versions of the pro-
gression. Although the trichordal subsets are never voiced in exactly the same
way from one chord to the next, they usually involve a single octave adjustment
so that individual intervals are preserved in their exact pitch distance. In par-
ticular, the characteristic 4-semitone interval of (015) is almost always present,
usually as E-G] or B-D]. The 7-semitone interval ties together instances of (027),
(016), and (015), and the 14-semitone interval ties together (027) and (025). The
final chord, which changes the voicing and transposition of the initial (0135) but
preserves its bass note, serves as a kind of summary of the whole progression,
including all of these intervals.

The second half of the piece regularizes the rhythm and leaves behind the
ten-chord progression in favor of a series of repeated three-chord progressions.
These are organized into eight phrases by means of the punctuating vibraphone
passages. The first six phrases explore small regions of the tetrachord network,
as shown in Figure 7. Adjacent chords in this section are often related directly
by folding and never by more than two links in the network (with the exception
of the last chord of phrase 6, an isolated whole-tone chord which does not occur
in the network). The first four phrases rely exclusively on chords with (014)
subsets.
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A distinct shift happens in the second-to-last phrase, which is considerably
longer than any other, at 27 measures with repeats. Now adjacent chords are
2–4 steps apart except for two instances where (0135) and (0235) are adjacent.
The progression includes isolated extreme chords, (0123) and (0127), along with
(0257), which is more connected with other chords in the passage though it is
never directly adjacent to (0247) in the progression. Figure 8 shows these chords
in the tetrachordal folding network along with those of the last phrase. The
last phrase continues to focus on progressions between chords that are 2–4 steps
apart, but overall relies upon a more connected set of chords, excluding (0123)
and (0257). The central harmony of phrases 1–6, (0125), returns in this last
phrase after being absent for all of the penultimate phrase.

The tetrachordal folding networks thus help us circumnavigate some of the
usual problems of analysis and form in Feldman’s late music. Hanninen [6], for
example, points out that pervasive repetition and lack of textural changes in
these pieces inhibits segmentation. While this description appears to character-
ize the second half of “For Stephan Wolpe” well, a closer look at the use of chord
types and their arrangement in the folding network reveals a more definite plan
in distinct stages. A relatively limited subnetwork first expands, and then moves
back towards a region familiar from the first part of the piece. At the last stage,
Feldman also returns to progression types familiar from the first part, charac-
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terized by larger distances in the network. At the same time, the chord palette
expands to the far reaches of the network. The piece thus exhibits a cogent form
that combines principles of return and terminal expansion.

4 Conclusion

Folding operations, a generalization of Bernard’s [2] unfolding and infolding op-
erations, can be defined on sets of any size, and can operate in pitch-space
or pitch-class space, with or without generalizations over inversion. Networks of
these operations are useful for mapping out distances between chord-types based
on interval and subset content. The application of these networks on tetrachords
to Feldman’s “For Stephan Wolpe” shows that distances in these networks are
musically meaningful and that chord types limited to connected subnetworks can
be compositionally useful. Feldman’s manipulation of distances between adjacent
chords and connectedness and location of his subnetworks illustrate his sensitiv-
ity to these properties, and reveals a shape to this piece that is not immediately
apparent on its rather simple and static surface.
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