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Remembering Jack Douthett (1942–2021)

Two important ideas:
• Evenness
• Continuous functions underlying 

discrete phenomena
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Outline
(1) Flexible tuning systems
(2) Periodic functions: 

heptatonicity, triadicity, etc.
(3) Fourier coefficients, spectra, phases
(4) Application: Balinese Pelog
(5) Application: Persian Dastgah tuning



Flexibly Defined Tuning 
Systems

A critique of defining tunings as idealized pitch sets
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Tuning Theory

• A scale or tuning can be represented by a set of points in 
frequency space.

• Pitches occurring in practice are approximations of these —
i.e., these are the intended frequencies, realized to within 
some tolerance (degree of precision). 

The usual framework: 

What’s wrong here? 
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Tuning Theory

• A scale or tuning can be represented by a set of points in 
frequency space.

• Pitches occurring in practice are approximations of these —
i.e., these are the intended frequencies, realized to within 
some tolerance (degree of precision). 

The usual framework: 

Tuning variability is viewed as error.
This is a distinctly classical-European 

attitude. Other traditions have a positive
attitude towards tuning flexibility.
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Tuning Theory

Example, Violinist vs. fiddler:

In both cases the tuning system is considered to be 12-tET.

The violinist prizes accuracy of intonation and recognizes theoretical 
point in frequency space as ideal representations of notes. 

However, the violinist also recognizes the possibility of expressive 
intonation (frequency vibrato, sharpened leading tones), within narrow 
constraints. 

The fiddler also recognizes note identities within a 12-t system, tied to 
regions of frequency space. 

The fiddler requires a wider range of tuning flexibility for expressive 
intonation, such as portamento.
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Tuning Theory

• A scale or tuning is defined by flexible interval categories.
• Within some scale-identifying constraints, tuning flexibility 

is a resource of the scale system.

An alternative framework: 

Example, violinist and fiddler:

Both require scale-defining tuning constraints.

Both also prize flexibility of intonation within that system (to differing degrees).

Pythagorean and just intonation fall within that range of flexibility. Rather than 
distinct tuning systems, these are intonational variations of a system that can be 
applied ad hoc as the musical situation demands (tuning up a chord in a string 
quartet, making a melody stand out, etc.).
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Tuning Theory

Interval categories are transposable.
A closed system is therefore periodic (in pitch / log-freq.)
An open system can be understood as a subset of closed 
systems.

Multiple “grains” of interval categorization can exist 
simultaneously. (Ex.: Generic and specific intervals.)



Towards Fourier Theory, 
Some Concepts

Heptatonicity
Chromaticity

Triadicity
Dyadicity

Diatonicity
Hexatonicity
Octatonicity
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Heptatonicity
Heptatonic: Division of the 8ve into 7 equally spaced bins.
Heptatonicity: Pitch collection viewed through such a division.
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Heptatonicity
Example: C Diatonic scale

0.5     +  1.0      +  0.5 + 0      +    0.87    +   0.87     +    0          = 2.28  

Phase: 
2!/6

Magnitude: 

Formula: f7 = ∑cos(2!xi · 7/8ve) + j ∑sin(2!xi · 7/8ve)

Magnitude = |f7|, Phase = arg(f7)
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Heptatonicity
Heptatonicity is an evenness measure for scales

C diatonic scale

C harmonic minor

C Hungarian minor
(CDEbF#GAbB)

0.97+0.26+0.26 +0.97 +0.71–0.26      – 0.97        = 1.93  

0.5   +  1.0  +  0.5 +0   +  0.87  + 0.87  +   0          = 3.73

1.0  +  0.5 + 0       – 1.0+0.87–0.5   – 0.87        = 0  
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-1.5

-1

-0.5

0

0.5

1

1.5

C C# D Eb E F F# G Ab A Bb B C

Heptatonicity
But: Notes are not forced to cover scale degree “bins”

Example: C-D#-E-F-G-A-Bb

1.0                 + 0 – 0.5 + 0.87  +   0.87           + 0 + 0.5       = 2.73

Heptatonicity only measures evenness when interval 
spans are 1-1-1-1-1-1-1

This bin is empty This bin contains two notes

The heptatonic spans of this scale are 2-0-1-1-1-1-1
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Heptatonicity
Heptatonicity does not assume any temperament

Pythagorean 
diatonic

Just 
diatonic

0.64 + 0.95 + 0.76 + 0.10 +  0.96  +  0.99 + 0.26  = 4.65

0.37 +  1.0 +  0.37  – 0.21  + 0.82  +  0.82   – 0.21  = 2.97  
-1

-0.5

0

0.5

1

C C# D Eb E F F# G Ab A Bb B C

-1

-0.5

0

0.5

1

C C# D Eb E F F# G Ab A Bb B C
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Heptatonicity
Heptatonicity can also be measured for subsets of scales

C major triad
2-2-3

C dominant seventh
2-2-2-1

C add 6
2-2-1-2

0.5       +      0.5    +    0.87 = 1.87  

0.97     – 0.26    +   0.97   +   0.26           = 2.46  

0.5       +      0.5    +   0.87 + 0.87                 = 2.73  
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Chromaticity
We can similarly define chromaticity as approximation 
to a subset of a 12-tone equal tuning

All ordinary pcsets have perfect chromaticity
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Triadicity
Triad: Relatively even spacing of three pitch-classes

• Positive values are good representatives of the triadicity; 
negative values are poor representatives.

• The curve can vary in phase (different triadicities).

Triadicity: A cosine function over the pitch-classes 
with frequency 8ve/3:
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Triadicity
Example: Triadicity of some triads

No assumption is made of a 12-tone grid

JI C major triad

12-t C major triad

0.89    +    0.89    +    0.45                            = 2.23  

0.86     +    0.97    +    0.52                            = 2.35  
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Triadicity
Example: Triadicity of scales

C diatonic scale

C harmonic minor

• Cardinality-flexible: applies to chords of any size
• Not all triad positions need to be represented; 

multiple  notes can represent a single category

1.0   – 1.0   +  1.0 +0    +    0    +    0    +    0          = 1.0  

0.45 –0.45+0.89 –0.89 +0.89+0.45    +   0.89      = 2.23 

C  D  E F G A B
½ ½ 0 1 0 1 0

Spans:

C  D Eb F G Ab B
1  0  0  1  0  1  0

Spans:
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Dyadicity

• Positive values are good representatives of the dyadicity; 
negative values are poor representatives.

• The curve can vary in phase (different dyadicities).

Dyadicity: A cosine function over the pitch-classes 
with frequency 8ve/2:

C C# D Eb E F F# G Ab A Bb B C

-1

-0.5

0

0.5

1
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Dyadicity

Example: Dyadicity of a diatonic scale

C C# D Eb E F F# G Ab A Bb B C

-1

-0.5

0

0.5

1

0.5         – 1.0  +    0.5 + 1.0       – 0.5  – 0.5      +     1.0          = 1.0  

C  D  E F G A B
½ ½ 0 0 1 0 0

Spans: Dyadicity divides the scale into 
tetrachords ABCD and DEFG
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Heptatonicity vs. Diatonicity

The diatonic scale is a prototype of heptatonicity: it 
maximizes heptatonicity for a 7-note subset of 12-tET. 

Therefore heptatonicity in a 12-tET context equates to 
similarity to characteristic diatonic subsets. 

i.e.
Diatonicity = Heptatonicity + chromaticity

The distinction is only relevant in the context of alternate 
or flexible tuning, but it is also conceptually important. 
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Hexatonicity and Octatonicity
The 12-tET prototype of triadicity is a hexatonic scale:

Octatonicity = Tetradicity + chromaticity

Hexatonicity = Triadicity + chromaticity
The 12-tET prototype of tetradicity is an octatonic scale:

0.5     +  0.5 + 0.5   +  0.5 + 0.5    +   0.5        = 3.0  

0.5+0.5 + 0.5+0.5 + 0.5+0.5 + 0.5+0.5           = 4.0  



Fourier Transform

• Coefficient spaces (complex plane)

• Spectra

• Phase spaces

• Coefficient multiplication
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Fourier Transform as Vector Sums

f3

Fourier component fk can be 
derived as a vector sum with 
each pitch class as a unit 
vector, where the unit circle is 
the 8ve/k.

The length of the resulting 
vector is the magnitude of 
the component, and the angle 
is its phase.

Example: 12-tET C maj. triad,
k = 3
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Fourier Transform as Vector Sums

F3

Fourier component fk can be 
derived as a vector sum with 
each pitch class as a unit 
vector, where the unit circle is 
the 8ve/k.

The length of the resulting 
vector is the magnitude of 
the component, and the angle 
is its phase.

Example: 12-tET C maj. triad,
k = 5

C
G

D

A

E

B
F#

C#

D#/E∫

A∫

B∫

F

G

E

{CE
G}

f5
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Single component spaces (complex plane)

D maj.

A min.
G maj. 

E min.

D
Bb

B diatonic

Db diatonic

Gb diatonic

Eb maj. C maj.

F C
G

A

E

B

Eb

G#

C#
F#

Ab diatonic

Eb diatonic

Bb diatonic

F diatonic

C diatonic

G diatonic

D diatonic

A diatonic

E diatonic

Bb maj.

C min.

F min.

Ab maj.
Bb min.

Db maj.
Eb min.

F# maj.

G# min.

B maj.

C# min.

E maj.

F# min.

B min.

A maj.

D min.

F maj.

G min.

Example: 
12t-ET sets in
f5 space

Distance from the 
center is the 
magnitude of f5

Angle is the 
phase of f5

Single pitch-class C

C minor triad
C major triad

C major scale

Eb major scale
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Spectra
The spectrum of a pitch-class vector shows the magnitudes 

of all its Fourier coefficients (ignoring phases)
The spectrum is invariant with respect to transposition 

and inversion (i.e. it is a set class property)
Examples: 

12tET
major

triad

Just
major

triad
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Spectra
The spectrum of a pitch-class vector shows the magnitudes 

of all its Fourier coefficients (ignoring phases)
More examples: Just triad (dotted) compared to . . .

7tET
triad

12tET
triad

19tET
triad
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Spectra
The spectrum of a pitch-class vector shows the magnitudes 

of all its Fourier coefficients (ignoring phases)
Example: Diatonic scales in 12-tET, Pythagorean, just tuning
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Spectra
The spectrum of an interval gives the ET approximations

A generated set intensifies the spectrum of the generating 
interval

Spectrum of the just perfect fifth

Spectra of fifth-generated collections

Diatonic
Pentatonic

Sus triad
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t

Spectra
The spectrum tends to have peaks at sums and differences

of other peaks, especially for generated collections

5 + 7  =  12
5      +     12  =  17 (12 + 12 

=  24)

12  +  17         =          29
Pythagorean diatonic: 

Approximate symmetry (5th in 53tET is very close)
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Phase Spaces
A phase space uses the phases of two (or more) coefficients 

as coordinates.
Phases are cyclic, so phase spaces are toroidal.

Transpositions correspond to translations (rotations) of the 
phase space. Inversions correspond to reflections.
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Coefficient Products
Spectral ⇒ Transposition invariant

but
Transposition invariant ⇒/ Spectral

For any a + b = c,
fa  fb fc

is a transposition-invariant complex number,
with phase #a + #b – #c

_

Thanks to Emmanuel Amiot
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Coefficient Products
Example: f2 f3 f5 of 12tET sets 

_

-15 -10 -5 0 5 10 15

-5

-4

-3

-2

-1

0

1

2

3

4

5

Mystic B

Mystic A

Major pentachord

Minor pentachord

Octatonic 1-2 pentachord

(023578)

(013578)(012579)

(013568)(012479)

(023479)

12t Pelog 1-2

12t Pelog 2-1

DiatonicPentatonic

Major triadDominant #9

Minor 7th #11 Minor triad

Octatonic 2-1 pentachord

←Real→

←
Im

aginary→

Inversion

Complementation

Real axis: 
Inversional 
symmetry

Imaginary axis: 
Complementation 
symmetry
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Coefficient Products
Example: f2 f3 f5 of 12tET sets 

Pentatonic: 
C D E G  A

f2 spans:   0  0   1   0   1   +
f3 spans:  ½ ½  1   0   1  ≠

f5 spans:   1   1   1    1    1

_

Negative f2 f3 f5

_

Diatonic: 
C D E F  G  A  B

f2 spans:   ½ ½ 0  0   1   0  0  +
f3 spans: ½ ½ 0  1   0   1 0  =

f5 spans:    1   1   0  1    1   1   0

Positive f2 f3 f5

_
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Coefficient Products
Example: f2 f3 f5 of 12tET sets 

(013568): 
B  C  D  E  F G

f2 spans:   0  0   1   0   0   1   +
f3 spans:  0  1   0 0   1   1  =

f5 spans:   0  1   1   0    1    2

_

Positive real  f2 f3 f5

_

(023578): 
A  B  C  D  E  F

f2 spans:   0   0  1   0 0  1  +
f3 spans:   1    0  0   1 0  1  =

f5 spans:    1   0  1   1   0  2

Positive real  f2 f3 f5

_

and positive imaginary and negative imaginary
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Coefficient Products
Example: f2 f3 f5 of 12tET sets 

(012479): 
C  C# D  E  G  A

f2 spans:   0 0   0   1  0   1   +
f3 spans:   0    0   1   1   0 1 ≠

f5 spans:   1    0    1   1   1   1

_

Negative real  f2 f3 f5

_

(023479): 
C  D  Eb E  G  A

f2 spans:   0   0  0   1   0   1  +
f3 spans:   1    0  0   1   0   1  ≠

f5 spans:   1    0   1    1   1   1

and positive imaginary and negative imaginary
Negative real  f2 f3 f5

_
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Coefficient Products

Generated collections are inversionally symmetrical ⇒ real only

Well-formedness rule for coefficient product of spectral peaks 
cardinality < large coefficient ⇒ positive
cardinality = large coefficient ⇒ negative

Maximal evenness: cardinality = smaller coefficient, 
Use ET of large coefficient

Spectra of fifth-generated collections



Balinese Pelog

Andrew Toth’s measurements

Pelog spectra

Begbeg–Sedeng–Tirus models

f2 f7 f9 space
_
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Andrew Toth’s measurements

Toth measured 50 gamelans across all regions of Bali
Thanks to Wayne Vitale and Bill Sethares for data.
(“Balinese Gamelan Tuning: The Toth Archives” 

forthcoming in Analytical Approaches to World Music)
Processing:

• Average across instruments.
• Average step sizes between second and third octave.
• Stretch/compress to a 1200¢ octave.
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Models: Begbeg–Sedang–Tirus

Toth	Plots	ar+cle:	Figures	

Figure	20	(recreated	from	Figure	2	of	Toth	1980):	The	two	types	of	interval	profiles,	begbeg	and	$rus,	plus	
an	intermediate	one	(sedang).	The	numbers	indicate	interval	sizes	in	cents;	the	doHed	line	shows	how	

“Dang	begbeg	becomes	dung	+rus.”		

i io e u a

Toth’s idealized models of pelog tuning varieties
(from testimony of master tuners)
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Pelog Spectra

Peaks at f2, f7, and f9 and troughs in between are consistent.
Above f9, little discernable consistency.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Average Range Standard deviation
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Pelog Spans
i o   a   e   u i o   a   e   u i o   a   e   u

f2:   0   0   1   0   1 (all the same)

f3:   0   1    1   0   1 or    1   0   1   0   1

f5:   0   1   2   0   2   or    0   1    1   1   2    or    1   0   2   0   2   or . . . 

f7:   1    1   2   1   2 (all the same)

f9:   1    1   3   1   3 (all but one the same)

f12:  1   2   4   1   4   or    2   1    4   1   4    or  . . . 
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Tuning Variants: Spectral

|f9| is highly correlated with |f7|, |f11|, |f13|, 
anti-correlated with |f5| and |f12|

but relatively uncorrelated with |f2|

↪ |f9| × |f2| is a good space to distinguish pelog spectra
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Belaluan Sadmerta

Br Kukuh Krambitan

Budaga Pekandelan

Peliatan

Pengosekan, New

Pengosekan, Old

Puri Kaleran Tabanan

Banyuning

Jumpai

Kokar

Prasi

Sengguan Kawan

Br Babakan Sukawati

Bubunan

Gladag

Losan Takmung

Puri Anung Loji

Sawan
Selat

Sudembunut

Kemoning

Sangkanabuana

Sima

Sumampan

Ubud Kaja

Pujung Kelod

Br Anyar Perean Lebah Sadmerta

Getas
Manggis

SidakaryaTengah

Blungbang Bangli

Br Kawan Bangli

Busungbiyu

Kecamatan Kubuh

Teges Kanginan

Menyali

Kecamatan Selat

Kedis Kaja
Kekeran

KuaDuahUbung

Sidemen

Br Pekandelan Sanur
Sidembunut

Beng

Jagaraga

Kalapaksa

Tunjuk

Batur Kusamba
Br Tengah Sesetan

Begbeg

Sedang

Tirus

1.5

2

2.5

3

3.5

4

1.5 2 2.5 3 3.5 4 4.5

Tuning Variants: Spectral

|f2| is a 
good 

model of 
“Begbeg–

Tirus axis,”

←|f9|→
←

|f2 |→but Sedang  
also differs 
in |f9|.
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Tuning Variants: Spectral
ET models 
in |f2|-|f9| 

space

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

4.5

5

5

13131

Sedang

Begbeg

Tirus

14141

01010

12121

23232

15151

24141

24142

11111

(Slendro)

←|f9|→
←

|f2 |→
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Tuning Variants: Spectral

Most 
tunings are 
close to 
Sedang.
Begbeg and 
Tirus are 
outside the 
range of 
observed 
tunings.

Belaluan Sadmerta

Br Kukuh Krambitan

Budaga Pekandelan

Peliatan

Pengosekan, New

Pengosekan, Old

Puri Kaleran Tabanan

Banyuning

Jumpai

Kokar

Prasi

Sengguan Kawan

Br Babakan Sukawati

Bubunan

Gladag

Losan Takmung

Puri Anung Loji

Sawan
Selat

Sudembunut

Kemoning

Sangkanabuana

Sima

Sumampan

Ubud Kaja

Pujung Kelod

Br Anyar Perean Lebah Sadmerta

Getas
Manggis

SidakaryaTengah

Blungbang Bangli

Br Kawan Bangli

Busungbiyu

Kecamatan Kubuh

Teges Kanginan

Menyali

Kecamatan Selat

Kedis Kaja
Kekeran

KuaDuahUbung

Sidemen

Br Pekandelan Sanur
Sidembunut

Beng

Jagaraga

Kalapaksa

Tunjuk

Batur Kusamba
Br Tengah Sesetan

Begbeg

Sedang

Tirus

1.5

2

2.5

3

3.5

4

1.5 2 2.5 3 3.5 4 4.5

←|f9|→
←

|f2 |→
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Spectral Tuning Variation by Region
Only Bangli
region 
(central 
highlands) 
is reliably 
distinct 
(include all 
most Tirus
tunings).
Buleleng, 
Klungkung
more Sedang 

Begbeg

Sedang

Tirus

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Badung

Bangli

Buleleng

Gianyar

Karangasem
Klungkung

Tabanan

←|f9|→

←
|f2 |→

Ellipses show standard error
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Tuning Variants: f2 f7 f9 space
_

All tunings have 
positive real 
values. 

Consistency of 
spans:
i o   e   u   a  
0 0 1 0 1
1 1 2   1   2
1    1   3   1   3
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Peliatan

Getas

Br Babakan Sukawati

Ubud Kaja

Pujung Kelod
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Manggis

Prasi
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Budaga Pekandelan

Losan Takmung
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Selat
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Br Anyar Perean

Puri Kaleran Tabanan

Tunjuk

Br Kukuh Krambitan

Sudembunut

Begbeg

Sedang

Tirus
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Tuning Variants: f2 f7 f9 space
_

Regions vary 
consistently on 
imaginary axis: 

Only Gianyar is 
balanced around zero

Other regions 
consistently negative.

Ellipses show 
standard error.



Persian Dastgah Tuning

• Farhat’s tuning and the Dastgah system

• Spectral analysis of scales and tetrachords

• Coefficient-product spaces 
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Farhat’s Tuning

–Loosely empirical (based on 
measurements but no data reported)

–Generated by two basic intervals: 
• Perfect fifth (two Pythagorean 

scales of 11 and 6 notes each) and
• Neutral step, which Farhat 

estimates at 135¢
(Pythagorean second – koron
205¢ – 70¢) 

(Large neutral step is semitone +
koron, 90¢ + 70¢ = 160)
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Some scales and tetrachords
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Spectra for scales
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Spectra for scales

Sur2 Chahargah Homayun
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Spectra for tetrachords
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Tetrachords show similar pattern in |f5|, |f7|, and |f12|
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Spectra for tetrachords
Tetrachords show similar pattern in |f5|, |f7|, and |f12|

Chahargah

Esfahan Segah
Tork



Jason Yust MCMM Workshop 6/29/21Fourier Models of Tuning Systems

Coefficient Product Space
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• Tetrachords
• Scales
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Coefficient Product Space

Complex space 
for f5 f12 f17
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Coefficient Product Space

Complex space for f2 f5 f7
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Conclusions

• Interval categories defined by even divisions (heptatonicity, 
triadicity, chromaticity) have many theoretical uses.

• Tuning systems can be defined by multiple interval
categorizations.
—These have the advantage of setting limits of intonation   

flexibility, rather than idealized “correct” interval sizes.
• Real tuning systems relate to the WF sequence of the

acoustical fifth.
• Two kinds of transposition-invariant features of collections: 

—Spectrum
—Coefficient product phases
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