Non-spectral Transposition-Invariant Information in Pitch-Class Sets and Distributions

Mathematics and Computation in Music 2022, Atlanta

Jason Yust, Boston University

Emmanuel Amiot LAMPS Perpignan

Preliminaries: DFT on PC-vectors

A = {0, 3, 7} S = $\mathbf{1}_A$ = {1,0,0,1,0,0,0,1,0,0,0,0}

$$\mathcal{F}_A: t \mapsto \widehat{a}_t = \sum_{x \in A} e^{-2i\pi xt/12}$$

The DFT converts pitch-class weights to complex-valued periodic functions (equal divisions of the octave)

$$\mathcal{F}_A(s) =$$

{3, 0.13 – 0.5*i*, 0.5 – 0.87*i*, 1 + 2*i*, 1.5 – 0.87*i*, 1.87 – 0.5*i*, –1, 1.87 + 0.5*i*, 1.5 + 0.87*i*, 1 – 2*i*, 0.5 + 0.87*i*, 0.13 + 0.5*i*}

Basic Properties of DFT

Fourier coefficients determine the original distribution.

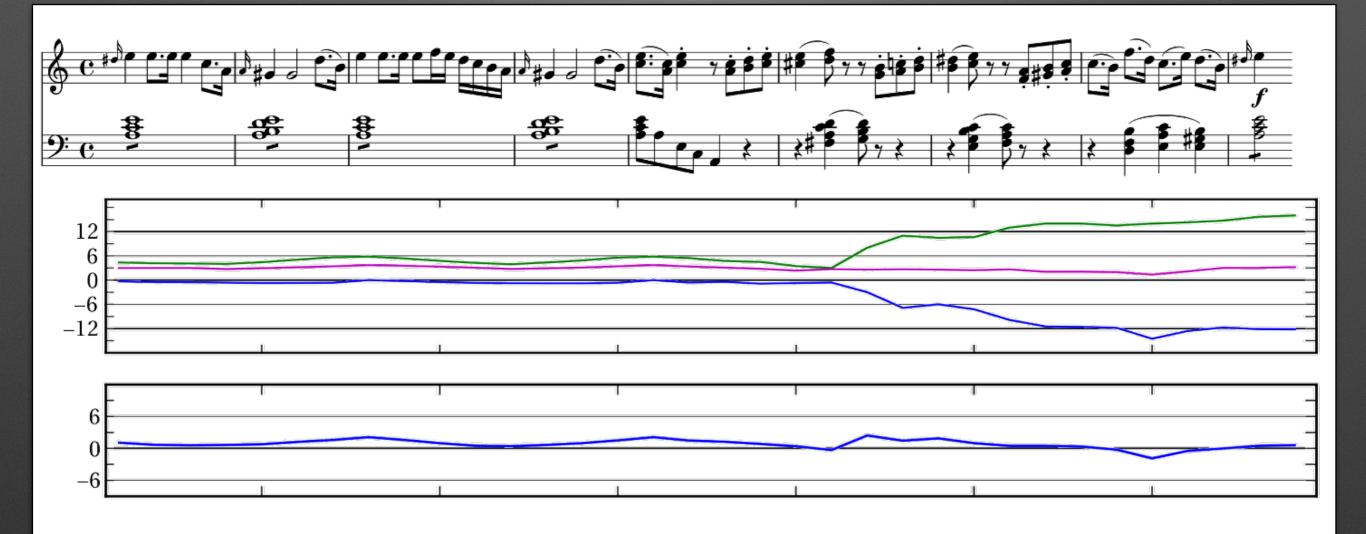
The <u>magnitude</u> of the Fourier coefficients is invariant by transposition or inversion. They determine the <u>intervallic content</u> of pc-set *A*.

 $\widehat{a}_{12-t} = \overline{\widehat{a}_t}$

The <u>phase</u> of a Fourier coefficient is defined by $\widehat{a}_t = |\widehat{a}_t|e^{i\varphi_t} = |\widehat{a}_t|e^{i\Phi_t\pi/6}$ (Φ_t is defined modulo 12)

Under transposition of A, the phase is translated.

Motivation for studying coefficient products Example: Mozart K.310 theme (Yust 2016)



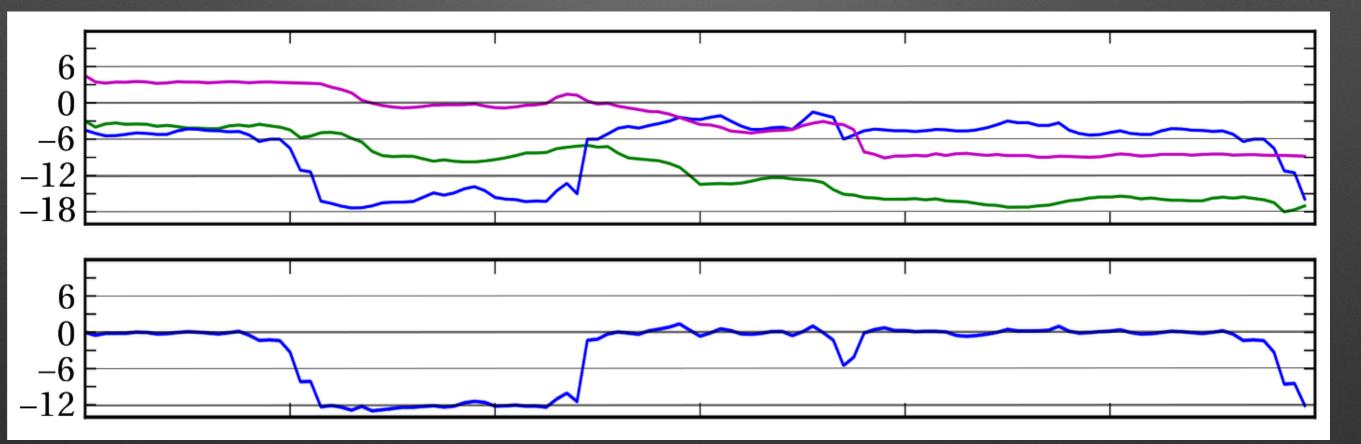
Above: ϕ_2 , ϕ_3 , ϕ_5 Below: $\phi_2 + \phi_3 - \phi_5$ (equivalently $\phi_2 + \phi_3 + \phi_7$)

Motivation for studying coefficient products Example: Chopin Mazurka Op. 33/2 (Yust 2016)

Period 1 Period 2 in D maj. in Bb maj.

Period 3: Period 4: B♭min. F‡min. to Db maj. to A maj.

Period 5: D maj.



Above: ϕ_2 , ϕ_3 , ϕ_5 Below: $\phi_2 + \phi_3 - \phi_5$

Outline

- General properties of coefficient products
 Transpositional invariance
 - -Inversion and complementation
 - -Sums and generated collection
- Coefficient products in tonal music
 - -Corpus data
 - -Approximation to clipping function, macroharmony
 - Phase space (\hat{a}_3 , \hat{a}_5) and coefficient products
 - $(\hat{a}_2 \hat{a}_3 \hat{a}_7 \text{ and } \hat{a}_3 \hat{a}_4 \hat{a}_5)$
- Analytical example: Takemitsu Air

Fourier coefficients products

We consider <u>regular</u> products of Fourier coefficients, those whose indexes sum up to 12. Ex:

 $\hat{a}_2 \hat{a}_3 \hat{a}_7, \hat{a}_3 \hat{a}_4 \hat{a}_5, \hat{a}_4 \hat{a}_8 \dots$

Such a product is real positive when the sum of corresponding phases is zero.

This is true inconditionally when A is a single pitch-class, or with a regular product of two coefficients.

A positive product is called <u>coherent</u>, a real product is called <u>aligned</u>.

General properties of coefficients products

Invariances

* All (regular) coefficient products are invariant under transposition

* Under inversion, the real part of a coefficient product is invariant, the imaginary part is negated

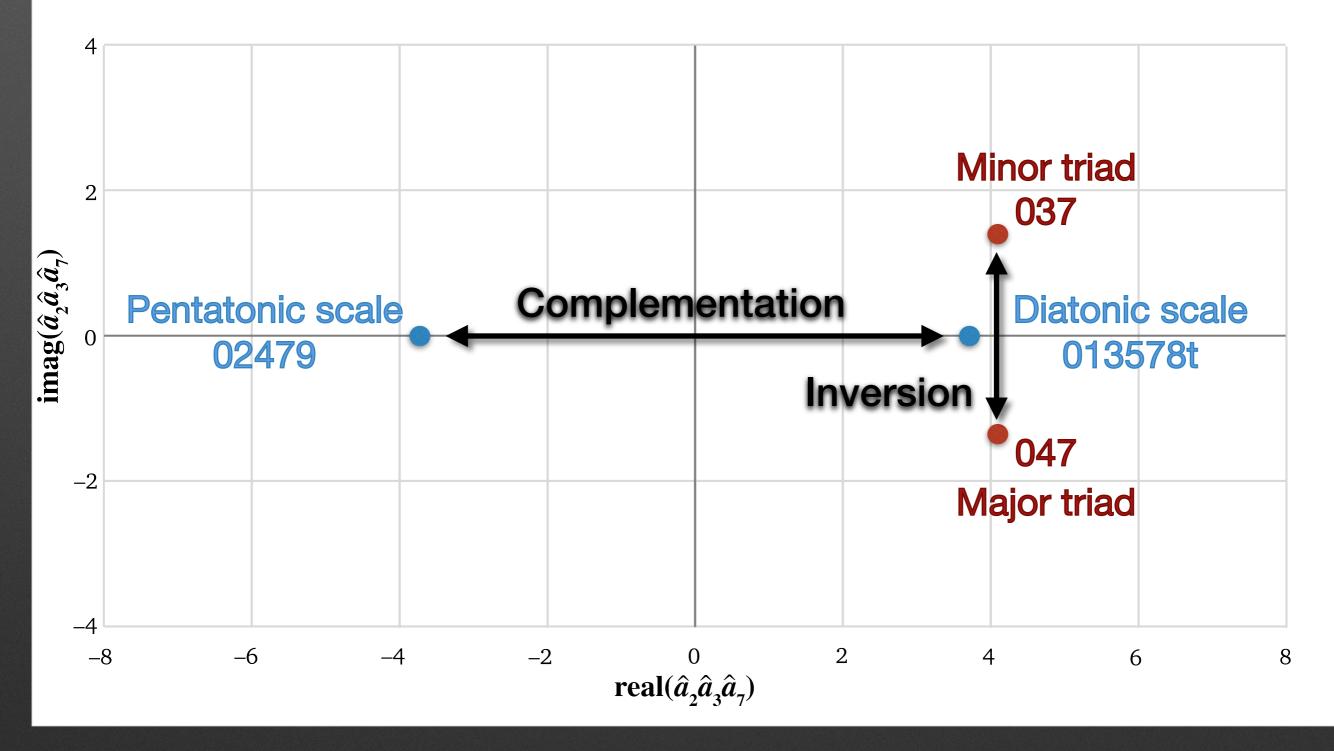
Regular / aligned

* If *A*, *B* are disjoint, aligned, and homometric then their union is aligned. (ex: all dyads)

* A generated scale is always aligned.

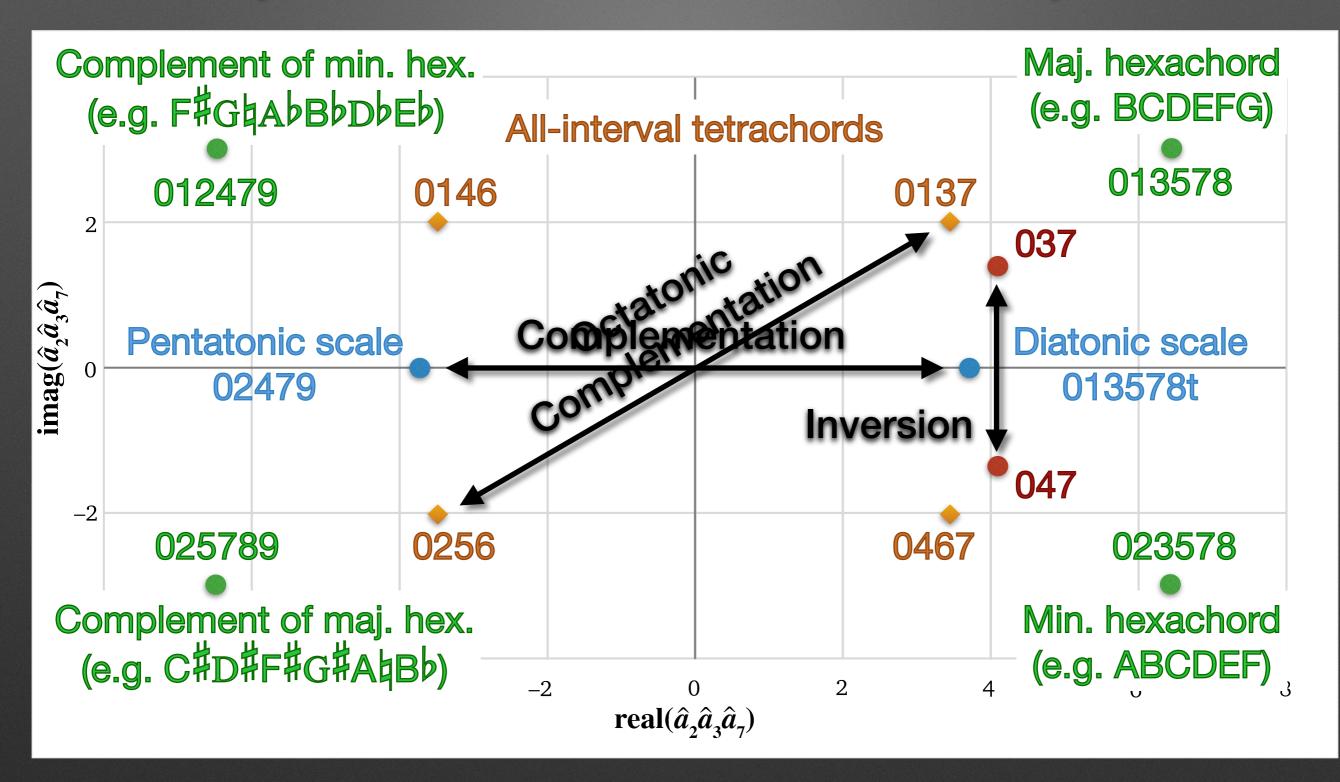
For indexes 2,3, and 7 the diatonic is coherent, the pentatonic aligned.

Example: $\hat{a}_2 \hat{a}_3 \hat{a}_7$ for tonal sets and complements



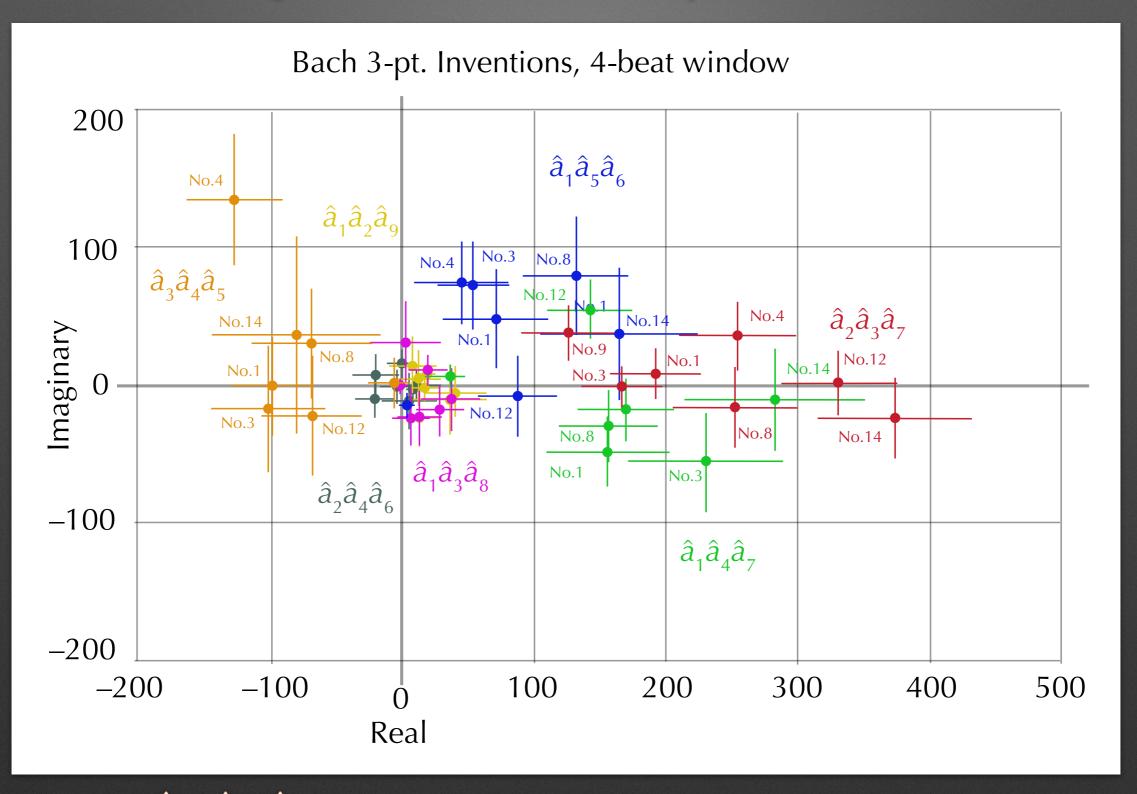
Complementation reflects over the origin. Inversion reflects over the real axis.

Example: $\hat{a}_2 \hat{a}_3 \hat{a}_7$ for tonal sets and complements



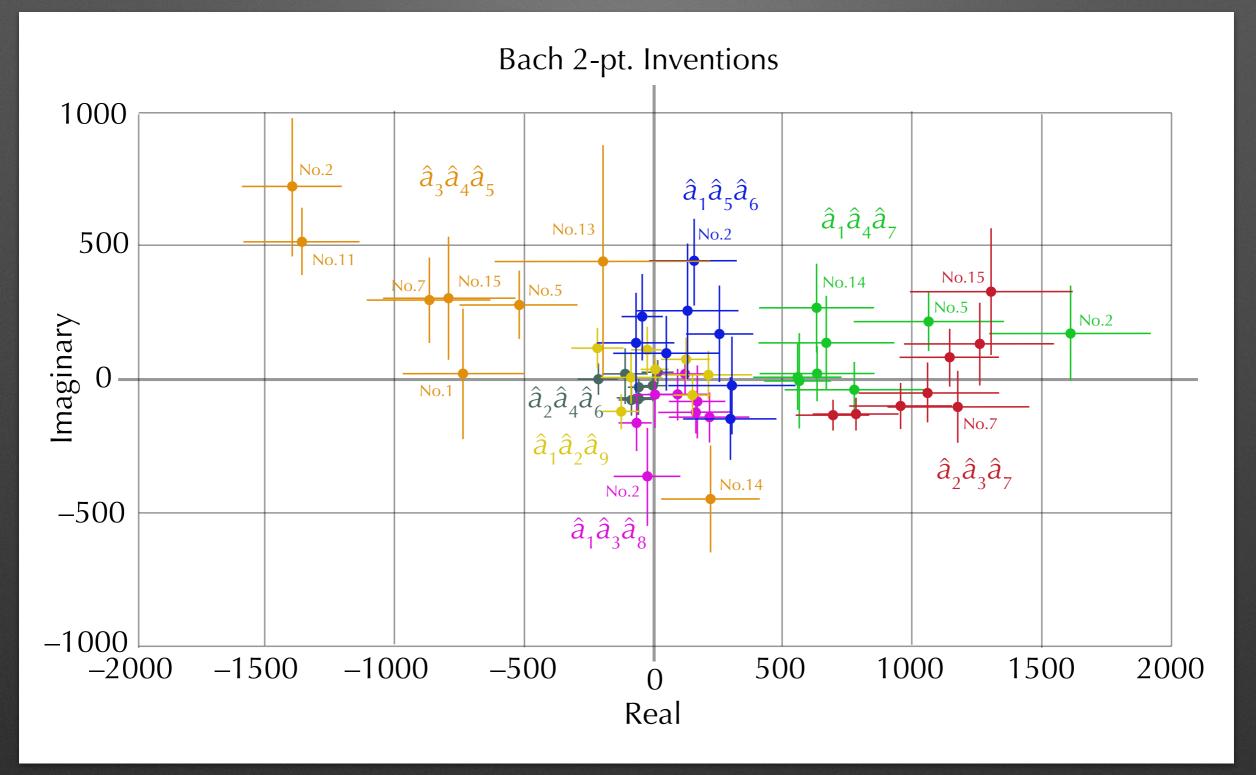
Distance from the origin is spectral (fixed for given interval content) Phase can vary for homometric sets (inv., Z-rel.) but is still T-invariant

Coefficient products of tonal pitch-class counts



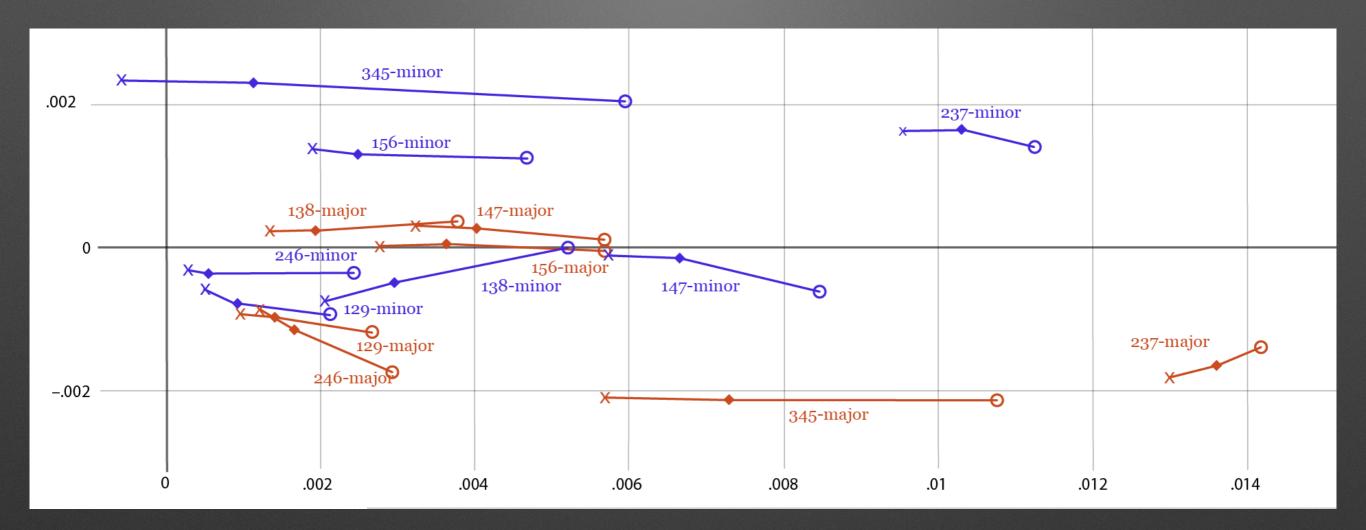
 $\hat{a}_2 \, \hat{a}_3 \, \hat{a}_7$ is consistently real positive, $\hat{a}_3 \, \hat{a}_4 \, \hat{a}_5$ is usually negative.

Coefficient products of tonal pitch-class counts



 $\hat{a}_2 \, \hat{a}_3 \, \hat{a}_7$ is consistently real positive, $\hat{a}_3 \, \hat{a}_4 \, \hat{a}_5$ is usually negative.

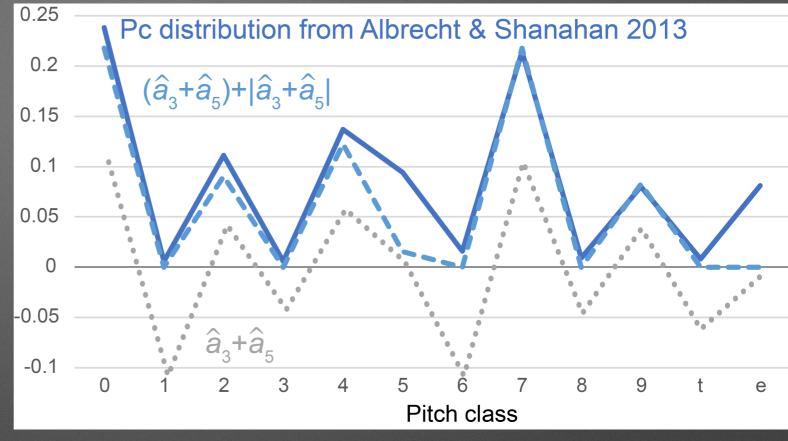
Coefficient products of tonal pitch-class counts Averages over a large corpus of minuets by Handel, Bach, Haydn, and Mozart (normalized)



X: 3-beat window, ♦: 6-beat window, ○: 9-beat window Negative real values are uncommon, imaginary values are close to 0.

Reconstruction of a tonal pc distribution

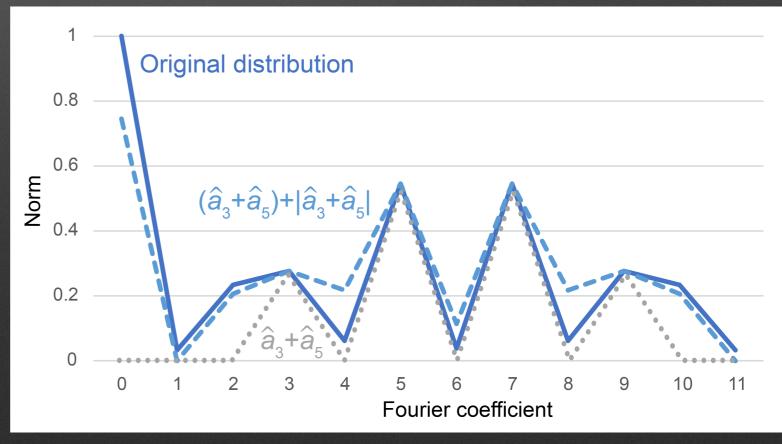
Pc vector



Spectrum

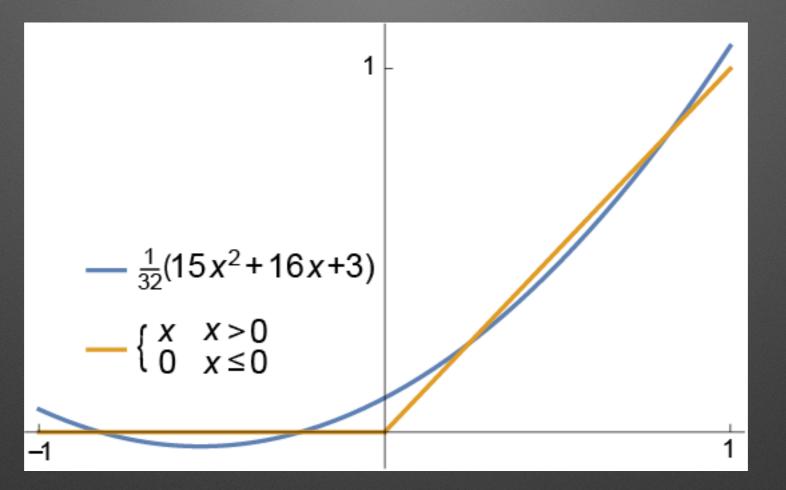
(1) Isolate the two
 largest coefficients
 (â₃ and â₅)

(2) Clip

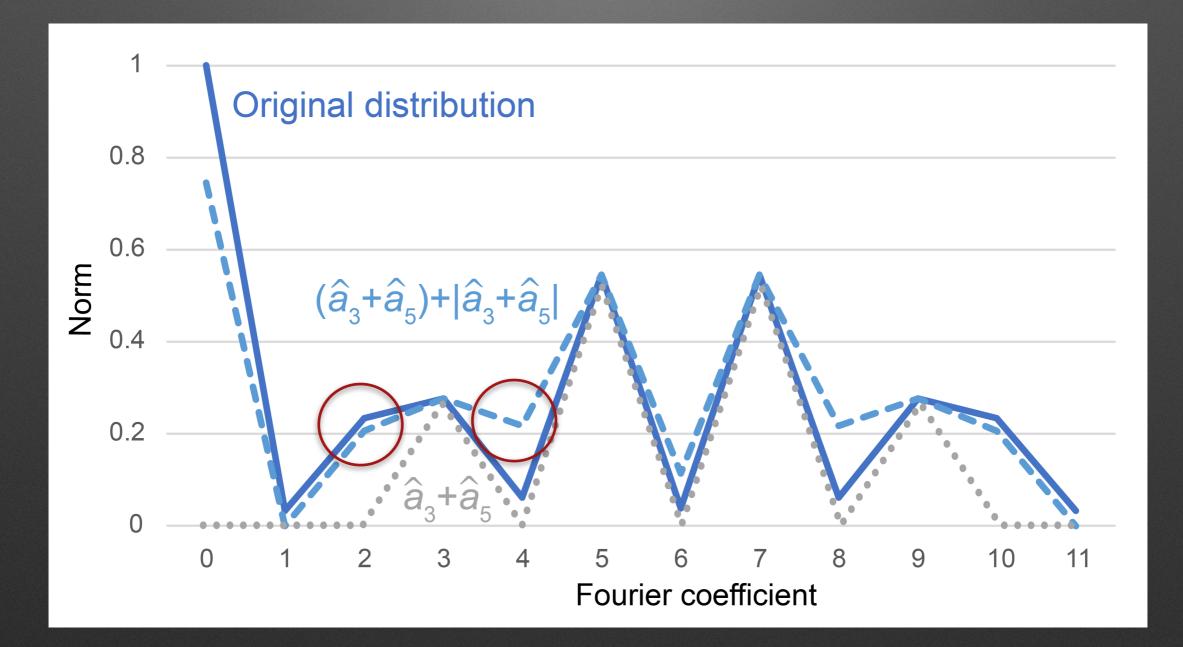


The clipping function mimics a *limited macroharmony* property.

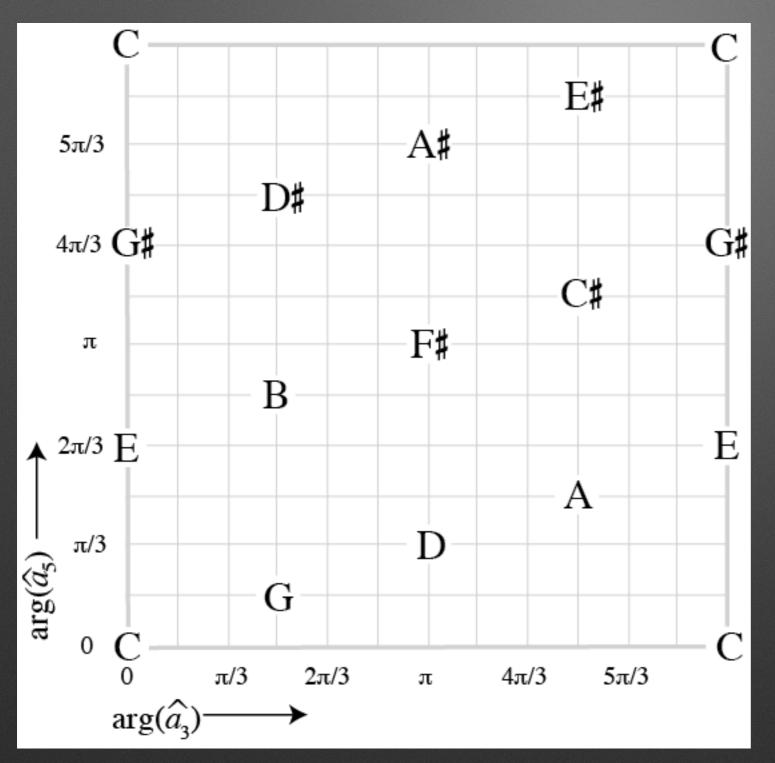
There is a fairly good quadratic approximation to this:



The quadratic term contributes products of coefficients of the original DFT (replace x by $\hat{a}_1, \hat{a}_2...$) This leads to coherent coefficient products in the resulting pc vector. Starting from a simple spectrum (built from two coefficients) the clipping function adds coefficients that make regular products with the original two: 5-3=2, 7-3=4, 7-5=2



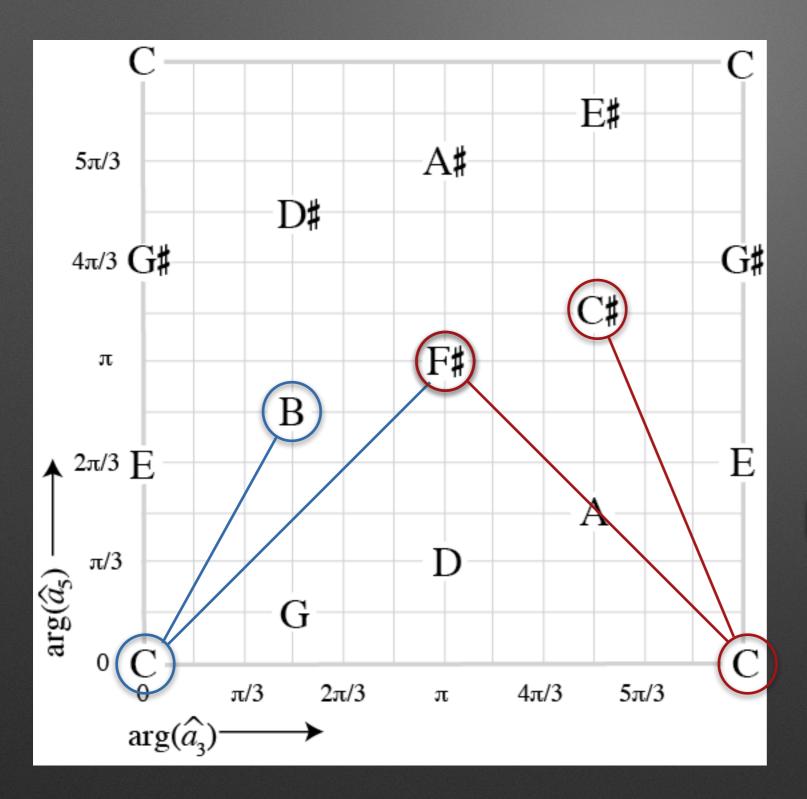
Coefficient products and phase space orientation



A toroidal space on ϕ_3 and ϕ_5 is a good model for tonal keys and harmony (triadic/ diatonic space)

These coefficients are involved in two products, $\hat{a}_2 \, \hat{a}_3 \, \hat{a}_7$ and $\hat{a}_3 \, \hat{a}_4 \, \hat{a}_5$

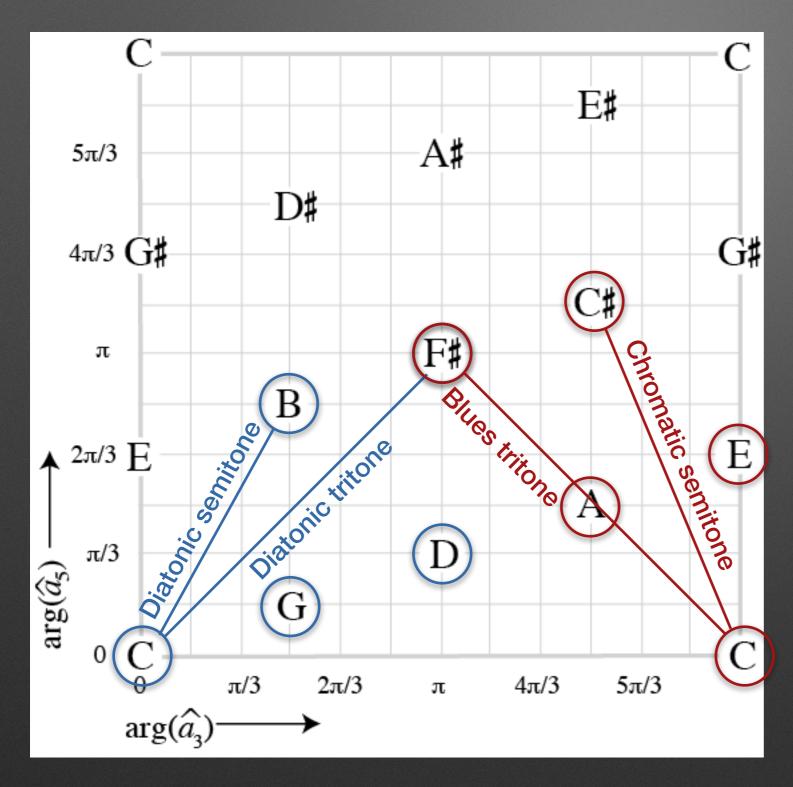
Coefficient products and phase space orientation



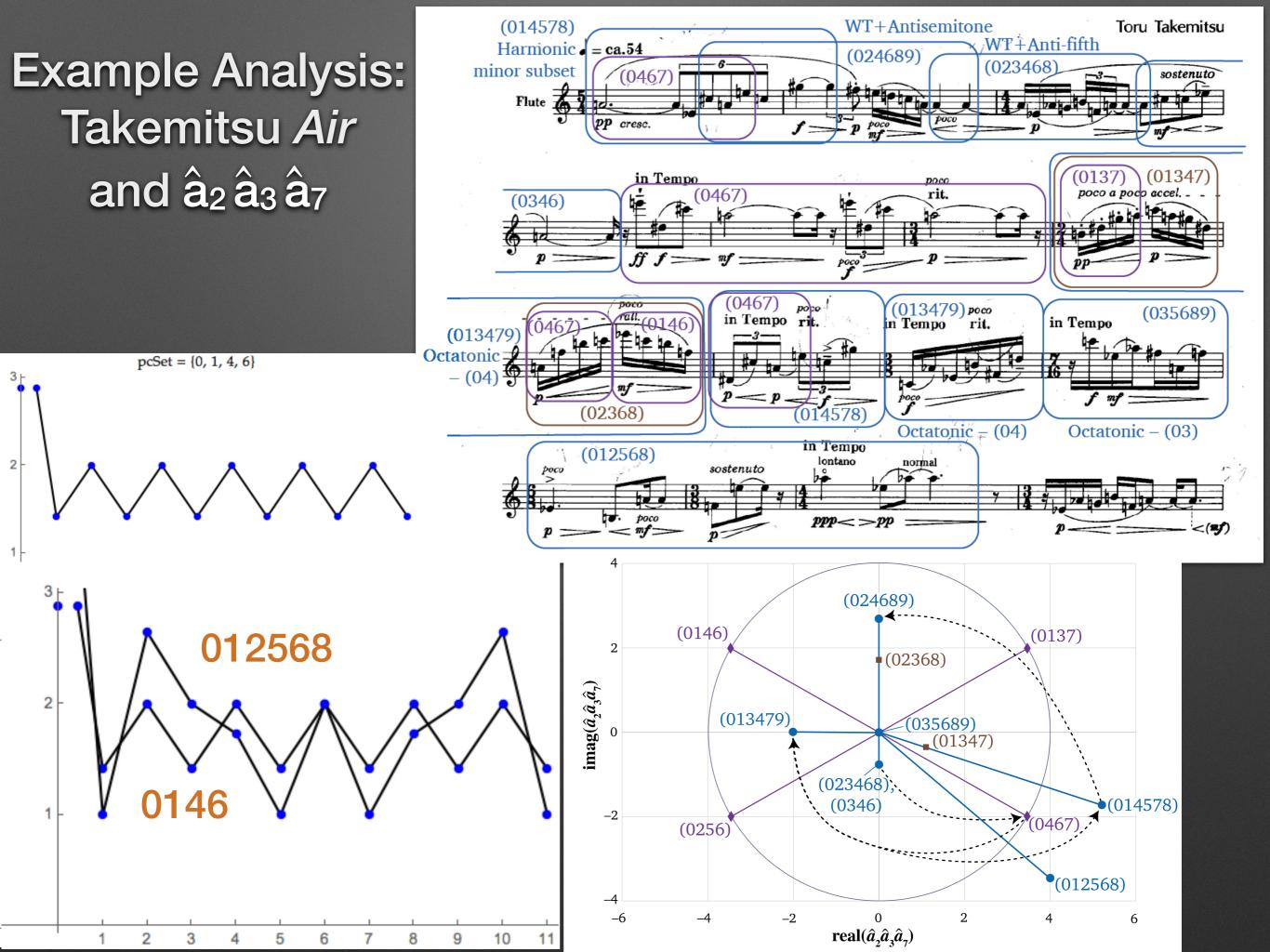
Orientation in the space relates to the real parts of $\hat{a}_2 \, \hat{a}_3 \, \hat{a}_7$ and $\hat{a}_3 \, \hat{a}_4 \, \hat{a}_5$

The same intervals can be represented by differently oriented vectors

Coefficient products and phase space orientation



Positive orientation corresponds to diatonic intervals, negative orientation to anti-diatonic intervals. Context determines orientation. BCDF#G has a positive real $\hat{a}_2 \hat{a}_3 \hat{a}_7$ and negative real $\hat{a}_3 \hat{a}_4 \hat{a}_5$. ACC#EF# has a negative real $\hat{a}_2 \hat{a}_3 \hat{a}_7$ and positive real $\hat{a}_3 \hat{a}_4 \hat{a}_5$.



Conclusions

- Regular coefficient products are *transposition invariant* but include non-spectral phase information. Therefore they distinguish complements, inversions, and Z-related sets.
- Coherent products are predicted by limited macroharmony, explaining the approximate linear dependence of φ₂ on φ₃ and φ₅ (but not the *in*dependence of φ₄!).
- $\phi_2 + \phi_3 \phi_5$ captures an non-spectral aspect of the tonalness of pc sets.