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Preliminaries: DFT on PC-vectors
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The DFT converts pitch-class weights to complex-valued
periodic functions (equal divisions of the octave)
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Basic Properties of DFT

Fourier coefficients determine the original distribution.

The magnitude of the Fourier coefficients is invariant
by transposition or inversion.
They determine the intervallic content of pc-set A.
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The phase of a Fourier coefficient is defined by
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(D: is defined modulo 12)

Under transposition of A, the phase is translated.



Motivation for studying coefficient products
Example: Mozart K.310 theme (Yust 2016)
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Motivation for studying coefficient products
Example: Chopin Mazurka Op. 33/2 (Yust 2016)
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Outline

® General properties of coefficient products
— Transpositional invariance
—Inversion and complementation
—Sums and generated collection

® Coefficient products in tonal music
— Corpus data
— Approximation to clipping function, macroharmony

—Phase space (as, as) and coefficient products
(azaszarand azasas)

® Analytical example: Takemitsu Air



Fourier coefficients products

We consider regular products of Fourier coefficients,
those whose indexes sum up to 12. Ex:

ao0307, 430405, Q408 . . .
Such a product is real positive when the sum of

corresponding phases is zero.

This is true inconditionally when A Is a single pitch-class, or
with a regular product of two coefficients.

A positive product is called coherent, a real product is
called aligned.




General properties of coefficients products

® Invariances
* All (regular) coefficient products are invariant
under transposition
* Under inversion, the real part of a coefficient
product is invariant, the imaginary part is negated

)

® Regular / aligned

X If A, B are disjoint, aligned, and homometric then
their union is aligned. (ex: all dyads)

* A generated scale is always aligned.

For indexes 2,3, and 7 the diatonic is coherent, the pentatonic aligned.



Example: a2 az az for tonal sets and complements

Minor triad
" 037

Pentatonic scale Diatonic scale

02479 013578t
Inversion

047
Major triad

0

real(a,aa.)

Complementation reflects over the origin.
Inversion reflects over the real axis.




Example: a2 az az for tonal sets and complements

Complement of min. hex.
(e.g. F#GhAbBbDbED)
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Complement of maj. hex.
(e.g. CHDEFRGHALBD)
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All-interval tetrachords
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Min. hexachord
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Distance from the origin is spectral (fixed for given interval content)
Phase can vary for homometric sets (inv., Z-rel.) but is still T-invariant




Coefficient products of tonal pitch-class counts

Bach 3-pt. Inventions, 4-beat window
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a» azay is consistently real positive,
a3 a4 as is usually negative.




Coefficient products of tonal pitch-class counts

Bach 2-pt. Inventions
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a» azay is consistently real positive,
a3 a4 as is usually negative.




Coefficient products of tonal pitch-class counts

Averages over a large corpus of minuets by
Handel, Bach, Haydn, and Mozart (normalized)

345-minor

'237-minor
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¥———————0O 156-major
138-minor 147-minor
129-minor

129-major 237-major
246-maj
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.008

X: 3-beat window, ¢: 6-beat window, O: 9-beat window

Negative real values are uncommon,
imaginary values are close to O.



Reconstruction of a tonal pc distribution

PC VeCtor ' Pc distribution from Albrecht & Shanahan 2013
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Spectrum

(1) Isolate the two
largest coefficients

(as and as)
(2] Ulls

Fourier coefficient




The clipping function mimics a
limited macroharmony property.

There iIs a fairly good quadratic approximation to this:

— L(15x2+16x+3)

The quadratic term contributes products of coefficients
of the original DFT (replace x by a1, a2. . . . )

This leads to coherent coefficient products in the
resulting pc vector.



Starting from a simple spectrum (built from two
coefficients) the clipping function adds coefficients
that make regular products with the original two:
5-3=2,7-3=4,7-5=2

Original distribution

Fourier coefficient




Coefficient products and phase space orientation

A toroidal space on ¢3

and ¢s Is a good model

for tonal keys and
harmony (triadic/
diatonic space)

;M [hese coefficients are
Involved In two
poroducts,
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Coefficient products and phase space orientation

C C

£t Orientation in the

space relates to the
real parts of
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Ihe same intervals

2 can be represented
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VECIOrS

arg(ay) —>»

4r/3 S5x/3 G




Coefficient products and phase space orientation

C C Positive orientation
E# corresponds to diatonic
intervals,

Context determines
orientation.

 (E) BCDF£G has a positive

real 2, azaz and negative
real as a4 as.
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Example Analysis:

Takemitsu Air

and asas ay

pcSet = {0, 1, 4, 6)
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Conclusions

 Regular coefficient products are transposition
Invariant but include non-spectral phase
iInformation. Therefore they distinguish
complements, inversions, and Z-related sets.

 Coherent products are predicted by limited
macroharmony, explaining the approximate linear

dependence of ¢2 on ¢3 and ¢s (but not the
Independence of ¢a4!).

e 2 + 3 — ¢p5 captures an non-spectral aspect of the
tonalness of pc sets.



