
Non-Spectral Transposition-Invariant
Information in Pitch-Class Sets and

Distributions

Jason Yust1, Emmanuel Amiot2

1Boston University, Boston MA 02215, USA jyust@bu.edu, 2Université de
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Abstract. The spectral information of a pitch-class set or distribution
relates to its interval content and what Ian Quinn calls its harmonic
qualities, the magnitudes of a discrete Fourier transform of a pitch-class
vector. The spectrum is invariant with respect to transposition and in-
version, but the existence of Z-related sets, which have equivalent spectra
but are not related by transposition or inversion, means that the spec-
trum is not a complete description of a set class. We show how to isolate
transposition-invariant phase information using products of Fourier co-
efficients. We describe some of the mathematical features of these coeffi-
cient products and show how they encode aspects of tonality, and can be
useful for analyzing non-tonal music with an example from Takemitsu’s
“Air” for solo flute.

1 Pitch-class set theory and homometry

Allen Forte [7] originally defined set-class equivalence as equivalence of inter-
val vectors, but subsequently reconsidered, using transpositional and inversional
equivalence instead [8]. Forte’s original definition is known in mathematics as
homometry, and, as Amiot [3] has shown, can also be defined as equivalence
of spectra. The spectrum is obtained by taking the characteristic function of a
pitch class set and considering just the sizes of the coefficients of its discrete
Fourier transform (DFT). Ian Quinn [9] refers to the spectrum as a point in
quality space. Transpositions and inversions are homometric, but not vice versa.
Therefore Forte’s original definition of set class was stronger than his later one.
The difference between them consists of what he calls “Z-related” sets, sets that
are homometric but not related by transposition or inversion. With the excep-
tion of hexachords, the Z-relation is somewhat rare for ordinary pitch-class sets,
but we can identify many more examples if we consider pitch-class multisets [10]
or real-valued characteristic functions, in which case the set of all distributions
homometric to a given one is a multi-dimensional torus, the orbit of the so-called
spectral units group [3, chapter 4].

While the spectrum therefore provides much of the important information
about a pitch-class set, it is not a complete description. Since the DFT is a lossless
transformation, that means that there is transposition-invariant information in
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the phases of the DFT coefficients. In the first section we show that special
coefficient products (specifically with coefficients whose indices sum to twelve)
are transposition invariant, and therefore the phases of these include the desired
non-spectral information. We then show the importance of these non-spectral
set class properties for characterizing tonal sets, and analysis in two non-tonal
contexts.

2 Products of DFT coefficients

2.1 Definitions

Recall that any complex number z can be described by its magnitude |z| ∈ R+

and its phase arg(z) ∈ R/2πZ:

C 3 z = |z|ei arg(z).

As mentioned in the preamble, it can be shown that homometry is exactly the
equality of all Fourier coefficient magnitudes; Since these are invariant under
transposition and inversion, it remains to consider the phases for non-homometry
related information. Indeed, phase increases by a constant quantity under trans-
position and changes signum under inversion.

In the following, we normalize phase modulo 12 (or more generally, n, the
cardinality of the chromatic aggregate) by setting

ϕk = arg(âk) Φk =
12

2π
ϕk =

6

π
arg(âk)

where âk =
∑
x∈X e

−2iπkx/12 is the kth Fourier coefficient of pitch-class set X.
It was noticed in [15] that many pitch-class sets in tonal context satisfy an

improbable equation:
Φ5 ≈ Φ3 + Φ2. (])

This is an exact equality for diatonic scales, fifths, and several other prominent
tonal collections. Notice however that the opposite equality (Φ5 ≈ −Φ3 − Φ2)
yields for a pentatonic scale (thus allowing a way, Fourier-wise, to tell pentatonic
and diatonic scales apart, although the magnitude of all their Fourier coefficients
except the 0th are equal). It yields, up to a small error, for major and minor
triads.

This is an intriguing feature, since Φ, a complex logarithm, is anything but
a linear map; also a comprehensive computation shows that for most pc-sets,
equation (]) is quite incorrect.1

For the sequel of this paper, we will rephrase it: since Φ5 = −Φ7 (a gen-
eral feature of Fourier coefficients of characteristic, or in general real-valued,
functions) we can state instead

Φ7 + Φ3 + Φ2 ≈ 0 (mod 12)

1 For 80% of pc-sets, the error is larger than 10%.
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or by exponentiation

exp (i(Φ7 + Φ3 + Φ2)π/6) = eiΦ7π/6eiΦ3π/6eiΦ2π/6 ≈ e0 = 1

or even better, multiplying by the magnitudes of the relevant Fourier coefficients
to rebuild them anew, â2â3â7 ≈ |â2â3â7|, meaning

â2â3â7 is (almost) real positive.

We can then state a general definition, where 2 + 3 + 7 = 12 is replaced by
an integer partition:

Definition 1 Let n be the cardinality of the chromatic aggregate and k1, k2 . . . kr
be an integer partition of n, i.e. the ki are positive integers2 Then âk1 âk2 . . . âkr
is a (regular) coefficient product.3

It is coherent for a given pitch-class if its value for that set is real positive,
approximately coherent if it is close to real positive. For short, if the context is
clear we will say that a pc-set is coherent if its (regular) product is coherent.

As will be seen later on, the more general case of real-valued regular products
(positive or negative) is notable. We will call such a product aligned.

Without spoilers, with partition 2 + 3 + 7 = 12 we have coherent products for
all single notes, dyads, diatonic scales, major sevenths; approximate coherence
for major or minor triads; and aligned products for pentatonic scales.

A trivial but illuminating example of coherent product, for which we thank
an anonymous reviewer, is any partition of the type n = k + (n − k), since for
any pc-set we get akan−k = |ak|2 ≥ 0. In this case, Proposition 3 retrieves that
transposed or inverted pc-sets are homometric.

2.2 Features

Proposition 1 Singletons are coherent for all regular products.

Proof. Let a ∈ Zn be a pitch-class. Then we get for the kth Fourier coefficient
of A = {a} âk = e−2ikπa/n hence

âk1 âk2 · · · = e−2ik1πa/ne−2ik2πa/n · · · = e−2i(k1+k2+... )πa/n = e−2inπa/n = 1.

As we will see this a special case of Prop. 3, A being a transposition of {0} for
which any product is trivially regular.

Lemma 1 The argument of the sum (or mean) of two complex numbers with
equal magnitude is the mean value of their arguments.

2 Not necessarily distinct.
3 The qualification “regular” distinguishes these from an arbitrary product, but since

non-regular products are of no evident interest, we will typically omit the qualifier.
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Remark.
There is a catch here. Since arguments are defined modulo a whole circle

(2π, 12, or n, depending on normalization), half-arguments are defined modulo
half the circle (π, 6, a tritone).

However, out of these two opposite directions, the appropriate one is the
mean value which directs the interior of the angles between the two complex
numbers, see Fig. 1. In other words, both complex vectors and their sum/mean
must lie in the same half-plane.

Proposition 2 If A,B are disjoint and homometric, and coherent with respect
to some coefficient product, then A ∪B is aligned with respect to that product.

Proof. Let âk = |ak|eiϕk be the kth Fourier coefficient for A and similarly b̂k =

|b̂k|eiψk for B. Then since A,B are homometric, |âk| = |b̂k|. Hence for C = A∪B,
one gets

ĉk = âk + b̂k = |âk|
(
eiϕk + eiψk

)
= |âk| cos

ϕk − ψk
2

ei
ϕk+ψk

2

hence the sum of the phases (taken modulo 2π) is∑ ϕk + ψk
2

=
1

2

(∑
ϕk +

∑
ψk
)

= 0 mod π.

Fig. 1. Sum and phase of two complex numbers with the same length.

For instance for the diatonic partition 2+3+7 = 12, reunions of homometric
dyads are coherent (though most products are 0). Counter-examples would be
for instance the chromatic dyad (01) for partition 3 + 4 + 5 = 12: in this case

â3â4â5 = 1−
√

3 < 0.

and the product is aligned, but not coherent.
Both properties (coherent / aligned) are invariant by transposition and in-

version. More precisely,
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Proposition 3 Coefficient products are transposition-invariant.
Inversion negates the imaginary part of a coefficient product, while the real

part is inversion-invariant.

Proof. For transposition let us have two pc-sets in Zn such that B = A + τ .
Denoting their Fourier coefficients by âk, b̂k we derive

b̂k = âke
−2iπkτ/n

and hence

b̂k1 b̂k2 . . . b̂kr = âk1 âk2 . . . e
−2iπk1τ/ne−2iπk2τ/n . . .

= âk1 âk2 . . . e
−2iπ(k1+k2+... )τ/n

= âk1 âk2 . . . e
−2iπnτ/n = âk1 âk2 . . . âkr

whenever k1 + k2 + · · · = n.

The inversion A 7→ −A just changes the signs of all phases, conjugating all
Fourier coefficients, which leaves the real part invariant and inverts the imaginary
part. For other inversions A 7→ τ−A, notice it is the previous inversion combined
with a transposition.

It follows easily that any inversionally symmetric pc-set has aligned product. We
can be more specific in the following case:

Proposition 4 For generated scales a regular product is aligned, the sign de-
pending on a product of sines.

Proof. According to the last proposition we can assume that the generated scale
begins on 0:

A = {0, f, 2f, 3f, . . . (d− 1)f} if the generator is f and the cardinality d.

Then we compute âk =
∑d−1
j=0 e

−2iπkjf/n, a geometric sum:

âk =
e−2iπdkf/n − 1

e−2iπkf/n − 1
=
e−iπdkf/n(e−iπdkf/n − e+iπdkf/n)

e−iπkf/n(e−iπkf/n − e+iπkf/n)
= e−i(d−1)kfπ/n

sin(dkfπ/n)

sin(kfπ/n)
.

Hence, depending on the sign of the sines quotient, the phase is either
ϕk = −(d− 1)fkπ/n or ϕk = −(d− 1)fkπ/n+ π, or in normalized format

Φk = − (d− 1)fk

2
or − (d− 1)fk

2
+
n

2
.

Then for any partition n = k1+k2+. . . , the sum of the − (d− 1)fki
2

is a multiple

of n/2 and so is the sum of all phases, meaning that the coefficient product is
real.



6 J. Yust, E. Amiot

These two cases are exemplified by the diatonic and pentatonic scales in 12 TeT,
which are fifth- (or fourth-) generated: n = 12, f = 5 (or 7), and d = 5 or 7.
The sine in the denominator is sin(kfπ/n) = sin(5kπ/12), which is positive for
k = 2, negative for k = 3, 7; and the numerator sin(dkfπ/n) = sin(52kπ/12) =
sin(π/12) or sin(5× 7kπ/12) = − sin(π/12), hence the result.

NB: generally, albeit random pc-sets usually do not satisfy coherence, the
previous propositions help us understand informally why man-made music may:
it is not uncommon to compose using pc-sets built up from small units or bricks,
like dyads, symmetric tetrachords, bits of generated scales, or pc-sets close to
these, etc.

3 Example: Tonal pitch-class distributions

Pitch-class distributions of tonal music have a number of regular features ob-
servable through the DFT, in particular high magnitudes of the fifth and third
coefficients [16]. Phases of the fifth and third coefficients can be used to estimate
the key of a passage [15]. Tonal distributions also have a clearly observable regu-
larity in one of the coefficient products, â2â3â7. This means that the pitch-class
watermarks of tonal music include not only the spectral features relating to inter-
vallic content (diatonicity and triadicity) but also at least this one non-spectral
feature, determined by the phases of â2, â3, and â5.

Figure 2 shows all of the coefficient products for a windowed analysis of
Bach’s 3-part inventions, excluding those with duplicated coefficients.4 Only the
inventions in 4/4 are included, and the distributions are taken over all four-beat
windows in the piece. In addition to always being the largest coefficient product
in all but one case (no. 3), the â2â3â7 values also are most consistent in phase,
staying close to the positive real axis. Despite being small, the imaginary values
also reliably distinguish mode, with the two minor mode pieces (numbers 4 and
9) having the only consistently positive imaginary values.

In Figure 2 we observe that when the average coefficient product is reliably
distinct from the origin, it is usually also approximately coherent, with the main
exceptions being in one product, â3â4â5. This might be explained by the lim-
ited macroharmony tonal music, where macroharmony is Tymoczko’s term for
“the total collection of notes used over moderate spans of musical time” [11,
p.4]. Specifically, tonal music usually deals with a limited number of pitches in
circulation at a time, so it is impossible to differentially weight all twelve pitch
classes. Rather, the composer chooses a limited set of pitches (the macrohar-
mony) and differentially weights these according to their status in the key and
chord, and omits the rest. We therefore expect to see a pitch-class distribution
with a “floor.” We can model such distributions by imagining starting with the

4 For example, â5â5â2 or â4â4â4. These are also regular coefficient products and can
have interesting applications, but we focus instead on products of three unique co-
efficients here.
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Fig. 2. Average values of coefficient products from common-time Bach three-part in-
ventions. We take averages over all four-beat windows. Standard errors, shown with
bars, are corrected for overlap.

full space of distributions with values balanced around zero and normalized to
lie between −1 and 1, then applying a clipping filter to eliminate negative values:

x 7→

{
x for x > 0

0 otherwise
.

This is the product of identity by a step function, and can also be expressed as
(x+ |x|)/2.

In the space of continuous maps on (say) [−1, 1], with hermitian norm f 7→√∫ 1

−1 f
2, we get a decent quadratic approximation to this map with x 7→ (3 +

16x+ 15x2)/32, as can be seen in Fig. 3.
Given some distribution in the full space, then, the corresponding clipped

distribution will differ primarily by the addition of a positive quadratic term.
The DFT of this quadratic term will consist of the products of coefficients in
the original distribution, and adding these to the coefficients of the original
distribution will push all coefficient products in the direction of coherence.

For instance, if we take the sum of pitch classes from a large number of major-
key pieces transposed to C major we get a pitch-class distribution like the one in
Figure 4 (here we use the distribution obtained in [1], but very similar ones could
be taken from many other studies). We can approximately resynthesize this from
just its two largest Fourier coefficients, â3 and â5, by taking a sum of these and
applying the clipping filter. The result is similar to the original distribution, in
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Fig. 3. The clipping function and its best quadratic approximation.

particular recovering an â2 similar to the one in the original distribution. The
main difference is that the derived distribution has an â4 which is suppressed in
the original distribution. These â2 and â4 components of the derived distribu-
tion are attributable to the squared term in the quadratic approximation of the
clipping function.5

We might interpret the data in Figure 2, then, with the claim that the entire
pitch-class distribution is determined roughly by â3, â4, and â5, plus the as-
sumption of limited macroharmony. The limited macroharmony (clipping) filter
accounts for the observed values of â1 and â2, which make coherent products
with the other coefficients (â1â4â7 and â2â3â7).
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Fig. 4. On the left, a major-key pitch-class distribution from [1], the sum of its 3rd
and 5th Fourier coefficients, and the clipping filter applied to this. On the right, the
spectra of these.

The coefficient products â3â4â5 and â2â3â7 both involve the third and fifth
coefficients. We might contrast coherence/incoherence in these two products by
considering how intervals that are farther apart in â3 and â5, tritones and semi-
tones, appear in sets that are otherwise relatively concentrated in these dimen-
sions. Figure 5 shows the â3/â5 phase space, a toroidal space where the coor-
dinates are phases of different DFT coefficients [2, 12]. There are two relatively

5 A complication here is that there are two contributors to â2 in the quadratic term,
â3â7 and â5â5, and the latter is larger in the distribution derived using the clipping
filter. In the original distribution, the phase of â2 is closer to that of â3â7 than â5â5.
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parsimonious ways to connect semitones and tritones, along SW-NE or NW-SE
diagonals. The former is associated with diatonic semitones and tritones, the
latter with chromatic semitones and tritones along the minor-thirds axis. ([12]
refers to these as “intervallic axes.”) We suggest the term “blues tritone” for
NW-SE orientation because it could result from adding blue notes to a penta-
tonic scale. If pitch classes tend to cluster around a diatonic SW-NE diagonal, it
will have a positive â2â3â7 and negative â3â4â5, which is what we observe in the
Bach inventions. If, on the other hand, they cluster around a chromatic/octatonic
NW-SE diagonal, we will see the opposite pattern, a negative â2â3â7 and pos-
itive â3â4â5. This pattern, although it can involve equally large values of |â3|
and |â5|, would be rarely observed in eighteenth-century tonal pitch-class dis-
tributions. We will use the term “diatonic” to refer to the first type of set, and
“anti-diatonic” the latter type.
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Fig. 5. Different kinds of semitones and tritone in â3/â5 phase space associated with
positive real â2â3â7 (diatonic semitone and tritone) and positive real â3â4â5 (chromatic
semitone and blues tritone).

The following example shows that these non-spectral distinctions between
diatonic and anti-diatonic material remain salient for twentieth composers in
non-tonal contexts.

4 Example: All-interval tetrachords and Takemitsu

The all-interval tetrachords (AITs), set classes (0146) and (0137), are a unique
example of small-cardinality Z-related sets, and as such are of particular interest
for musically exploring non-spectral properties of set types. The four AIT set
types occupy unique locations in â1â2â9 and â2â3â7 spaces. These are products
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that do not involve â4 or â8, which means that the eight-note chromatic comple-
ment of a tetrachord is equal to its four-note octatonic complement (because the
octatonic is nil on all coefficients). Therefore the AIT pairs (0137)-(0256) and
(0146)-(0467), which are octatonic complements, behave like ordinary comple-
ments in these spaces, with equal magnitude and opposite phases. This special
relationship between AITs and the octatonic relates to the CUP property ex-
plored by Childs [6] and Capuzzo’s Q-operations [5].

The differences in â2â3â7 explain how the AITs differ in quality despite
their equivalent intervallic content. The imaginary dimension is associated with
the major/minor contrast. Inversion reverses the sign of the imaginary part, so
(0137) and (0467) have the same real part in â2â3â7, but opposite imaginary
part. The “major” (0467) and (0256) have negative imaginary values. The real
dimension distinguishes whether the thirds and fifth are arranged to imply a di-
atonic semitone and tritone (positive) or a chromatic semitone and blues tritone
(negative). The (0137) tetrachords are distinguished by their triadic subset and
the (0146)s by the distinctive non-diatonic subset, (014).

Takemitsu’s solo flute piece, “Air,” uses an all-interval tetrachord as its
principal motive, and the major/minor and diatonic/anti-diatonic contrasts of
â2â3â7 space are important to the harmonic language of the piece. Figure 6
shows a parsing of the first 14 measures, and Figure 7 plots these in â2â3â7
space. The central thematic role of (0467) is immediately apparent in its promi-
nent statement in the opening and in m. 6. The opening gesture also defines a
larger set, (014578), which is similar to (0467) in â2â3â7: it is close in phase, and
slightly farther from the origin. This larger set returns in m. 9. Altogether, this
establishes a departure-return script in which the principal motive alternates
with harmonically contrasting material.

Octatonic and whole-tone material are essential to Takemitsu’s harmonic
methods even though complete octatonic and whole-tone collections never ap-
pear. These collections are special in that they have â2 = â3 = â5 = 0. This
makes them useful to create a kind of negative space: while adding a complete
octatonic or whole-tone collection has no effect on â2â3â7, adding an incomplete
collection has the effect of negating the missing pitch class(es), which may be un-
derstood as a kind of partial complementation [13]. The set (024689), for exam-
ple, is a whole-tone collection plus an “anti-semitone” (the added note and omit-
ted note are a semitone apart): (02468t)\t ∪ 9. The set type (023468), directly
following it, similarly, is a whole-tone collection plus “anti-fifth”: (02468t)\t ∪
3. The next set, (0346), is a diminished seventh plus an anti-fifth, and is there-
fore has the same â2â3â7 value. Whereas dyads are always on the real axis in a
coefficient product space, anti-dyads are always on the imaginary axis.

Takemitsu’s first contrast juxtaposes the principal motive with these two
whole-tone-plus-anti-dyad collections, which neutralize the diatonic element, and
highlight major/minor contrasts on the imaginary axis. In particular, the large
minor value of (024689) contrasts with the large major value of the principal
motive.
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Fig. 6. Meas. 1–14 of Takemitsu’s Air for solo flute, with important 4–6 note sets
identified.
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Fig. 7. Pitch-class sets from Air in â2â3â7 space. Diamonds show the AITs. Dots and
squares show set types that appear in the passage.

The second contrast takes us into the anti-diatonic region through the use of
octatonic collections. This is the first place where Takemitsu uses the contrast-
ing AITs, as well as a transposition of the initial (0467). These combine into
larger octatonic sets, the octatonic complement of (034) in m. 7 and the octa-
tonic complement of (046) in m. 8. The entire two measures constitute a single
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hexachord, which is the octatonic complement of (04). The two pentachords are
equivalent in â2â3â7 phase to two sets that we have already heard (the principal
motivic hexachord in m. 1, and the first contrasting hexachord in m. 2). Their
combination, however, introduces a new anti-diatonic element. As if to under-
score the point, Takemitsu restates this anti-diatonic octatonic hexachord more
compactly in m. 10, immediately after repeating the head motive in m. 9.

The last gesture uses a pitch-class set that is harder to easily characterize, yet
Takemitsu communicates a sense of return with the rhythmic broadening, the
clear phrase break, and the return to the high G]/A[ that marked the registral
goal of the basic idea in mm. 1 and 9. The â2â3â7 value is consistent with this:
it is large and close in phase to (0467) and (014578).

5 Conclusion

Coefficient products were first discovered empirically in [14, 15], in the form of
coherent â2â3â7 in tonal distributions, which were at first difficult to explain. The
present study reveals some of the general properties of coefficient products and
why we might observe coherent products in distributions from real music. While
Fourier coefficients are mathematically independent in principle, the constraints
on real distributions mean that they are not always independent in practice. In
tonal distributions, the presence of significant â2 may actually be a mathematical
artifact of â5, â3, and limited-macroharmony constraints. At the same time, a
significant â4 coefficient may actually be concealed by similar artifacts.

We have also revealed a potential wealth of other applications of coefficient
products, including analysis of Z-related sets, post-tonal music, and distinguish-
ing anti-diatonic sets, particularly those like the pentatonic that share a large
|â5| with diatonic sets.
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