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Abstract. This paper explores the classification of metric types us-
ing different feature representations. Using weighted timepoint, DFT,
and autocorrelation, we train feedforward neural networks to distinguish
allemandes, courantes, sarabandes, and gavottes in the Yale-Classical
Archives Corpus. Autocorrelation and DFT models perform better than
a baseline, with DFT consistently better by a small amount.
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Music theorists typically define meter as an abstract hierarchy, either as a
hierarchical accent pattern on an underlying pulse stream [9] or a containment
hierarchy of timespans [17]; see [5]. This is sufficient to represent musical time
signatures, but musical practice also recognizes metrical types with the same
time signatures and/or metrical hierarchies, for which these kinds of theories are
therefore too abstract. Traditional dance meters of eighteenth-century Western
Europe are a convenient example of this: Metric types which sometimes share
metrical hierarchies are nonetheless distinguishable in practice. In this paper
we explore the classification of allemandes, courantes, sarabandes, and gavottes
using machine learning methods and three feature representations, a baseline
weighted timepoint representation, autocorrelation, and discrete Fourier trans-
form (DFT). Autocorrelation may be understood as an interval-based represen-
tation, while DFT is a periodicity-based representation.

After a review of both techniques and a discussion on the corpus preparation,
we report on three feedforward neural networks models trained on data from the
Yale Classical Archives Corpus [16] using the three representations and evaluated
the models based on their ability to classify the four different baroque dance
types.

1 Procedure

1.1 DFT

The DFT transfers a signal from the time domain to the frequency domain. With
a discrete time-domain signal represented as a vector X = (x1, x2, . . . ) of length
N , the DFT is a complex-valued vector, F (X), defined by
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Fk(X) =

N−1∑
n=0

aje
−i2πkn/N =

N−1∑
j=0

xj(cos(2πkj/N) + i sin(2πkj/N)) (1)

Each place in the DFT vector, k, represents a periodic function of period
N/k. We are only interested in the size of each of these, so we take the norm of
each component, |Fk(X)| (eliminating the phase) and divide by |F0(X)| so that
all values range from 0 to 1. The DFT is an orthogonal transform; each of the
Fk(X) for 1 ≤ k ≤ N/2 is independent of the others.1 Therefore, it partitions the
total weight of the time-domain signal into all the possible frequencies dividing
the fixed period N . When k divides N of these will coincide with traditional
metrical periodicities. The DFT has been used for meter detection in audio
signals [11, 7] and it has been used in music analysis to relate meter to form [4]
and to describe rhythmic canons in Steve Reich’s music [18, 19].

1.2 Autocorrelation

Autocorrelation is a correlation of a signal with itself at every possible lag value.
It acts like a rhythmic interval vector, listing the weighted number of occurrences
of each rhythmic interval (temporal distance between onsets). More precisely the
autocorrelation is a vector R(X) defined by

Rk(X) =
1

σ2
X

N−1∑
i=0

(xi − x̄)(xi+k − x̄) (2)

A number of studies demonstrate the use of autocorrelation to identify meter in
symbolic (score or MIDI) data [3, 14, 15, 12] and audio [6].

Autocorrelation is closely related to the DFT. Specifically, it can be un-
derstood as squaring the signal in the frequency domain by appealing to the
convolution theorem; see [2]. To make this precise, accounting for the normal-
ization in Equation 2, define X ′ as the zero-mean version of X, i.e. X ′ = X − x̄.
This affects only the zeroth DFT coefficient. Then

R(X) =
1

σ2
XN

F (|F (X ′)|2) (3)

The function (1/N)F (X) is the inverse Fourier transform, so this means that
after removing the phase information autocorrelation returns the data to the
time domain. The autocorrelation is therefore a vector of time intervals, whereas
the DFT is a vector of frequencies, but otherwise contain essentially the same
information.

1 For k > N/2, Fk(X) and FN−k(X) have equal magnitude and opposite phase for a
real-valued signal, X, by the aliasing principle.
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1.3 Corpus and Data Preparation

The Yale Classical Archives Corpus (YCAC) is comprised of “salami slices” of
MIDI performance data [16]. A slice occurs everywhere that a new note is in-
troduced, or a note ceases to sound. We isolated pieces in the YCAC by Bach
with “allemande,” “courante,” “sarabande,” or “gavotte” in the title. This pro-
cedure found 76 pieces, consisting of 90,688 pitch slices altogether (Table 1.3).
In an attempt to emphasize newly introduced notes [13], notes that were con-
tained in the immediately prior slice were removed. Sarabandes and courantes
are in triple meters, usually 3/4, and allemande and gavottes are in duple me-
ter, usually 4/4 and 2/2. Each dance style also has a corresponding rhythmic
character: sarabandes accent beat 2, gavottes have long pick ups (starting half-
way through a measure), allemandes have quick, sixteenth note pick-ups, and
courantes frequently contain metric ambiguities.

Table 1. Corpus

Allemande Sarabande Gavotte Courante Total

Piece count 24 22 8 22 76
Total slices 16,833 9,249 4,014 15,068 45,344

Ave. slices per piece 701 429 502 685 2,317

Length in ♩ 4,228 2,924 1,366 4,981 13,468

1.4 Weighting, windowing, and training

Perceptual theories of meter finding (e.g. [9, 10]) often claim that a variety of
musical features influence meter induction by imparting “phenomenal accent”
to time points. We devised a relatively simple weighting scheme on slices based
on three factors: the number of notes, duration, and bass notes. Recall that
notes are removed if they occur in a preceding slice, so the first factor counts
the number of new pitches introduced at a given time point. The duration factor
represents the assumption that slices of longer duration will tend to have more
metrical weight (“agogic accent”). We include a weighting parameter, δ, which
we multiply by the duration of each slice in quarter notes. The register factor
reflects the assumption that new bass notes will tend to be metrically weighted.
We define a bass note as the lowest note within γ quarter notes before or after
the given onset time. We add a constant, τ , for any slice where a bass note
occurs. There are thus has three adjustable parameters, δ, γ, and τ . Figure 1
shows a sample score fragment with calculated weights for selected slices with
(δ, γ, τ) set to (1, 2, 3). During the training process we tuned the parameters to
assess their impact.

We transformed the extracted chord slices to time-series data, encoding each
score as an array dividing the full duration of the piece into 32nd notes. We placed
the rhythmic weight for each slice in the time-series array at its corresponding
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New pitches: 1
Duration: 0.25

Bass: No
Weight: 1.25

New pitches: 2
Duration: 0.25
Bass: Yes (+ 3)
Weight: 5.25

New pitches: 3
Duration: 0.25
Bass: No
Weight: 3.25

New pitches: 1
Duration: 0.25
Bass: No
Weight: 1.25

New pitches: 2
Duration: 0.25
Bass: No
Weight: 2.25

Fig. 1. Sample score with selected slices, showing the data structure and time-point
weighting procedure with (δ, γ, τ) = (1, 2, 3).

onset position, and put zeros elsewhere. Table 1.3 shows the number of quarter
notes in each of the four metric types. To prevent wraparound for the DFT,
windows were zero-padded with 96 additional 0s at the end of each vector.

For each metric type, we extracted 1,000 random windows, each 12 quarter
notes in length. Our corpus thus consisted of 4,000 time-series windows and
4,000 corresponding labels identifying the correct metric type. We separated
950 samples of each type for training data, leaving 200 windows, 50 windows of
each metric type, for evaluating the models. We fed the three inputs – baseline
weights, autocorrelations, and DFTs – into the same neural network architecture:
an input layer of 192, and 2 hidden layers of 30 and 10 neurons respectively each
using relu activation [1]. We also used the Adam optimization algorithm [8]. The
models were trained with 10 epochs on the training corpus (of 3,800 windows),
repeated for each different tuning of weighting parameters (δ, γ, τ).

2 Results

Table 2 reports the evaluation scores as categorical accuracy, the percent of cor-
rect predictions based on the input. We found, as in [12], that adjusting the
weighting parameters (δ, γ, τ) only alters predictions modestly and with no ob-
vious trends. Even eliminating the duration weightings (δ) and bass note weight-
ings (τ) entirely does not reduce performance, except in one case (eliminating
both features in the autocorrelation condition). Therefore, in the DFT condition,
where identification was the best, it appears to be based entirely on the basic
rhythm and number of new pitches.

Excluding trials with 0-weighted features, the autocorrelation models ranged
from 66%–77% with an average of 72% accuracy, and the DFT models ranged
from 70%–80% with an average of 75% accuracy. Both models performed consis-
tently around the same level with the DFT model modestly better. The control
averaged 46% accuracy. The confusion matrix in Table 2 shows that gavottes
were better classified than all other types, probably because there were fewer
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Table 2. Categorical accuracy predictions

δ 1 0 1 2 3 4 5 6 0 1 2 3 4 5 6
τ 0 1 2 3 4 5 6 1 0 1 2 3 4 5 6

γ = 2
Control .51 .47 .47 .47 .41 .40 .40 .49 .47 .48 .48 .51 .49 .48 .47 .47 .40 .40 .47 .44 .46

DFT .80 .78 .80 .72 .68 .70 .73 .77 .78 .76 .79 .74 .76 .77 .79 .78 .75 .74 .75 .69 .73
Autocorr. .75 .73 .71 .71 .70 .74 .75 .73 .73 .71 .73 .72 .72 .69 .44 .73 .66 .73 .69 .69 .70

γ = 3
Control – .49 .48 .44 .50 .47 .44 .50 .49 .56 .45 .50 .49 .44 – .49 .52 .44 .47 .43 .40

DFT – .79 .75 .75 .76 .76 .74 .80 .79 .79 .75 .75 .80 .81 – .79 .75 .74 .75 .74 .71
Autocorr. – .72 .73 .76 .76 .77 .76 .73 .72 .77 .73 .70 .71 .74 – .72 .73 .72 .75 .74 .72

gavottes in the data set, so the classifier was more likely to be trained on ex-
cerpts from the same piece used in the test, and although these would not have
been exactly the same window, they may have had similar traits.

Table 3. Confusion matrix for DFT/autocorrelation, all with (δ, γ, τ) = (6, 3, 1).

Allemande Courante Gavotte Sarabande Accuracy (n = 50)

Allemande 38/34 6/7 0/2 6/7 76%/68%
Courante 4/9 32/35 3/2 11/4 64%/70%
Gavotte 0/0 0/5 50/44 0/1 92%/92%

Sarabande 2/5 7/7 0/4 41/34 82%/68%

Figure 2 shows the average DFTs for (δ, γ, τ) = (6, 3, 1) from which we can
infer some of the differences that the classifier may have relied on to distinguish
metric types.2 The main differences are that allemandes are generally flat down
to the sixteenth-note level, meaning that higher metrical levels were not very
salient in these pieces. Higher metrical levels were better detected in sarabandes
and gavottes, but differences relating to distinctions between duple and triple
meter (in coefficients 6, 8, and 12) are weak at best. Therefore, the classifier is
likely relying more on the salience of different metrical levels rather than differ-
ences between the duple and triple metrical hierarchies that would be emphasized
in traditional metric theory.
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13. White, C.W.: Meter’s influence on theoretical and corpus-derived harmonic gram-
mars. Indiana Theory 35(1–2), 93–116 (2018).

14. White, C.W.: Autocorrelation of pitch-event vectors in meter finding. In M. Mon-
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