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Recent research has demonstrated a number of applications of the discrete Fourier transform
to cyclic rhythms, addressing amongst other issues questions about conceptualizations of me-
ter. One can apply a similar operation, the Hadamard transform, when the rhythmic cycle is
a power of two. This paper explores some analytical applications of the Hadamard transform
to repertoires where pure-duple metrical settings are the norm, such as American ragtime
and Balinese gamelan. I compare it to the Fourier transform and highlight special features
of the Hadamard transform of particular theoretical value, such as its sorting of rhythmic
information into metrical levels, which leads to methods of classifying and quantifying syn-
copation.
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This article introduces the use of Hadamard transforms of rhythms in pure-duple
meters. “Pure duple” refers to cycle lengths in powers of two, where each division of
the cycle by a power of two has some metrical significance. A substantial proportion of
music across a wide range of musical styles and traditions uses pure-duple meters. The
Hadamard transform is a lossless transformation of a rhythm into a series of coefficients
that partition into distinct metrical levels and can be understood to measure different
kinds of syncopation, specific to the given metrical level. Because Hadamard transforms
are related to discrete Fourier transforms (DFTs), the established technique of DFT
analysis of rhythms can inform the similar use of Hadamard transforms. The two are
not equivalent however, making Hadamard transforms useful where considerations of
metrical level are more important than generalizing over rotations.

The article begins by introducing the vector representation of rhythms and the
Hadamard transform and the musical interpretation of the Hadamard coefficients, and
then compares Hadamard transforms and DFTs. The second part of the article presents
three theoretical and analytical applications: considering important Afro-diasporic time-
lines identified by Toussaint (2013), concepts of syncopation in ragtime, and analyzing
Balinese melodies.
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1. Hadamard transforms, discrete Fourier transforms, syncopation, and
rhythmic qualities

1.1. Hadamard transform of pure duple rhythms

For the purpose of this article a rhythm is defined as a vector of length 2n, where each
place in the vector is a place in the rhythmic cycle, starting from 0 = the downbeat, and
the presence of a rhythmic onset is indicated by a 1, the absence by a 0. The Son clave
rhythm for instance:

�
��
�
�� C

�
� C, is represented by (1001001000101000). Alternately, we

can allow for other possible values besides 1 and 0, representing for example the number
of onsets at a particular location (for a multipart rhythm, for instance), or any sort of
weighting of rhythmic values.

The Hadamard transform (AKA the Walsh-Hadamard transform) is the multiplication
of this vector by the nth Hadamard matrix. This is defined recursively as

Hn = H1 ⊗Hn−1 (1)

where

H1 =

(
+ +
+ −

)
(2)

and “⊗” denotes the Kronecker product of matrices (Wang 2007). (I use “+” and “−”
here as a shorthand for +1 and −1.) In plain language: we duplicate the (n−1)th matrix
four times in a 2 × 2 grid, multiplying it by −1 in the lower righthand corner.

The next few Hadamard matrices are
+ + + +
+ − + −
+ + − −
+ − − +

 (3)



+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +
+ − − + − + + −


(4)
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+ + + + + + + + + + + + + + + +
+ − + − + − + − + − + − + − + −
+ + − − + + − − + + − − + + − −
+ − − + + − − + + − − + + − − +
+ + + + − − − − + + + + − − − −
+ − + − − + − + + − + − − + − +
+ + − − − − + + + + − − − − + +
+ − − + − + + − + − − + − + + −
+ + + + + + + + − − − − − − − −
+ − + − + − + − − + − + − + − +
+ + − − + + − − − − + + − − + +
+ − − + + − − + − + + − − + + −
+ + + + − − − − − − − − + + + +
+ − + − − + − + − + − + + − + −
+ + − − − − + + − − + + + + − −
+ − − + − + + − − + + − + − − +



(5)

I will represent the result of multiplying a rhythm vector by this matrix as a Hadamard
vector ~h, with Hadamard coefficients h0–h2n−1.

This article explores possible uses of Hadamard transforms for theory and analysis of
rhythms. One important property, which it shares with the discrete Fourier transform,
is its invertibility. Applying the Hadamard transform twice returns the original rhythm
(times a constant). It is therefore a lossless transformation, a reorganization of rhythmic
information into a form that reveals music-theoretically useful properties. Our task here
is to specify some of the music-theoretical meaning of the coefficients produced by this
transform.

Each coefficient of the Hadamard transform is determined by the corresponding row
in the matrix. We can think of these rows as rhythms by replacing the +s and −s with
1s and 0s. I will call these the Walsh rhythms. For instance, the Hadamard vector (row
vector) for h7 is + −− + − + +− and its Walsh rhythm is 10010110.

The relationship of each Hadamard coefficient to duple meter is best understood by
numbering them in binary digits. For instance, the binary digit for h2 is 10 at 2n = 4,
010 at 2n = 8, 0010 at 2n = 16, and so on. The Walsh rhythms for these are 1100,
11001100, and 1100110011001100 respectively. The places of the binary digit represent
metrical levels. A zero in the binary digit indicates repetition at that level, and a 1
indicates contrast at that level. The 1s place in the binary digit represents metrical level
1. Since h2 has a zero in the 1s place, there is repetition at this level. The 2s place
represents metrical level 2, which is where h2 has contrasts. The 4s place of the binary
digit is metrical level 3; h2 has repetition at this and all higher levels. The simplest Walsh
rhythms are those indexed in powers of 2. For 2n = 8, the rhythm for h1 is 10101010,
the rhythm for h2 is 11001100, and the rhythm for h4 is 11110000. Other coefficients mix
these, having contrasts at multiple levels. For instance, h3 has contrasts at levels 1 and
2, with Walsh rhythm 10011001.

The metrical level of a coefficient is that of the leading 1 in its binary digit. So h2 and
h3 are level 2, h4–h7 are level 3, and so on. The concept of metrical level is therefore
a grouping of Hadamard coefficients, which can be represented by a binary digit with
wildcards (∗). For n = 3, level 1 is 001, level 2 is 01∗ and level 3 is 1 ∗ ∗. Other ways of
grouping may sometimes also be of use, as we will see in Section 2.4.
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Hadamard coefficients are closely related with a simple way of defining syncopation,
which I will call onbeatness. For a given metrical level, we define “on-beat” and “off-
beat” positions, and subtract the number of off-beats from the number of on-beats.
Higher, positive onbeatness then indicates unsyncopated rhythms, and lower, negative
onbeatness, syncopated rhythms. The on-beats at level l are multiples of 2l+1, and the
off-beats are halfway between these, the multiples of 2l that are not on-beats. Level 1
onbeatness is then equivalent to h1.1 Level 2 onbeatness is equal to the average of h2 and
h3, level 3 onbeatness to the average of h4–h7, and so on. Because this measurement of
syncopation is agnostic to the lower-level off-beats, at higher levels the measurement is
divided up between more and more Hadamard coefficients, each of which has a different
pattern of +s and −s on the lower-level off-beats. These are ultimately balanced across
all the coefficients at that level.

For example, the rhythm 11100110 has onbeatness 1 at level 1, −1 at level 2, and 1 at
level 3. Its full Hadamard transform is (5, 1, 1,−3, 1, 1, 1, 1).

As Toussaint (2013, 67–68) points out, traditional definitions of syncopations are nu-
merous, vague, and conflicting. One element often included in definitions of syncopation,
missing from the simple definition above, is that an off-beat note gives a greater sense
of syncopation when a subsequent on-beat position is not articulated. Section 2.2 below
will consider how such a concept of syncopation may be defined and how it relates to the
Hadamard coefficients. Toussaint’s (2013, 68–70) own preferred measure of syncopation,
metrical expectedness, does not have such a sequential element, and therefore is closely
related to onbeatness. It can be obtained by multiplying the onbeatness at each level by
a constant, and adding them.2

The idea of syncopation in the form of onbeatness can also be extended to specific
Hadamard coefficients by considering the full binary representation. For instance, h9 (in
binary 1001) involves levels 1 and 4. Its Hadamard vector is +−+−+−+−−+−+−+−+
which may be understood as subtracting the level-1 onbeatness of the second half of the
rhythm from the level-1 onbeatness of the first half. The division of the rhythm into
halves is the level-4 aspect of this coefficient.

1.2. Sequency order and discrete Fourier transform

Hadamard transforms are similar to discrete Fourier transforms (DFTs), which have been
used in a number of studies to analyze rhythms and theorize problems relating to meter
and rhythmic similarity (Amiot 2016; Yust 2021b,a). The relationship is made most clear
by rearranging the rows of the Hadamard matrix in what is called sequency order. For
2n = 8 the sequency order is h0-h4-h6-h2-h3-h7-h5-h1:



+ + + + + + + +
+ + + + − − − −
+ + − − − − + +
+ + − − + + − −
+ − − + + − − +
+ − − + − + + −
+ − + − − + − +
+ − + − + − + −


(6)

1This is essentially the same as Toussiant’s (2013, 99–106) “off-beatness” measure.
2The constants are (2n+1 − 1)/2n at level 0 (cardinality) and (2n−l+1 − 1)/2n−l+1 at level 1 ≤ l ≤ n.
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The sequency ordering can be obtained by alternately multiplying the second half of the
row by −1 and rotating it, or by changing one digit at a time in the binary numbering of
the Hadamard coefficients using the Gray code ordering (Ahmed, Rao, and Abdussattar
1971; Aung, Ng, and Rahardja 2008). Changing the first digit of the binary pattern
multiplies the second half of the row by −1, while changing the digit after the first 1 of
the binary numbering rotates the pattern (by an amount corresponding to the position
of that digit). Sequency arranges the Walsh rhythms by their number of zero crossings,
the number of times they switch from + to − or vice versa (Larsen and Crawford 1977;
Wang 2007). The odd-numbered rows of the sequency ordering end on a −, so if they are
conceived as cyclic (as they are in our rhythmic interpretation), we can count one more
zero crossing at the wraparound. In this sense the zero crossings group the rows into
odd-even pairs, and these are rotations of one another. Each odd-even pair (a− 1)-a in
sequency order (1 ≤ a ≤ 2n−1 −1) corresponds to DFT coefficient a/2, while the zeroeth
coefficients correspond and the last (h1) corresponds to DFT coefficient 2n−1.

Consider, for example, h7 and h5, with Walsh rhythms 10010110 and 10100101. These
are adjacent in sequency order, and the latter is a rotation of the former forward two
places. We will find these coefficients especially interesting in the applications below.
They are both associated with the 3rd DFT coefficient, and indeed their rhythms have
maximum values on this coefficient for four-note rhythms. Therefore rhythms that ap-
proximate divisions of the cycle into three or five parts, the tresillo rhythm 10010010 and
cinquillo rhythm 10110110, load heavily on h7 or h5. Because the two Walsh rhythms
are related by rotation, the magnitudes of all DFT coefficients are the same and only
the phases differ. The phases are oblique (differing by π/2) on the 3rd DFT coefficient,
so that each is associated with a different axis of the complex plane for this coefficient.
(These are not the real and imaginary axes but a rotation that arranges them symmet-
rically around 0.) These Hadamard coefficients might therefore be loosely understood as
a simple re-parametrization of the complex space of the 3rd DFT coefficient, but this is
only approximately true, because the Hadamard vectors have non-zero values on the 1st
DFT coefficient also. These kinds of associations can be made for all Hadamard coeffi-
cients, but the approximation becomes less good as the metrical level of the coefficient
gets higher.

Perhaps the most important property in musical applications of the DFT (such as
Lewin 2001; Quinn 2006; Yust 2016) is that the magnitudes of DFT components are
invariant with respect to rotation. In the domain of pitch-class, this means that the DFT
isolates properties of pitch-class sets that are invariant with respect to transposition.
The DFT magnitudes, which are also invariant with respect to reflection (inversion) and
general homometry (Z-relation), might be understood as the purely intervallic properties
of a collection. This can be made precise by thinking of the DFT magnitudes as what is
preserved in the autocorrelation of the pitch-class or rhythmic vector. By the convolu-
tion theorem, autocorrelation corresponds to multiplication of conjugates in the Fourier
realm. Amiot’s (2016) theorem 1.11 shows that this property (turning convolution into
multiplication) is unique to the DFT.

The Hadamard transform therefore does not have this property. Only h0 is invariant
with respect to rotations. This is consistent with the idea that the Hadamard transform
as measure types of syncopation in the form of onbeatness: rotation obviously does affect
how syncopated a rhythm is. In fact, we can get more specific: rotations by multiples of
2l do not affect the onbeatness at level l, and rotations of 2l−1 (or k2l + 2l−1) precisely
reverse the onbeatness. (For a fuller treatment of such properties see Whelchel and Guinn
1968.)
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Son clave (1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0)
Bossa nova (1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0)

Shiko (1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0)
Rumba clave (1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0)

Soukous (1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0)
Gahu (1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0)

Table 1. Toussaint’s (2013) six “good” rhythms (timelines)

2. Applications

2.1. Toussaint’s six clave rhythms

A central narrative thread of Toussaint’s (2013) The Geometry of Musical Rhythm are
the six clave or timeline rhythms given in Table 1. For Toussaint, these claim special
status as representatives of rhythmic “goodness,” and he analyzes them with multiple
computational tools over the course of the book.

As the shorthand names make clear, they are freely drawn from musical traditions
from Africa and Latin America. Toussaint bases his selection of these six rhythms on a
mixture of empirical/musicological criteria and formal criteria. The central musicological
motivation is to show that the clave rhythm of the Cuban son has special theoretical
features that might explain its musicological importance. The other five rhythms are
selected on the grounds of features they have in common with Son clave: they all have
five onsets in a 16-pulse cycle, and they all share four onsets with Son clave. All but one
rhythm (Gahu) differs from Son clave by a minimal “rhythmic voice leading,” meaning
that we need only move one onset by one unit to relate the rhythms. The remaining case,
Gahu, moves one onset by two units (and relates to another, Bossa nova, by a minimal
voice leading).

The Hadamard transforms of these rhythms are,

Rhythm Hadamard transform
h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

Son clave (5 3 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 3 5 )
Bossa nova (5 1 −1 −1 1 1 −1 3 1 1 −1 3 1 −3 3 3 )

Shiko (5 5 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 3 3 )
Rumba clave (5 1 −1 3 1 1 −1 −1 1 −3 −1 3 1 1 3 3 )

Soukous (5 1 −3 1 3 −1 −1 3 1 1 1 1 −1 −1 3 3 )
Gahu (5 3 −3 −1 1 −1 1 3 1 −1 1 3 1 −1 1 3 )

Figure 1 shows these as stacked columns in sequency order. Negative values for Son
clave tend to be preserved in other rhythms, and the other rhythms tend to preserve
which coefficients have large values (3 or 5) – specifically h1, h14, and h15. In particular,
Son clave has a maximal value of 5 (equal to its cardinality) for h15, and all other
rhythms have large values for this coefficient. Two other coefficients, h11 and h7, receive
large values for many of the rhythms, and these are precisely the coefficients adjacent to
h15 in sequency order. All of these facts relate to the minimal voice-leading and maximal
intersection relationships of Son clave to the whole set.

Son clave’s maximal value of 5 for h15 indicates that it is a subset of Walsh rhythm
15. The other large coefficients (h1 and h14) come from the same four-note subset: (1000
0010 0010 1000), which is a subset of all three Walsh rhythms (1, 14, and 15). It is
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generally true that the intersection of any two Walsh rhythms, numbered a and b, will
also be a subset of a third Walsh rhythm, numbered c, where c is given by the pointwise
sum of the binary representations of a and b mod 2.3 It therefore has a simple Hadamard
transform, with a maximum value of 2n−2 for h0, ha, hb, and hc.

The intersection of Walsh rhythms 1 and 14 also has an interpretation as the aug-
mentation of Walsh rhythm number 7. These is because doubling the coefficient number
(from 7 to 14) is equivalent to taking the first half of the vector and repeating each ele-
ment, and taking an intersection with h1 retains just the even numbered elements of the
vector. Walsh rhythm number 7 is significant because of its relationship to the tresillo,
(10010010) and cinquillo, (10110110) rhythms, noted in Section 1.2 above. The fact that
Son clave contains the augmentation of a tresillo rhythm as a subset is an important
feature for its usage in Latin jazz, in which such augmented tresillo rhythms are often
explicitly realized and are a useful way to unambiguously indicate the orientation of
clave.

The added onset (in position 3) that turns this four-note subset of Walsh rhythms 1,
14, and 15 to the five-note Son clave shifts the weight of the rhythm towards h15 and away
from h1 and h14. The particular choice of position 3 draws upon another relationship
between Walsh rhythms 7 and 15, which is that they differ just the first (level-4) element
binary representations and (as already observed) are adjacent in sequency order. This
means that Walsh rhythm 15 is the concatenation of Walsh rhythm 7 and its complement.
The added onset in position 3 of Son clave gives it a tresillo rhythm in its first half, which

3Each row of the Hadamard matrix is a multiple of the rows given by the 1s in its binary representation, and
each of these basic rows is order two. Therefore multiplying rows a and b will give row c. If there is a 1 in the

same place in both rows a and b, then, it will also occur in the same place in row c. This is the intersection of

Walsh rhythms a and b.
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Figure 1. Stacked Hadamard transforms of Toussaint’s six timeline rhythms. The dashed line shows the Son clave

coefficients.
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Latin jazz musicians call the “3-side” (Peñalosa 2009). In other words, Son clave may be
understood as a two-leveled tresillo. Its first three onsets are a small tresillo, and every
other onset (first, third, and fifth) make an augmented tresillo. The “3-2/2-3 concept” of
Latin jazz, the idea that Son clave is made up of two opposed halves, a ying and yang so
to speak (Peñalosa 2009), is therefore directly related to basic features of Walsh rhythm
15.

Other rhythms in Toussaint’s group share some of these properties of Son clave, and
some have their own related special properties. Shiko turns Son clave into an augmented
cinquillo, shifting weight from h15 to h1 (all onsets are at even positions). Three of the
other rhythms (Bossa nova, Rumba, and Gahu) shift energy to h11, which is a rotation
of h15. These are the two coefficients that relate to DFT coefficient 5, so these three
rhythms may be understood as preserving or enhancing the approximate evenness of
Son clave as a 5-in-16 rhythm. Bossa nova in particular maximizes this property, as a
maximally even 5-in-16 rhythm.

2.2. Unresolved syncopation

As a theory of syncopation, the onbeatness measure defined above simply counts the notes
occurring in metrically strong and weak positions at different levels. This is different than
the conventional idea that a syncopation involves not only the appearance of a note in a
weak beat, but also the absence of a note in a subsequent strong position. For instance,
the rhythms 10010000 and 10000001 have the same level-1 onbeatness of 0, but the first
would conventionally be regarded as syncopated while the second would not. This is
because the strongly positioned note directly follows the weak one in the second rhythm,
but not the first. Let us use the term unresolved syncopations for instances where an
articulated off-beat at some level is followed by an unarticulated on-beat at the same
level. The idea is that an on-beat note directly following an off-beat one “resolves” it,
making it feel less like a syncopation.

A level-1 unresolved syncopation can be detected with an indicator vector like
(0, 0, 0,−,+, 0, 0, 0). Multiplying by this vector will give −1 for an unresolved synco-
pation at position 3, and 1 or 0 otherwise. We can create a complete 8×8 invertible
matrix that contains all such vectors, here in rows 1–4:



+ + + + + + + +
+ 0 0 0 0 0 0 −
0 0 0 − + 0 0 0
0 − + 0 0 0 0 0
0 0 0 0 0 − + 0
+ 0 0 0 0 − − +
0 − − + + 0 0 0
+ − − − − + + +


(7)

This is, in fact, a non-normalized Haar matrix up to rotation of the columns and rear-
rangement of the rows, suggesting that a more general approach to unresolved syncopa-
tion might apply discrete wavelet transforms (Fino 1972; Ahmed, Rao, and Abdussattar
1973; Wang 2007). Let us refer to this matrix as the “basic syncopation transform” with
coefficients s1–s7. In addition to the trivial s0 and the indicators for level-1 syncopation,
s1–s4, the matrix has two coefficients, s5 and s6, for level-2 syncopation and one, s7, for
level-3 syncopation. These level-2 and level-3 coefficients only give intuitively satisfying
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results for rhythms limited to the beats of the given level. A better measure of level-2
syncopations is given by the sums of coefficients for syncopations over the same strong
beat: s1 +s5 and s2 +s6. Similarly, level-3 syncopation is best measured by 2s1 +s5 +s7.

How then does the basic syncopation transform relate to the Hadamard transform
and the concept of onbeatness? We can address this by multiplying it by the Hadamard
matrix, giving the result

2



4 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1
0 1 1 0 −1 0 0 −1
0 1 −1 0 0 1 −1 0
0 1 −1 0 0 −1 1 0
0 0 0 2 1 1 1 −1
0 0 0 2 −1 −1 −1 1
0 0 0 0 −2 2 2 2


. (8)

Each row of the above matrix gives the loadings of the Hadamard coefficients, in
order, on the syncopation coefficients. Notice that all the level-1 syncopations involve a
positive loading of h1. This means that a decrease of level-1 onbeatness makes all forms
of level-1 unresolved syncopation more likely. Other Hadamard coefficients are balanced
across the level-1 syncopations, so they create syncopations only in certain contexts.
When h2 + h1 < 0, one of the stronger syncopations of rows 1 and 2 will occur. When
h1 −h2 < 0, one of the weaker level-1 syncopations of rows 3 and 4 will occur. The other
relevant parameters for level-1 syncopations are h4 + h7 and h5 − h6, which generate
syncopations when their absolute values are larger than h1 + h2 or h1 − h2 respectively.

Another method for classifying syncopation is to focus on the level of the missing strong
beat, what Huron and Ommen (2006) call the “lacuna,” instead of the syncopated note
itself (“pre-lacuna”). An advantage of this method is that it is possible to isolate the
syncopation indicators in 2n−1 linearly independent factors. For instance, at 2n = 8 we
have



1 1 1 1 1 1 1 1
7 −1 −1 −1 −1 −1 −1 −1
0 −1 −1 −1 3 0 0 0
0 −1 1 0 0 0 0 0
0 0 0 0 0 −1 1 0
0 1 1 −2 0 0 0 0
0 1 1 1 1 −2 −2 0
0 1 1 1 1 1 1 −6


(9)

Let us refer to this as a “rest-based” syncopation transform with coefficients r0–r7.
Coefficients 1–4 indicate different kinds of syncopation: r1 for syncopation across the
downbeat, r2 for syncopation across position 4, r3 across position 2 (equivalent to s3) and
r4 across position 6 (equivalent to s4). The other three coefficients are a parametrization
of the remainder of rhythmic information not related to syncopation in this sense.

As with the basic syncopation matrix, we can multiply by the Hadamard matrix to
see the relationship of onbeatness to rest-based syncopation, which yields

9



November 21, 2021 Journal of Mathematics and Music hadamard

Rhythm Hadamard Simple syncopation Rest-based syncopation
1. 10000001 (2, 0, 0, 2, 0, 2, 2, 0) (2, 0, 0, 0, 0, 2, 0, 2) (2, 6, 0, 0, 0, 0, 0, −6)
2. 10010000 (2, 0, 0, 2, 2, 0, 0, 2) (2, 1,−1, 0, 0, 1, 1, 0) (2, 6,−1, 0, 0,−2, 1, 1)
3. 10000011 (3, 1,−1, 1,−1, 1, 3, 1) (3, 0, 0, 0, 1, 1, 0, 3) (3, 5, 0, 0, 1, 0, −2, −5)
4. 10010010 (3, 1,−1, 1, 1,−1, 1, 3) (3, 1,−1, 0, 1, 0, 1, 1) (3, 5,−1, 0, 1,−2, 1, 2)
5. 10010100 (3,−1, 1, 1, 1, 1,−1, 3) (3, 1,−1, 0,−1, 0, 1, 1) (3, 5,−1, 0,−1,−2,−1, 2)
6. 10100011 (4, 2,−2, 0, 0, 2, 2, 0) (4, 0, 0, 1, 1, 1,−1, 2) (4, 4,−1, 1, 1, 1,−1,−4)

Table 2. Examples of Hadamard, basic syncopation, and rest-based syncopation transformations of 8-cycle

rhythms

2



4 0 0 0 0 0 0 0
0 4 4 4 4 4 4 4
0 2 2 2 −3 −1 −1 −1
0 1 −1 0 0 1 −1 0
0 1 −1 0 0 −1 1 0
0 1 1 −2 0 1 1 −2
0 0 0 2 3 −1 −1 −3
0 3 3 −4 3 −4 −4 3


. (10)

Syncopation across the downbeat, r1, is straightforward: it is given by a sum across
all Hadamard coefficients except h0. Level-2 rest-based syncopation, r2, is positively
correlated with level-1 and level-2 onbeatness and negatively with level 3. Also h4 plays
a special role because a level-2 syncopation must occur in the first half of the cycle.
Syncopation types r3 and r4 are already familiar from the basic syncopation matrix.

A difference between these three ways of quantifying syncopation (onbeatness, simple
syncopation, and rest-based syncopation) and many of the measures applied in compu-
tational and corpus-analysis studies, such as those discussed by Toussaint (2013), is that
it breaks syncopation up in to a number of types differing in level, rather than producing
a single quantity. Of course, it is possible to produce a single quantity by weighting and
summing the different types, but for many applications it is useful to be able to keep the
different types separate.

Table 2 provides some examples of how the two syncopation transformations work.
Examples 1 and 2 are syncopated and unsyncopated rhythms, respectively, with the
same onbeatness values. The syncopation is evident in the negative values of s2 and r2.
Working from the Hadamard coefficients, we can associate the syncopation in rhythm 2
with the positive h4 +h7. Rhythm 1 has a zero value for both h4 +h7 and h5−h6. Similar
points can be made about the unsyncopated rhythm 3 and the tresillo rhythm, number
4, which is syncopated. Notice how the presence of h7 creates syncopations of type s2

and r2 in the absence of level-1 or level-2 onbeatness (either positive or negative).
Rhythm 5 of Table 2 is a rotated tresillo rhythm that is more syncopated than rhythm

4 because it has a negative level-1 onbeatness. This adds syncopations of type s4 (= r4)
and preserves the one of type s2 and r2. Rhythm 6 is an example with level 2 syncopation
only. This is indicated by a negative level-2 onbeatness in the Hadamard transform, a
negative s2 + s6, and a negative r2. The basic syncopation matrix has the benefit of
distinguishing the type of syncopation in rhythm 6 from those in rhythms 2, 4, and 5,
whereas the rest-based syncopation matrix has the benefit of a simple representation of
level-2 syncopation, involving a single coefficient instead of a sum of two.
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Figure 2. Average Hadamard coefficients of first and third phrases from a corpus of rags by Scott Joplin and

James Scott, divided by strain order.

2.3. Rhythm and form in ragtime

A recent study (Yust and Kirlin 2021) uses the Hadamard transform to explore statistical
trends in the “big three” ragtime composers, Scott Joplin, James Scott, and Joseph
Lamb. The typical rag has four 16-measure strains, each individually repeated, which are
essentially independent. Although the first strain sometimes acts as a refrain, returning
in between other strains, in general the form is often simply progressive, moving from one
strain to another, and not infrequently later strains are in a different key than the initial
strain, giving the impression of a simple patchwork formal procedure. This is a false
impression, however, because it misses important ways that composers express progress
through the form using rhythm.

The data in Yust and Kirlin 2021 show how composers modify a typical rhythmic profile
over the course of a complete rag. We analyzed the rhythm over four-measure phrases,
and because the minimal rhythmic unit is a sixteenth-note in 2/4, this results in rhythmic
vectors of 32 elements. Figure 2 shows average Hadamard coefficients across a number of
rags for two of the composers, Joplin and Scott, divided between strains, labeled A, B, C,
and D according to their order in the piece. Only the first and third phrases of each strain
are included, to exclude the cadential rhythms that typically occur in second and fourth
phrases. The Hadamard transform immediately shows that there is little to no systematic
contrast between the two halves of the four-measure phrase (once cadential phrases are
eliminated), because h16–h31 are essentially flat. The only exceptions are Joplin’s A- and
C-strain rhythms, where h24 and h25 show a tendency to weight the interior (second and
third) measures with eighth-note syncopations. Similarly, contrasts between individual
measures (first-second or third-fourth), h8–h15, are less important than the distinctive
rhythms within measures, as is evident in the strong profile of h1–h7.

One overall trend is immediately evident: large values for h7 and h4, and negative
values for h2 and h3. Drawing upon the last section, we can say that syncopation in
ragtime tends to originate in negative level-2 onbeatness (h2 + h3) and large values for
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h4 + h7, which are associated with level-1 syncopations crossing level-2 beats. These are
what Temperley (2021) calls “fourth-position syncopations,” which he shows occur in
ragtime, and not in earlier British and African American published songs. Berlin (1980)
and Volk and de Haas (2013) also show that fourth-position syncopation becomes more
common in post-1900 ragtime music (which includes most of the Yust and Kirlin 2021
corpus discussed here). The later is particularly notable because it provides a method to
create syncopation without negative onbeatness, and because of the relationship of h7 to
the tresillo rhythm, which, as Cohn (2016) and others have pointed out, is common in
ragtime.

For both composers, however, the profile of D-strain rhythms is distinctly different.
In these concluding strains h7 becomes less prominent, and h11 more so. The binary
representations of these coefficients are 00111 and 01011 respectively. This means they
share the combined level-1 and level-2 contrasts, but h7 further contrasts these at level
3 and h11 at level 4. In other words, there is a tendency towards rhythmic broadening
from 1-measure to 2-measure patterns for both composers, which evidently has a special
concluding function, giving a satisfying form to the whole rag.

In Scott’s rags, an even more distinct pattern is evident in D strains involving negative
h5 and positive h14. This pattern focuses the syncopation specifically on the downbeats
of even measures. Note also that Walsh rhythm 5 is a rotation of Walsh rhythm 7, and 14
is an augmentation of it. Therefore we can say that Scott achieves this characteristically
conclusive broadening of syncopations while retaining the tresillo-like quality (h5) of his
rhythms, and adding an augmented-tresillo quality (h14).

Scott’s “Ragtime Oriole” illustrates this typical pattern. Figure 3 shows the melody of
the first phrase of each strain, and Table 3 gives the first half of the Hadamard transform
(excluding level-5 coefficients). The A strain is dominated by a common high-saturation
rhythm whose distinctive property is eighth-note syncopation across second beats. The
B strain starts with completely flat rhythms, and then has tresillo-like rhythms that
closely resemble Walsh rhythm 7. The C strain is where the true commitment to Walsh
rhythm 7 materializes – the melody almost perfectly matches it almost all the way
through. While the A and B strains have modestly high values for h7, the C strain has
a value almost equal to the cardinality (the maximum possible). The juxtaposition of
this with strain D highlights the change of character. Strain D has a similar quality to C
in the sense of tresillo-like repetition at the dotted eighth, but this pattern syncopates
across the downbeats of the even measures rather than second beats of all mesures. The
“tresillo-like” quality, which we might associate with DFT coefficient 12 (in the 32-cycle,
equivalent to coefficient 3 of the 8-cycle), loads negatively on h5 rather than positively
on h7, its sequency partner. In the DFT, this would appear as a high value for coefficient
12 in all strains, but a change of phase by ≈ π/2 for this coefficient in the D strain. Scott
marks C and D as a Trio in this rag, but the same rhythmic progression occurs in other
rags without Trio markings or da capo returns. Such use of rhythm to shape the form is
underappreciated by traditional form theory with its primary emphasis on tonality.

2.4. Balinese gamelan gong cycles

The music of Balinese Gamelan Gong Kebyar centers around gong cycles, referred to
as tabuh, which are a fixed length in number of beats. All of the traditional tabuh have
lengths in powers of two. A piece will usually contain a number of these gong cycles,
and the basic melodic content of each is largely derived from a skeletal melody called
the pokok. Tenzer (2000) quotes a number of neliti from the standard Kebyar repertoire,
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h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

A 27 −3 −5 −3 3 5 3 5 1 −1 1 −1 1 −1 1 −1
B 25 3 −3 −1 3 1 −1 5 1 −1 1 −1 −1 1 −1 1
C 17 −1 −1 1 −1 1 1 15 −1 1 1 −1 1 −1 −1 1
D 26 −2 −2 2 −2 −6 2 −2 −2 2 2 6 2 −2 6 2

Table 3. Hadamard coefficients 0–15 (excluding 16–31) for the initial phrases of the four strains of “Ragtime

Oriole,” shown in Figure 3.

which are simple even-rhythm elaborations of the pokok. Each neliti expresses different
kinds of motion at different levels, with each level reducing the previous one by a factor
of two by taking every other note, until a single note, the gong tone, remains. Different
instrumental layers of the gamelan engage with the neliti at different levels: if we assign
the neliti itself to level 0, the calung plays the neliti at level 1 (reducing by a factor of
2), the elaborating parts usually engage with the neliti at levels 1 or 2, and so on.

This multi-leveled strictly duple rhythmic design suggests that the Hadamard trans-
form might be a good tool for analyzing these neliti, but in a literal sense they are
rhythmically undifferentiated, articulating every beat. However, they can be differenti-
ated by the simple procedure of partitioning the total, undifferentiated, rhythm into five
rhythms, one for each tone in the Balinese pelog scale, named ding, dong, deng, dung,
and dang. (The larger intervals, approximately a major third or less, are from deng to
dung and dang to ding. The other intervals, ranging from about a semitone to a narrow
whole tone, are from ding to dong, dong to deng, and dung to dang.)

Tenzer (2000) chooses eight neliti of length 16 as representative of the style, with an
emphasis on illustrating a range of types. One way to analyze these melodies is to sum
Hadamard coefficients across each level. Figure 4 shows three of Tenzer’s examples, with
the melody written in a novel notation using the vowels (i, e, u, o, a) to indicate each
note, and with a single staff line between dang and ding to show octaves. The dashed
line shows the pokok, played by the calung, and the solid line a reduction of that played

A

B

C

D

1   1   1   1   0   1   1   1  1   1   1   1   0   1   1   1  1   1  1   1   0  1   1  1     1  0  1  1   0   1    1    1  

1   1   1   1    1   1   1   1  1   1   1   1    1   1   1   1  1  0   1   1    0   1   1  0  1  0   1   1   0  0  1  0  

1  0  0  1    0    1   1   0  1  0  0  1    0    1   1   0  1  0  0  1   0    1   1   0  1  0  0  1    0   1    1   1  

1   1  0   1  1  0  1   1    0   1   1    1   1   1   1   1    1   1  0  1   1  0  1   1    0   1   1    1   1   1   1   1    

Figure 3. The first four measures of each strain of James Scott’s “Ragtime Oriole,” right hand part, and vector

notation for the rhythm.
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Figure 4. Three neliti from Tenzer (2000), Pengecet Tabuh Pisan Dong, Pengecet Tabuh Telu, Pengecet Tabuh
Pisan Bangun Anyar, and their Hadamard profiles summed over four metrical levels.

by jegogan. The graphs on the right produce an analysis similar to Tenzer’s, presenting
motion and stasis at different metric levels. The first has motion at levels 1 and 3, and
relative stasis at levels 2 and 4. Positive values at each level (such as dong at level 3)
indicate strong metrical positions and negative values (such as dung and dang at level
3) weak positions at the given level. Note that the values for each tone must sum to 0,
except the gong tone, which sums to 16.

The second melody contrasts with the first, having more motion at levels 3 and 4, and
less at level 1. The level-4 motion simply indicates that what Tenzer calls the “axis”
note (the midpoint) is different than the gong tone. The flat profile of level 1 does not
precisely correspond to Tenzer’s idea of stasis, but instead shows that the tones are
relatively evenly distributed between pokok tones and intermediate tones. The melody
largely achieves this by patterning in threes, so that subsequent repetitions of a given
tone usually alternate strong-weak.

The third melody has a relatively strong profile at all levels. At levels 2 and 4, the
gong tone ding alternates with deng, while at levels 1 and 3, deng tends to occupy the
strong positions alternating especially with dung.

Summing across levels, however, removes some potentially useful information from the
rhythmic profiles of the melodies. To see which coefficients are most active overall, we
can sum squared values of each coefficient across the five scale tones. Figure 5 gives
the averages of these sums of squares across the eight sixteen-beat nelitis. The four
lines split the results up based on the first and last value of the binary representation
of the coefficients, to show the general trend of high values for coefficients of the form
∗ ∗ ∗1 and lower-level coefficients of the form 0 ∗ ∗∗. The other trend occurs within the
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Figure 5. Average squared Hadamard coefficients of Tenzer’s eight sixteen-note neliti.

coefficients of the form 0∗∗1 where h1 (0001) and h7 (0111) have particularly high levels
of activity. The first of these shows a tendency for scale tones to be differentiated at
level 1 (pokok vs. intermediate). The high activity in h7 is particularly interesting: this
is the coefficient with the tresillo-like (3-generated) Walsh rhythm that we found to be
significant in ragtime as well as Toussaint’s clave rhythms. Appearing in the the Balinese
nelitis, it indicates a tendency for notes and patterns to repeat at intervals of three beats.
The melodies’ quality of motion (“majalan quality”) at level 3 is usually produced by
such patterning in threes. This is particularly noticeable in the second neliti of Figure
4, for instance. Similar patterns of repetitions in threes over the duple framework occur
at 4× diminution in conventional ubit-ubitan kotekan patterns (see Tenzer 2000 pp.
226–231), suggesting that this might represent a stylistic trait that transfers from this
conventionalized lower-level manifestation to the more structural melodic constructions
of neliti.

Figure 5 could lead us to guess that other ways of profiling neliti, besides simply
by level, may also be of use. Figure 6 shows profiles of h1, h7, h9, and h15 for the
second melody of Figure 4. This selection includes the important lower-level coefficients
(1 and 7), and their level-4 partners – in binary notation abb1, with a, b = 0 or 1. The
cardinality line is reproduced on both positive and negative sides to show the maximum
and minimum possibles value of each coefficient for each scale tone. This profile reveals
that the level-3 motion of the Tabuh Telu melody is attributable to h7, as the alternate,
contra-metrical, tresillo-based parsing of the melody (the solid and dashed lines on the
left of Figure 6) shows.

3. Conclusion

Unlike its cousin the DFT, the Hadamard transform only applies to certain types of
rhythmic cycle, those whose length is a power of two. These types of rhythmic cycle
are exceedingly common, however, in a wide variety of musical styles. They have the
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Figure 6. An alternate Hadamard profile for Pengecet Tabuh Telu.

special property that they admit of a single dense metrical representation, with a large
number of metrical levels relative to the number of elements in the cycle. That is, there
are no “hemiolas” in the pure-duple situation, where different ways of arranging factors
give rise to different metrical interpretations. These special features are related to the
one exploited in this paper, the existence of a Hadamard transform. The property that
distinguishes the Hadamard transform from the DFT, and makes it sometimes more use-
ful, is its relationship to the duple metrical interpretation. Even where the Hadamard
transform can play a valuable role in representing types of syncopation with respect to
such a metrical framework, however, some of the findings of this paper are best inter-
preted through the relationship of Hadamard coefficients to DFT coefficients through
the sequency ordering. Prominent among them is the repeated finding of a special role
for h7 in a variety of circumstances – clave rhythms, ragtime, and Balinese melodies.
Two seemingly quite different explanations for this finding are in fact logically equiv-
alent: first, that h7 can produce strong level-1 syncopations without requiring negative
level-1 onbeatness (section 2.2), and second, that h7 approximates the DFT coefficients
that divide measures by three, and points to their corresponding maximally even tre-
sillo and cinquillo rhythms (section 1.2). The Hadamard transform is therefore useful
less as a replacement for than as a counterpart to the DFT and traditional concepts of
syncopation.
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