Tonality, Fuzzy Voice Leading, and all that Jazz ORGANIZED

Jason Yust, BOSTON

http:/people.bu.edu/jyust

Presentation to the Eastman Theory Colloquium, 1/31/2020

Rhythm, Tonality, & Form

YUST

TIME

(1) Distributional Model of Key

The state of the art cognitive model of a key is a **pitch-class distribution**

which weights pitch classes according to their
perceived stability
likelihood of occurring

Distributional Model of Key

C major

Tonality, Fuzzy Voice Leading, & All That Jazz

Jason Yust

JNIVERSITY

Distributional Model of Key

The distributional model has been used to explain:

- How tonality is passively learned (statistical learning)
- Melodic expectation
- Harmonic syntax (wrong notes)
- Scale-degree qualia
- Key relatedness
- Modulation/tonality induction (key-finding algorithms)

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Pitch-Class Vectors

Key profiles are *pitch-class vectors*

 Example:
 C
 C # D
 E # E
 F
 F # G
 A # A
 B # B

 Krumhansl-Kessler C major:
 (6.4, 2.2, 3.5, 2.3, 4.4, 4.1, 2.5, 5.2, 2.4, 3.7, 2.3, 2.9)

 Krumhansl-Kessler C minor:
 (6.3, 2.7, 3.5, 5.4, 2.6, 3.5, 2.5, 4.8, 4.0, 2.7, 3.3, 3.2)

Pitch-class sets and multi-sets are also pitch-class vectors

Example:	С	C#	D	E♭	E	F	F#	G	A♭	А	B♭	В
C major triad:	(1,	0,	0,	0,	1,	0,	0,	1,	0,	0,	0,	0)
C major scale + tonic triad:	(2,	0,	1,	0,	2,	1,	0,	2,	0,	1,	0,	1)

Other names: "Characteristic function," "pitch-class distribution"

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Pitch-Class Vectors

Key profiles are *pitch-class vectors*

 Example:
 C
 C#
 D
 E /r
 F /#
 G
 A /r
 A /r
 B

 Krumhansl-Kessler C major:
 (6.4, 2.2, 3.5, 2.3, 4.4, 4.1, 2.5, 5.2, 2.4, 3.7, 2.3, 2.9)

 Krumhansl-Kessler C minor:
 (6.3, 2.7, 3.5, 5.4, 2.6, 3.5, 2.5, 4.8, 4.0, 2.7, 3.3, 3.2)

Pitch-class vectors **"fuzzify"** pitch class: i.e. they make the presence of a pitch class a **continuously variable** quantity.

Other names: "Characteristic function," "pitch-class distribution"

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

A concept central to a lot of music theory: • Neo-Riemannian theory • Schenker

Voice-leading geometries (Callender, Quinn, & Tymoczko)
Scale theory / spelled pitch-class sets
Post-tonal harmony (Straus, Lewin, Morris, Roeder)

What is it?

Mapping between pitch(-class)es

• Measure of distance based on proximity in pitch(-class) space

Ex.: Straus 2005

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Bijective (one-to-one):

Examples:

 $(C, E_{\flat}, G) \rightarrow (C, E_{\flat}, A_{\flat}) \quad (F, B, D_{\ddagger}, G_{\ddagger}) \rightarrow (E, B, D, G_{\ddagger}) \quad (CDEFGAB) \rightarrow (CDEFGAB_{\flat})$

Bijective voice leadings have a robust geometrical interpretation. We can talk about them in terms of **distance** and **space**.

Callender, Quinn, Tymoczko 2008. "Generalized Voice Leading Spaces," *Science* Tymoczko 2011. *A Geometry of Music*. Oxford Univ. Press

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Many situations call for *non-bijective* voice leadings: *Examples:*

Sets of different cardinality

 $\{ B D F G \}$ $\{ C E G \}$

Jason Yust

Acoustic collection = "Lydian dominant" or mode 4 of melodic minor

Tymoczko "Scale Networks and Debussy" (2004), *Geometry of Music* (2011)

Tonality, Fuzzy Voice Leading, & All That Jazz

Many situations call for **non-bijective** voice leadings:

Examples:

Same cardinality but more efficient with non-bijective voice leadings

In Schenker:

Callender "Voice-Leading Parsimony in the Music Of Alexander Scriabin" (1998)

Frei Satz Ex. 36

Problem: non-bijective voice leadings do not produce robust voice-leading geometries.

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Non-bijective:

Voice leadings that omit notes?

 $\{ G B D F \}$ $\downarrow / / \\ \{ C E G \}$

Jason Yust

VERSITY

Tonality, Fuzzy Voice Leading, & All That Jazz

Jazz progressions as dyadic voice leading on guide tones *Example:* "All the Things You Are"

See: Michael McKlimon (2017), "Transformations in Tonal Jazz: ii–V Space." *MTO* 23/1

Joe Mulholland and Tom Hojnacki (2013), *The Berklee Book of Jazz Harmony*. Berklee Press

Tonality, Fuzzy Voice Leading, & All That Jazz

Jason Yust

The Interval Function

Voice-leading theory has promoted continuous models of pitchclass space, but discrete models of voice / pitch-class quantity

Cognitive models of tonality, on the other hand, rely upon continuous models of pitch-class quantity

Can these two be reconciled?

The **interval function** on sets $A \rightarrow B$ lists all intervals from any member of *A* to any member of *B*

"Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1 (2001).

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

The **interval function** on sets $A \rightarrow B$ lists all intervals from any member of *A* to any member of *B*

Tonality, Fuzzy Voice Leading, & All That Jazz

Jason Yust

The interval function is a **cross-correlation** of pitch-class vectors

> "Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1 (2001).

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

The interval function is a **cross-correlation** of pitch-class vectors

$$(0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1)$$

$$\times (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1)$$

$$- 0+0+0+0+0+0+0+0+0+0+0+0+1 = -$$

"Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1 (2001).

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

The interval function is a **cross-correlation** of pitch-class vectors

	(0,	0,	1,	0,	0,	1,	0,	1,	0,	0,	0, 1)	
×	(0,	0,	1,	0,	0,	1,	0,	0,	0,	0,	1, 0)	
_	0 +	0+	• 1 +	0 +	0+	.1+	0+	0+	- 0 +	· 0 +	0 + 0 =	2

"Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1 (2001).

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

The interval function shows the possible intervals of any non-bijective voice leading

"Special Cases of the Interval Function between Pitch Class Sets X and Y." JMT 45/1 (2001).

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Individually transposing chords simply rotates the interval function

$G7 \rightarrow C$	(1, 1, 2, 0, 0, 3, 0, 1, 1, 1, 1, 1)
$F\sharp_7 \rightarrow C$	(1, 1, 1, 2, 0, 0, 3, 0, 1, 1, 1, 1)
$C7 \rightarrow C$	(3, 0, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0)

"Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1 (2001).

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

The interval function from a chord to itself is the interval vector (note retrograde symmetry)

 $C \rightarrow C$ (3, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0)

"Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1 (2001).

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Example: Voice leadings between major and minor triads.

(2, 0, 0, 2, 0, 1, 0, 1, 2, 0, 0, 1)

Parallel (2 common tones, 1 descending semitone)

 $C \rightarrow c$

Relative (2 common tones, 1 ascending whole step) *Leittonwechsel* (2 common tones, 1 descending semitone)

Hexatonic pole (2 descending semitones, 1 ascending semitone)

"Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1 (2001).

Jason Yust BOSTON

Tonality, Fuzzy Voice Leading, & All That Jazz

Example: Voice leadings between dominant and half-diminished sevenths.

(2, 0, 2, 2, 0, 2, 2, 0, 3, 0, 1, 2)

There are three voice leadings with 2 common tones and 2 ascending semitones, and three with 2 common tones and 2 descending semitones

 $C^7 \rightarrow c^{\emptyset 7}$

Jason Yust

One voice leading has 3 common tones and one ascending whole tone (or three descending semitones and one ascending semitone)

"Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1 (2001).

Tonality, Fuzzy Voice Leading, & All That Jazz

Examples: Voice leadings between sus4 chords and Mystic collections

Csus \rightarrow Csus (3, 0, 1, 0, 0, 2, 0, 2, 0, 0, 1, 0)

Callender's non-bijective voice leading between (027)s

 $\{\mathrm{CDEF} \sharp \mathrm{GB} \flat\} \rightarrow \{\mathrm{CDEF} \sharp \mathrm{AB} \flat\}$

(5, 0, 5, 2, 4, 2, 4, 2, 4, 2, 4, 2)

Non-bijective semitonal voice leading between complementary Mystic collections

> "Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1 (2001).

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Lewin showed how to predict when the interval function would be **flat**

$C hex \rightarrow WT_o$	(3,	3,	3,	3,	3,	3,	3,	3,	3,	3,	3,	3)
$C hex \rightarrow Oct_{o1}$	(4,	4,	4,	4,	4,	4,	4,	4,	4,	4,	4,	4)

 $WT_0 \rightarrow Oct_{01}$ (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4)

For instance, the interval functions between **Guidonian hexachords, whole tone,** and **octatonic** collections are flat

> "Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1 (2001).

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

We can similarly predict when the interval function will be peaked

C acoustic \rightarrow WT₀ (5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2)

 $C \text{ acoustic} \rightarrow Oct_{01}$ (6, 4, 4, 6, 4, 4, 6, 4, 4, 6, 4, 4)

 $C hex \rightarrow C pent (5, 0, 4, 2, 2, 4, 0, 5, 1, 3, 3, 1)$

Jason Yust

"Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1 (2001).

Tonality, Fuzzy Voice Leading, & All That Jazz

Generalizing the Interval Function

The interval function (cross correlation) can operate on any pitch-class vector.

Tonality, Fuzzy Voice Leading, & All That Jazz

Jason Yust

Lewin's insight:

(2) The *convolution theorem* states that the DFT turns **cross correlation** (the interval function) into **multiplication**.

> "Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1 (2001).

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Fourier Transform on Pitch-Class Vectors

We can use the discrete Fourier transform to

• Quantify concepts of harmonic quality

• Relate harmonic objects using the interval function

-Similarity of sets

-Voice-leading properties

Fourier Transform on Pitch-Class Vectors: A brief history

- Lewin, David (1959). "Re: Intervallic Relations between Two Collections of Notes," *JMT* 3/2.
- ——— (2001). "Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1.
- Quinn, Ian (2006–2007). "General Equal-Tempered Harmony," *Perspectives of New Music* 44/2–45/1.
- Callender, Cliff (2007). "Continuous Harmonic Spaces," JMT 51/2
- Amiot, Emmanuel (2007). "David Lewin and Maximally Even Sets." *Journal of Mathematics and Music* 1/3.
- ——— (2016). *Music Through Fourier Space: Discrete Fourier Transform in Music Theory*. (Springer)
- Yust, Jason (2015). "Schubert's Harmonic Language and Fourier Phase Spaces." *JMT* 59/1.

——— (2016). "Special Collections: Renewing Forte's Set Theory." *JMT* 60/2.

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Fourier Transform of a Pitch-Class Vector

The DFT is a **lossless transformation** from a pitch-class **vector to a sum of periodic functions** dividing the octave into 1–6 parts.

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Fourier Qualities

 F_1 represents a concentration of pitch-class weight on the full pc circle.

F₂ represents a concentration of pitch-class weight on a half-octave (tritone) cycle.

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Fourier Qualities

F₃ gives the weighting on the nearest *augmented triad* or *hexatonic scale*.

 F_4 gives the weighting on the nearest *diminished seventh* or **octatonic** scale.

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Fourier Qualities

F₅ give the balance on the **circle of fifths**

F₆ gives the relative weighting on the two **whole-tone** collections.

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Fourier Transform as Vector Sums

Fourier component F_k can be derived as a vector sum with each pitch class as a unit vector, where the unit circle is the 8ve/k.

The length of the resulting vector is the **magnitude** of the component, and the angle is its **phase.**

Example: C maj. triad, k = 3

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz
Fourier Transform as Vector Sums

Fourier component F_k can be derived as a vector sum with each pitch class as a unit vector, where the unit circle is the 8ve/k.

The length of the resulting vector is the **magnitude** of the component, and the angle is its **phase.**

Example: C maj. triad, k = 5

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Fourier Spectra

The *spectrum* of a pitch-class vector shows the magnitudes of all its Fourier coefficients (ignoring phases)

The spectrum is **invariant with respect to transposition and inversion** (i.e. it is a *set class* property)

Examples:

Major/minor triad

Dominant 7th

Fourier Spectra

The *spectrum* of a pitch-class vector shows the magnitudes of all its Fourier coefficients (ignoring phases)

The spectrum is **invariant with respect to transposition and inversion** (i.e. it is a *set class* property)

Examples:

Krumhansl-Kessler major key

Diatonic scale

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Convolution Theorem

The Fourier transform turns *convolution* (cross-correlation) into *multiplication*

> i.e. for pc-vectors A, B

DFT(Int. Funct.(A, B)) = DFT(A) × DFT(B)

(Multiply magnitudes and subtract phases)

* The line over DFT(*A*) indicates complex conjugation, so that phases are subtracted (cross-correlation) instead of added (convolution)

Tonality, Fuzzy Voice Leading, & All That Jazz

Jason Yust

Examples (Interval Vector through DFT)

Q: How many common tones does a major triad have with a diatonic scale?

Spectrum of major triad ×

Spectrum of diatonic scale = Spectrum of interval func.

A: It is determined primarily by f_5 ,

i.e. if the f_5 phase difference is small, there will be more CTs

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Examples (Interval Vector through DFT)

Major Triads: $D \models A \models E \models B \models F$ $C = G = D = A = E = B = F \ddagger$ CTs with C diat.:11123322210

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Examples (Interval Vector through DFT) Q: How correlated are key profiles of major and minor keys?

Spectrum of major key

Jason Yust

× Spectrum of minor key = Spectrum of interval func.

A: It is determined primarily by f_5 , and secondarily by phase differences in f_3

Tonality, Fuzzy Voice Leading, & All That Jazz

Examples (Interval Vector through DFT)

Hence: A *phase space* shows these relationships

Tonality, Fuzzy Voice Leading, & All That Jazz

Jason Yust

Jazz Harmony

PC vectors are good for interpreting lead-sheet harmony symbols

To better understand jazz harmony, consider:
Spectra of typical chord types
Voice-leading properties (interval vector)
Phase space

Jazz Chords as Pitch-Class Vectors

What is the meaning of a lead-sheet chord symbol?

• A **pitch-class set is a poor model**, because in practice not all notes need to be played, and certain notes may be added.

- A **pitch-class vector** can account for the varying probabilities of each pitch-class occurring.
- —The **root** has a special significance in determining the bass line.
- -Guide tones (3rd and 7th) are especially important harmonic tones
- -Each chord also has optional extensions or "tensions"
- -Chords also have certain "avoid tones"

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Jazz Chords as Pitch-Class Vectors Dominant

Jason Yust

Source: Terefenko, D. 2014. *Jazz Theory: From Basic to Advanced Study* (Routledge).

Tonality, Fuzzy Voice Leading, & All That Jazz

Jazz Chords as Pitch-Class Vectors Minor

Source: Terefenko, D. 2014. *Jazz Theory: From Basic to Advanced Study* (Routledge).

Tonality, Fuzzy Voice Leading, & All That Jazz

Eastman 1/31/2020

Jason Yust

Jazz Chords as Pitch-Class Vectors Major

 C
 C#
 D
 E
 E
 F
 F#
 G
 A
 A
 B

 (3, 0, 1, 0, 2, 0, 1, 1, 0, 1, 0, 2)

Source: Terefenko, D. 2014. Jazz Theory: From Basic to Advanced Study (Routledge).

BOSTON Tonality, Fuzzy V

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Jazz Chords as Pitch-Class Vectors Minor flat-5

Source: Terefenko, D. 2014. *Jazz Theory: From Basic to Advanced Study* (Routledge).

Tonality, Fuzzy Voice Leading, & All That Jazz

Eastman 1/31/2020

Jason Yust

Jazz Chords as Pitch-Class Vectors

Sus7

Source: Terefenko, D. 2014. *Jazz Theory: From Basic to Advanced Study* (Routledge).

Tonality, Fuzzy Voice Leading, & All That Jazz

Eastman 1/31/2020

Jason Yust

Jazz Chords as Pitch-Class Vectors Alt7

0, 1,

Source: Terefenko, D. 2014. Jazz Theory: From Basic to Advanced Study (Routledge).

(3, 1, 1, 1, 2,

С

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

0, 1,

0)

0, 2,

Spectra of Jazz PC Vectors

Tonality, Fuzzy Voice Leading, & All That Jazz

Jason Yust

Spectra of Jazz PC Vectors

Tonality, Fuzzy Voice Leading, & All That Jazz

Jason Yust

Spectra of Jazz PC Vectors

Interval functions of jazz chords

Root motion **down by** semitone gives *few common tones* Root motion **down by fifth** gives *few common tones* and *many descending semitones*.

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Interval functions of jazz chords Why?

 f_4, f_5, f_6 , aligned with zero:

 f_4 and f_6 have *maxima* at 6 and *minima* at 5 f_5 is the opposite: minimum at 6 at near-maximum at 5

⇒ The pattern obtains for chords with high f_4 and f_6 (dominant), weakens for chords with high f_5 (major, minor)

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Phase Space for Jazz Harmony

Interval functions for jazz harmony will be mostly determined by f_4 , f_5 , and f_6 .

However, phase of f_6 is degenerate: it only takes two values, 0 and π .

Chords relationships can be mapped in **a phase space** for f_4 and f_5 , with an added consideration of wholetone relations (WT₀ vs. WT₁: the phase of f_6 always corresponds to the root)

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Proximity in phase space = **similarity of pc content.**

Chords with the same root group together *except major 7ths*.

Dominant and altdominant have distinct Ph₄ values.

JNIVERSITY

Jason Yust

Similarity to the T_1 and T_{-1} vectors indicates the number of **ascending** or **descending semitones** in an interval function.

JNIVERSITY

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Typical functional motion (such as descending fifths) is to the left

Restricted vertical motion produces **diatonicism**, while **chromaticism** results from large vertical motion.

Jason Yust

UNIVERSITY

Tonality, Fuzzy Voice Leading, & All That Jazz

Typical ii-V-I progression (F major)

(F minor)

EN ABILLIA HELD

Jason Yust

ST

UNIVERSITY

Tonality, Fuzzy Voice Leading, & All That Jazz

Descending fifths progression with tritone substitution

Jason Yust

UNIVERSITY

Tonality, Fuzzy Voice Leading, & All That Jazz

"All the Things You Are" in Ph₄-Ph₅ space

Meas. 1−4: ii-V-I in A♭

Meas. 5–8: Tritone shift takes us to C

Meas. 9–16: Parallel shift leads to sequence of mm. 1–8

	0															I
_F	Y Ph	0	0	0												
<i>(</i> +	Abb	0	ŏ	•	0				-o	1.00	0	0	-	-	1.0	1 11
۱ŀ	(v) - v			0	+ o	0	10	1170		th o						
۱ſ	Ū							14				I lo	90	•	" •	σ
4		Fm ⁷	B [♭] m ⁷	E ^{♭7}	A ^b ∆ ⁷	D♭∆7	G ⁷	C∆ ⁷		Cm ⁷	Fm ⁷	B♭7	E ^þ Δ ⁷	A [♭] ∆ ⁷	D ⁷	7 G Δ^{7}
		0			U		0								1	
11-	· 1 P b	<u> </u>		0		- O							O			
١Ŀ	< p h'					+~	-					+ o		0	M~	

Example: "Daahoud" (Clifford Brown)

Jason Yust

UNIVERSITY

"Daahoud" in Ph₄-Ph₅ space

Chorus

Meas. 1–3: Desc. 5ths (ii-V) to Cb

Meas. 4−6: ii-V-I in E♭

Jason Yust

Meas. 6–7: Tritone sub. and resolution to $E \downarrow \Delta^7$

UNIVERSITY

Tonality, Fuzzy Voice Leading, & All That Jazz

"Daahoud" in Ph₄-Ph₅ space

Bridge

Meas. 9−12: ii-V-I in A♭

Meas. 13–15: ii-V-I in G^J (sequence)

Meas. 16: ii-V in E♭

Repeat chorus

ST(

UNIVERSITY

etc. . . .

Tonality, Fuzzy Voice Leading, & All That Jazz

Eastman 1/31/2020

Jason Yust

· · · · · · · · ·

Example: "Joy Spring" (Clifford Brown)

Jason Yust

NIVERSITY

2020

"Joy Spring" in Ph₄-Ph₅ space

First phrase

Meas. 1–3: ii-V-I in F

Meas. 4−7: ii-V in A♭

Tritone sub. progression back to F

ST(

UNIVERSITY

in the way with

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

"Joy Spring" in Ph₄-Ph₅ space

Meas. 7–15:

Sequence up by semitone (G^J)

Jason Yust

OSTO

UNIVERSITY

A EN PALLUM HELD

Example: "Round Midnight" (Thelonious Monk)

Jason Yust

)20

"Round Midnight" in Ph₄-Ph₅ space

Meas. 1−3: i-vi-ii-V-i in E♭ minor

Meas. 3: ii-V in D♭

Meas. 4: Chromatic prog.

Meas. 5: ii-V in G♭

Meas. 6: ii-V in D♭

in the unit

Jason Yust

Meas. 7–8: Tritone sub. of ii-V in E♭

UNIVERSITY

Addendum

Why do tonal chords and scales tend to emphasize certain qualities (f_3 , f_4 , f_5 , f_6) regardless of style?

Fourier Qualities across Tonal Styles

Why do tonal chords and scales tend to emphasize certain qualities (f_3 , f_4 , f_5 , f_6) regardless of style?

For example:

- Classical tonality:
- Jazz, Ravel:
- Late Scriabin:
- Debussy:

$$f_{5}, f_{4}, f_{6}$$

 f_{4}, f_{6}
 $f_{5}, f_{6}, f_{4}, f_{3}$

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Eastman 1/31/2020

Fourier Qualities across Tonal Styles

Why do tonal chords and scales tend to emphasize certain qualities (f_3 , f_4 , f_5 , f_6) regardless of style?

These qualities (f_3, f_4, f_5, f_6) are precisely those in which **semitones have relatively large phase distances.**

Semitonal voice leading is distinct from common tones. That is, semitones between chords tend to not overlap with common tones between chords.

Jason Yust

Tonality, Fuzzy Voice Leading, & All That Jazz

Eastman 1/31/2020

Tonality, Fuzzy Voice Leading, and all that Jazz

Jason Yust,

JRGANIZED TIME

YUST

Rhythm, Tonality, & Form

You can find this talk and more at http:/people.bu.edu/jyust

Thanks!

Phase Spaces

One-dimensional phase spaces are Quinn's *Fourier balances*, superimposed *n*-cycles created by multiplying the pc-circle by *n*.

