

Fourier Phase and Pitch-Class Sum

Dmitri Tymoczko Princeton University

Jason Yust Boston University

Summary

- There is a fundamental convergence between two very different music-theoretical worlds, voice-leading space and Fourier space
- This convergence appears only in delicate circumstances.
 - For points, or chords: typically when we limit ourselves to the transpositions of some chord lying in some scale.
 - For voice leadings: typically when our chord divides the octave nearly evenly.
- To explain this correspondence we need to think rigorously about how to represent voice leading in the Fourier perspective:
 - Glide paths vs. crossfade paths

CIRCULAR VOICE-LEADING SPACE

Circular voice-leading space

- Abstract and simplified representations of the higher-dimensional configuration spaces representing *n*-note chords.
 - Points represent entire chords.
 - The spaces depict the bijective, strongly crossingfree voice leadings among the transpositions of any *n*-note chord in any *d*-note scale.
- A spiral winding *n* times around an annulus, with *d* chords equally spaced along it.

http://dmitri.mycpanel.princeton.edu/cs.html

Circular voice-leading space

http://dmitri.mycpanel.princeton.edu/cs.html

Circular voice-leading space

- Moving along the line represents transposition along the scale.
 - Angular position corresponds to pitch-class sum.
- A complete circle, understood as 360° motion along the spiral, followed by radial motion back to the starting point, corresponds to transposition along the chord.
 - As if the chord was itself a scale.
- Homotopic paths represent the same voice leading.

http://dmitri.mycpanel.princeton.edu/cs.html

FOURIER SPACE

Fourier analysis of a pcset

Fourier components as vector sums

The k^{th} Fourier component, f_k , of a chord is a vector sum of its pitch-classes in complex space.

Example: f_3 of C major:

"Reduced 8ve" of f_3 :

Vector sum:

Fourier components as vector sums

The **phase** of the k^{th} Fourier component, φ_k , is the angular component of f_k .

Fourier components as vector sums

Examples: f_3 of triads, f_5 of minor ninths

THE CORRESPONDENCE (POINTS)

Phase and Voice-Leading Sum

Proposition: For a given *n*-note chord type (transposition type) in a *c*-note scale, phases are equivalent to voice-leading sums, i.e.

$$S(T_x(A)) - S(A) = Ph_n(A) - Ph_n(T_x(A))$$

with $Ph_n \cong (c/2\pi)\phi_n$

Phase and Voice-Leading Sum

Example:

Phase and Voice-Leading Sum

Example:

Phase vs. Pitch-class sum: different chord types

Isomorphism of phase and pitch-class sum differences breaks down for a mixture of chord types.

Example: same sum, different phases

VOICE LEADING IN FOURIER SPACE

Voice leading in Fourier space

- With configuration spaces (voice leading spaces) we typically represent voice leadings as paths:
 - Specifically the path that is taken if each pitch class glides smoothly to its destination at a constant velocity, starting and stopping at the same time.
- How can we represent voice leading in Fourier space?

Voice leading in Fourier space

- Strategy I: glide paths
 - Do exactly what we do in voice-leading space.
 - Let each note glide smoothly to its destination, and take the Fourier transform of every point along this path.
 - Produces smooth paths in Fourier space.
- Strategy 2: crossfade paths
 - Linear interpolation between the vectors corresponding to the initial and final chords.

THE CORRESPONDENCE (GLIDE PATHS)

Question:

Are glide paths in Fourier space homotopic with the associated voice-leading paths in circular voice-leading space?

using math we can show this is equivalent to:

Do zero-sum (balanced) voice leadings between transpositionally related chords ever produce nontrivial phase space paths?

Answer:

Are the paths homotopic?

Yes, when we look at the *n*th Fourier component of a **relatively even** n-note chord.

Example:

$$\{C, E, G\} \rightarrow \{B, E, G\sharp\}$$

Trivial in both voiceleading and fourier space

Answer:

Are the paths homotopic?

Yes, when we look at the *n*th Fourier component of a **relatively even** n-note chord.

Example:

$$\{C, E, G\} \rightarrow \{B, E, G\sharp\}$$

Trivial in both voiceleading and fourier space

Answer:

Are the paths homotopic?

No, when we look at the *n*th Fourier component of a **not very even** n-note chord.

Example:

$$\{C, D, E\} \rightarrow \{G\sharp, E, F\sharp\}$$

Trivial in voice-leading space, **nontrivial** in fourier space

An open question:

How uneven does a chord have to be for a balanced voice leading to cycle phase space?

We don't know.

Example:

$$\{C, D, E\} \rightarrow \{G\sharp, E, F\sharp\}$$

In this example, one voice travels by a full 8ve/n

THE CORRESPONDENCE (CROSSFADE PATHS)

Crossfade paths

- Represent voice leading as a linear interpolation between the vectors corresponding to the initial and final chords.
 - "fade out" the initial chord while "fading in" the second chord.
- Always take the shortest path along circular Fourier phase space.
 - Cannot represent the different paths between antipodal points.
- To distinguish sharpward from flatward requires intermediary points.

Cross-Fade vs. Glide Paths

Paths in Fourier spaces can be constructed as **cross-fades** or as glide paths

Cross-fade:

Cross-Fade vs. Glide Paths

Paths in Fourier spaces can be constructed as **cross-fades** or as glide paths

Glide:

Cross-Fade vs. Glide Paths

Paths in Fourier spaces can be constructed as **cross-fades** or as glide paths

A MORE GENERAL POINT OF VIEW

Voice-Leading Approximation of Fourier Magnitude

Tymoczko (2008) argued that Fourier magnitudes closely approximate the proximity to the nearest doubled subset of a perfectly even chord.

Voice-Leading Approximation of Fourier Phase

Fourier phases closely approximate the transpositional level of the nearest doubled subset of an n-note perfectly even chord Example:

Voice-Leading Approximation of Fourier Phase

Fourier phases closely approximate the transposition of the nearest doubled subset of an *n*-note perfectly even chord

Phase by transposition of the nearest doubled subset of PE for

Voice-Leading Approximation of Fourier Analysis

Using these relationships we can approximate many features of the Fourier perspective using voice leading tools.

Question: what features of Fourier analysis resist such translation?

Thank you!

Another question:

How uneven does a chord have to be for a balanced voice leading to cycle phase space?

Example:

$${C, F+1/_3, F\sharp} \rightarrow {C\sharp+1/_3, D, G\sharp}$$

In this example, Ph₃ makes a full cycle, but all individual voices travel less than 8ve/n

Voice-Leading Consistency

Phase/Voice-leading consistency may offer a general approach

Point in complex f_n space

Unit vector for the individual voice

Descending voice leading

Direction toward origin

Voice-Leading Consistency

Case 1: Voice distant in phase, both voice leadings contradictory

Case 2: Voice oblique in phase, towards center is consistent, away from center is contradictory

