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I. Forte’s Project and the DFT 

1.  A theory of harmony for the 20th century 
2.  Pc-vectors 

3.  DFT components and interval content 
4.  Phase spaces 
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A Theory of Harmony for the 20th Century 

Forte’s project: 
 

“It is the intention of the present work to provide  
a general theoretical framework, with reference to which 

the processes underlying atonal music may be 
systematically described.” 
The Structure of Atonal  

Music (1973), Preface 
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A Theory of Harmony for the 20th Century 

Forte’s project: 
General features of harmony that are largely independent 
of compositional aesthetic: 

• Interval content determines harmonic quality 

Interval content ↔ DFT components 

• Common pc content determines harmonic proximity 

Subset relations ↔ DFT phase spaces 
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Discrete Fourier Transform on Pcsets 
Lewin, David (1959). “Re: Intervallic Relations 

between Two Collections of Notes,” JMT 3/2. 

——— (2001). “Special Cases of the Interval 
Function between Pitch Class Sets X and Y.” 
JMT 45/1. 

Quinn, Ian (2006–2007). “General Equal-Tempered 
Harmony,” Perspectives of New Music 44/2–
45/1. 

Amiot, Emmanuel (2013). “The Torii of Phases.” 
Proceedings of the International Conference for 
Mathematics and Computation in Music, 
Montreal, 2013 (Springer).   

Yust, Jason (2015). “Schubert’s Harmonic Language 
and Fourier Phase Spaces.” JMT 59/1.  
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Characteristic Function of a Pcset 

The characteristic function of a pcset is a 12-place vector  
with 1s for each pc and 0s elsewhere:  

( 1,    0,    0,    0,    1,    0,    0,     1,    0,    0,    0,    0 ) 
C    C#    D     E∫    E     F      F#    G     G#    A     B∫    B 
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DFT Components 

The DFT is a change of basis from a sum of pc spikes 
to a sum of discretized periodic (perfectly even) curves. 
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DFT Components 

Quinn’s generic prototypes are pcsets that maximize a given 
component. Subsets and supersets of the prototypes are the 
best representatives of each component 
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DFT Components 

Notation 

fn 
 

|fn| 
 

|fn|2 
 
ϕn  
 

Phn 

The nth DFT component 
 
The magnitude of the nth component 
 
Squared magnitude  
 
The phase (0 ≤ ϕn ≤ 2π) of the nth component 
 
Phase normalized to pc-values: (0 ≤ Phn ≤ 12)  

〈〈 (|f1|2, Ph1), (|f2|2, Ph2), (|f3|2, Ph3), (|f4|2, Ph4), (|f5|2, Ph5), (|f6|2, Ph6) 〉〉    
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Phase spaces: One dimensional 
One-dimensional phase spaces are Quinn’s Fourier balances, 

superimposed n-cycles created by multiplying the pc-circle by n.  

Ph1 Ph2 Ph3 

Ph5 Ph4 Ph6 

N.B. counter-clockwise orientation 
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Phase spaces: One dimensional 
The position of the pcset in the phase space is the  

circular average of the individual pcs 

Ph3 Ph5 

{CEG} 

{CEG} 
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Phase spaces: One dimensional 
Opposite phases cancel one another out. 

Therefore pcsets can have undefined phases. 

C 

D 

Ph3 

{CD} has undefined Ph3, 
|f3| = 0  

× 
This is a kind of  
Generalized Complementation: 
Complements balance one another  
in all phase spaces. 
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Phase spaces: One dimensional 

An analytical proto-methodology: 
 

Each Fourier component measures an independent  
musical quality: (1) chromaticism, (2) quartal harmony,  

(3) triadic harmony, (4) octatonicism,  
(5) diatonicism, (6) whole-tone balance. 

 
Distances in phase spaces indicate: 

• Relatedness of harmonies on the given dimension 
• Whether the harmonies reinforce one another or 

weaken one another on the given dimension 
when combined.  
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Phase Spaces: Two dimensional 
A two-dimensional phase space tracks the phases of  

two components, and is topologically a torus. 

Amiot (2013) and Yust (2015) use Ph3–5-space to 
describe tonal harmony. 

     from 
     Amiot,  
MCM 2013 
proceedings 
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Phase Spaces: Two dimensional 
Amiot (2013) and Yust (2015) use Ph3,5-space to describe 

tonal harmony 

    Pcs, consonant  
dyads and triads, 
and Tonnetz  
in Ph3,5-space,  
from Yust (2015) 
(JMT 59/1) 



II. Debussy, “Les sons et les 
parfums tournent dans l’air du soir” 

1.  Heptatonic scales and diatonicity 
2.  Common tones and harmonic qualities 
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Scale Theory, Subsets, and Phase Space 

Problems in the analytical application of scale theory: 
 

(1) The status of subsets of multiple scales and 
supersets of multiple scales. 

(2) The range of variability in what counts as a scalar set. 

 

A possible solution: Phase space 5 
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Debussy and Scale-Network Wormholes 

Debussy, Preludes I, no. 4, “Les sons et les parfums tournent en l’air de soir’’  
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Debussy and Scale-Network Wormholes 

A scalar network  
for relatively even  
heptatonic scales  
(after Tymoczko 
2004, 2011)  
corresponds to  
positions on a  
Ph5 cycle. 
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Debussy and Scale-Network Wormholes 

A scalar network  
for relatively even  
heptatonic scales  
(after Tymoczko 
2004, 2011)  
corresponds to  
positions on a  
Ph5 cycle. 
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Debussy and Scale-Network Wormholes 

The scales in the  
opening of the  
Prelude require 
four moves in the 
scale network 
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Debussy and Scale-Network Wormholes 

But . . .  
These scales can also be connected with just three moves 

By using Oct01 
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Debussy and Scale-Network Wormholes 

Or . . .  
By using Oct12 
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Debussy and Scale-Network Wormholes 
Why? Although far apart in Ph5 

They are close together in Ph4 
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Debussy and Scale-Network Wormholes 

Debussy, Preludes I, no. 4, “Les sons et les parfums tournent en l’air de soir’’  

E-A motive 
F#-C# motive 
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Debussy and Scale-Network Wormholes 

←
  P

h 5
 →

  

← Ph4 →  

EA is a central subset 
(same Ph5 value) 

C#F# is peripheral in Ph5 
but close in Ph4 

Meas. 7–8 are connected to 
Meas. 1–4 by a prominent f4  
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Debussy Airs: Change of Quality 
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Debussy Airs: Change of Quality 

DFT magnitudes^2 
     | f1|2 | f2|2 | f3|2 | f4|2 | f5|2 | f6|2  
〈〈 3.73,  1,     5,    7,  0.27,  1 〉〉  
 
〈〈   1,      1,     4,    1,    1,     16 〉〉  
 

{ABbCDbEGAb}: 
 
{AC#D#E#}: 
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Common-Tone Theorem 

The number of common tones between sets X and Y =  

For each component 
(sum over components) 

Cosine of the phase difference 
(ranges from –1 for opposite 
phases to 1 for same phase) 

Weighted by the component 
magnitudes 
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Common-Tone Theorem 

The number of common tones between sets X and Y =  

In other words:  
Distances in phase space for the most prominent components 

determine the number of common tones 
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Common-Tone Theorem 

Example: 

   | f0| (| f1|, Ph1) (| f2|,Ph2) (| f3|, Ph3) (| f4|, Ph4)     (| f5|, Ph5) (| f6|,Ph6)  
 
〈〈   7,  (1.93, 2.5)     (1, 8)   (2.24, 11.1), (2.65, 8.64) (0.52, 0.5 ),  (1, 0) 〉〉  
 
〈〈   4,      ( 1, 9)         (1, 6)        (2, 9)            (1, 0)              (1, 9)        (4, 6) 〉〉  
 
   28,    (1.9, –1.0)  (1, 0.5)  (4.5, 0.45) (2.7, –0.19) (0.52, –0.26) (4, –1) 
 
  
  2.33  +  –0.31    +  0.08   +   0.33    +    –0.08     +    –0.02    +   –0.33   
 

= 2 common tones (A and C#) 
 

{ABbCDbEGAb}: 
 
{AC#D#E#}: 
 
Multiply mag., 
Cosine of Ph. diff. 
 
Multiply and  
divide by twelve 

Sum 
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Common-tone Linkage: Debussy 

1# Harmonic Major subset AC#EF#G 

F#C# 6b Harmonic Major 



Jason Yust DFT and a Theory of Harmony for the 20th Century SMT 11/1/2015 

Common-tone Linkage: Debussy 

←
  P

h 5
 →

  

← Ph4 →  

Debussy uses  
common subsets 
to bridge distant 
collections 

Pitch class A is  
diatonically central to  
the 1# harmonic major  
but octatonically  
central to the 6b 

harmonic major 
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Common-tone Linkage: Debussy 

1# Harmonic Major 
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Common-tone Linkage: Debussy 
←

  P
h 5

 →
  

← Ph4 →  

The common-tone set  
reflects the Ph4 of the  
Oct0,1 subset and the  
Ph5 value of C#9 

The large |f4| of the Oct0,1 subset   
and the harmonic major, and  
their Ph4-proximity, mediate the  
large diatonicity shift of the return 



Jason Yust DFT and a Theory of Harmony for the 20th Century SMT 11/1/2015 

Common-Tone Theorem 

Example: 

   | f0| (| f1|, Ph1) (| f2|,Ph2) (| f3|, Ph3)   (| f4|, Ph4)      (| f5|, Ph5) (| f6|,Ph6)  
 
〈〈   7,  (0.52, 5.5)     (1, 8)     (2.2, 6.9),    (2.6, 8.6)       (1.9, 3.5 )      (1, 0) 〉〉  
 
〈〈   6,  ( 1.4, 10.5)    (0, –)      (1.4, 1.5)      (3.5, 9)         (1.4, 10.5)     (0, –) 〉〉  
 
   42,   (0.7, –0.9)  (0, –)   (3.2, –0.95) (2.7, –0.19) (0.52, –0.26) (0, –) 
 
  
  3.5   +    –0.1     +     0     +    –0.5      +      1.5        +       –0.4      +      0  
 

= 4 common tones (C#, E, G, Bb) 
 

C7/m9/+9 
 
1# h.maj. 
 
Multiply mag., 
Cosine of Ph. diff. 
 
Multiply and  
divide by twelve 

Sum 



Stravinsky and the Octatonic 

1. Rite of Spring, Introduction and Augurs 
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Stravinsky and the Octatonic 
Is this music octatonic?  
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Stravinsky and the Octatonic 
Van den Toorn: 

5 of the 7 notes in 
the “Augurs” chord 

and the C triad 
come from Oct0,1 

(E + Eb7). 
The G# and B  
reinforce E 



Jason Yust DFT and a Theory of Harmony for the 20th Century SMT 11/1/2015 

Stravinsky and the Octatonic 

What are the chances?!?! 

100% 
All 8-note collections overlap at least one octatonic  

by six or more pitch classes. 
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Stravinsky and the Octatonic 

Joseph Straus (review of Music of Stravinsky): 
 

Van den Toorn “never provides and systematic criteria for 
determining the presence of the octatonic collection; as a 

result, a number of his attributions are suspect. Almost any 
passage containing nine to twelve pitch classes can be 
discussed as ‘diatonic interpenetration’ of an octatonic 

context.” 
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Stravinsky and the Octatonic 

Dmitri Tymoczko (on the analyses in Music of Stravinsky): 
 

“If even these passages can be understood as the result of 
‘octatonic-diatonic interpenetration,’ then we should rightly 
ask whether there is any music that cannot be understood 

in this way. 
In a sense, there is not: any proper subset can be 

decomposed into diatonic and octatonic components.” 
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Stravinsky and the Octatonic 
Let’s try again . . .  Eb7 

Fb maj. 

C maj. 
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Stravinsky and the Octatonic 

Components f4 and f5 are the largest  
across the set-types 

Major/minor triad: 
 
Dominant 7th:  

DFT magnitudes^2 
     | f1|2 | f2|2 | f3|2 | f4|2 | f5|2 | f6|2  
〈〈 0.27,  1,     5,    3,  3.73,  1 〉〉  
 
〈〈 0.27,  1,     2,    7,  3.73,  4 〉〉  
 



Jason Yust DFT and a Theory of Harmony for the 20th Century SMT 11/1/2015 

Stravinsky and the Octatonic 

←
  P

h 5
 →

  

← Ph4 →  

Eb7 

Fb maj. 

C maj. 

The chords are 
maximally spread 
out in the diatonic  
dimension. 
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Stravinsky and the Octatonic 

←
  P

h 5
 →

  

← Ph4 →  

Eb7 

Fb maj. 

C maj. 

But they occupy 
a narrow range in 
the octatonic 
dimension. 
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Stravinsky and the Octatonic 

←
  P

h 5
 →

  

← Ph4 →  

Eb7 

Fb maj. 

C maj. 
O

ct
0,

1 

O
ct

2,
3 

O
ct

1,
2 

{D
FA

bB
}  {E
G

Bb
D
b}  

{C
Eb

G
bA

}  

Augurs Chord: |f4|2 = 7, |f5|2 = 3.7  

Jeu du Rapt Chord:  
|f4|2 = 12, |f5|2 = 2  

The Augurs chord 
is close to E07 in  
Ph4 (closer to  
Oct1,2 than Oct0,1!) 

The Jeu du Rapt 
chord is between  
E07 and Oct0,1. 
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Stravinsky and the Octatonic: Jeu du Rapt 

Eb7 + C maj.  D maj. pentachord  
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Stravinsky and the Octatonic 

←
  P

h 5
 →

  

← Ph4 →  

Eb7 

Fb maj. 

C maj. 

Jeu du Rapt Chord:  
|f4|2 = 12, |f5|2 = 2  

D major pentachord:  
|f4|2 = 1, |f5|2 = 10.5  
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Stravinsky and the Octatonic 

Octatonic Tonnetz 
Van den Toorn and 

McGuiness 2012 Pitch classes in Ph4,5-space 
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Stravinsky and the Octatonic 

Pitch classes in Ph4,5-space 

Diatonic materials: 
D major hexachord 

Octatonic materials: 
Oct0,1 

Overlap: 
A-dorian tetrachord 

(cf. Jeu du Rapt) 



Feldman, Palais de Mari 
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Feldman, Palais de Mari 
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Feldman, Palais de Mari 

Features of the piece: 

• Composed in 1986, Feldman’s last work for solo piano. 
• Long but sparse: the 9-page score takes ca. 25 minutes to 

play. 
• Made up of discrete gestures, frequently repeated and 

varied (often in subtle ways). 
• Pedal is held continuously throughout most of the piece. 

This blurs the distinction between successive and 
simultaneous sounds.  

• Extended segmentational analysis in Hanninen, A Theory of 
Music Analysis (2012).  
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Feldman, Palais de Mari 

Features of the piece: 

• Long sections on the piece tend to dwell on a limited set of 
gestures, giving the piece a sense of trajectory that is 
nonetheless non-teleological. 

• Composed around the same time as his Second String  
Quartet, which Feldman described as “a dialectic of sorts 
between such elements as . . . chromaticism/consonance.” 

• “Reverse Development”: Gestures often appear before the 
idea from which they are derived, replacing a process of 
development with one of revelation. 
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Feldman, Palais de Mari 
The initial gesture (Hanninen set A) stages a  

chromatic–diatonic conflict 

The first three notes are highly diatonic, 
but the final E introduces a concentrated chromaticism. 

Hanninen: “The contrast between harmonies rich in ics 2 and 5, 
versus those rich in ic1, resonates throughout the piece.” 
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Feldman, Palais de Mari 

The gesture can also be divided by part into 
a fourth and a minor second. 

(A∫E∫) 

(FE) 

The initial gesture (Hanninen set A) stages a  
chromatic–diatonic conflict 
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Feldman, Palais de Mari 

Ph1,5-space 

← Ph1 →  

←
  P

h 5
 →

  
ic2 and ic3 
are the 
highest-
magnitude 
ics in the 
space and 
are 
balanced 
between f1 
and f5 

ic2 
ic3 
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Feldman, Palais de Mari 

Ph1,5-space 

← Ph1 →  

←
  P

h 5
 →

  

(FE) 

(A∫E∫) 

Dyads from 
the upper 
and lower 
voices of  
m. 1— 
ic1 and ic5 
occupy the 
same 
positions in 
the space. 
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Feldman, Palais de Mari 
Ph1,5-space 

← Ph1 →  

←
  P

h 5
 →

  
The upper 
and lower 
voice dyads 
are close 
in Ph1 and 
distant in 
Ph5.  
N.B.: They are 
also imbalanced 
(bottom: high f1; 
top: high f5). 

(3.71, 0.35) 

(0.31, 3.75) 
(5.71, 2.35) 
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Feldman, Palais de Mari 

One of Feldman’s basic harmonic techniques is 
Transpositional Combination  

 
m. 20: m. 41: 

(B∫F) 

T2 

(CD) 
T1 

(Hanninen set C) (Hanninen set E/d) 

ic5*ic2 ic1*ic2 
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Feldman, Palais de Mari 
Convolution Theorem: Transpositional combination (with 

doublings retained) is the same as multiplying DFT 
magnitudes and adding the phases.  

m. 20: 

(B∫F) 

T2 

= (t7) ×(02) 

   (t7)  
× (02) 

〈〈 (0.27, 4.5), (3, 3), (2, 7.5), (1, 6), (3.73, 10.5), (0, –) 〉〉    
× 〈〈      (3, 11),   (1, 10), (0, –),  (1, 2),       (3, 1),       (4, 0) 〉〉    

= 〈〈 (0.8, 3.5),  (3, 1),   (0, –),  (1, 8),  (11.2, 11.5),  (0, –) 〉〉    

=(t079) 
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Feldman, Palais de Mari 

Transposition of entire gestures by semitone  
reinforces component 1 and cancels out component 5 

(46)  
× (03)  

(4679)  
× (01)  

〈〈 (3, 7)1,      (3, 5)5 〉〉    
× 〈〈 (2, 10.5)1,  (2, 10.5)5 〉〉    

= 〈〈 (6, 5.5)1,   (6, 3.5)5 〉〉    = (4679) 

〈〈 (6, 5.5)1,        (6, 3.5)5 〉〉    
× 〈〈 (3.73, 11.5)1, (0.27, 9.5)5 〉〉    

= (4567289) = 〈〈 (22.4, 5)1,       (1.6, 8)5 〉〉    

(0235) = 2*3 is balanced 
between f1 and f5, but 
multiplying by (01)  
weakens f5 in favor of f1 
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Feldman, Palais de Mari 
This idea is repeated 

frequently throughout the 
last part of the piece. 

This variant of the idea 
makes it evident that both 
are products of (013) with 

ic5 or ic1: 

RH LH RH LH 
(Hanninen G/a) 



Jason Yust DFT and a Theory of Harmony for the 20th Century SMT 11/1/2015 

Feldman, Palais de Mari 
Hanninen:  

“ The arrival of G/a287–88 . . . is the 
keystone in a remarkable confluence of 

events. First, it defines the center of subset 
G/a, and also of set G. Second, it forms a 
bridge to set A, recalling and rearranging 

intervals and key pcs of set A. Third, it forms 
a second, and stronger, bridge to set C.” 

Gesture from set A: Gesture from set C: 

20 
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Feldman, Palais de Mari Ph1,5-space 

← Ph1 →  

←
  P

h 5
 →

  

The (0235) 
and G–A∫ 
subsets are 
spread out in 
Ph1 and close 
in Ph5 

The individual 
chords are 
more spread 
out in Ph5, 
meaning they 
have   
stronger f5 

(0.51, 7.55) 

(2.31, 5.75) 

(3.71, 0.35) 

(61, 65) 
(1.51, 8.55) 
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Feldman, Palais de Mari 

Ph1,5-space 

← Ph1 →  

←
  P

h 5
 →

  
The (013)s of 
the variant 
gesture are 
spread out in 
Ph5 and close 
in Ph1, 
making the 
sum strongly 
chromatic. 

(5.71, 2.35) 

(5.71, 2.35) 

(21.41, 0.65) 
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Feldman, Palais de Mari 
One important gesture reveals how Feldman “cripples” 

symmetries by asymmetrically dividing a symmetric entity  

The symmetric source chord is balanced between f1 and f5,  
but it is split into more heavily chromatic chords. 

〈〈 (3.73, 5.5)1, (0.27, 3.5)5 〉〉 
〈〈 (5.73, 1.3)1, (2.27, 2.8)5 〉〉     

〈〈 (4, 3)1, (4, 3)5  〉〉    

    (F#GG#D) 
+ (AB∫BCE) 

= (F#GG#AB∫BCDE) 
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Feldman, Palais de Mari 

Ph1,5-space 
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The Ph1 
spread shows 
how more 
chromatic 
chords are 
extracted 
from a 
balanced 
parent chord. 

(5.71, 2.35) 
(3.71, 0.35) 

(41, 45) 
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Summary 

• DFT is a change of basis applied to the domain of pc-distributions. 

• Each DFT component measures a musically interpretable quality 
relating to a type of periodicity. 

• DFT magnitudes can replace much of pcset-theory’s use of 
interval content to relate harmonic entities. 

• The fifth Fourier component measures diatonicity, and 
provides a more systematic approach to reconciling subsets and 
supersets with scale theory. 

• The fourth Fourier component represents octatonicity and is 
used by composers like Debussy and Stravinsky to relate 
diatonically distant harmonies. 

• Distances in phase space provide a common-tone-based measure 
of relatedness between collections of any size. 
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