# The Fourier Transform and a Theory of Harmony for the Twentieth Century

Jason Yust, Boston University

Society for Music Theory St. Louis, Oct. 29–Nov. 1, 2015

A copy of this talk is available at people.bu.edu/jyust/

# Outline

#### I. Forte's Project and the DFT

- 1. A theory of harmony for the 20<sup>th</sup> century
- 2. Pc-vectors

Jason Yust

- 3. DFT components and interval content
- 4. Phase spaces

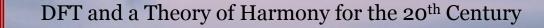
#### II. Debussy: "Les sons et les parfums tournent dans l'air du soir"

- 1. Heptatonic scales and diatonicity
- 2. Common tones and harmonic qualities

#### **III. Stravinsky and the Octatonic**

- 1. *Rite of Spring*, Introduction and *Augurs*
- 2. Octatonic scale versus octatonic quality

#### IV. Feldman, Palais de Mari



# I. Forte's Project and the DFT

A theory of harmony for the 20<sup>th</sup> century
 2. Pc-vectors
 3. DFT components and interval content
 4. Phase spaces

#### A Theory of Harmony for the 20<sup>th</sup> Century

Forte's project:

"It is the intention of the present work to provide a general theoretical framework, with reference to which the processes underlying atonal music may be systematically described."

> *The Structure of Atonal Music* (1973), Preface



DFT and a Theory of Harmony for the 20<sup>th</sup> Century

Jason Yust

## A Theory of Harmony for the 20<sup>th</sup> Century

Forte's project:

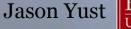
General features of harmony that are largely independent of compositional aesthetic:

• Interval content determines harmonic quality

#### **Interval content ↔ DFT components**

Common pc content determines harmonic proximity

Subset relations ↔ DFT phase spaces



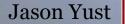
DFT and a Theory of Harmony for the 20<sup>th</sup> Century

# **Discrete Fourier Transform on Pcsets**

- Lewin, David (1959). "Re: Intervallic Relations between Two Collections of Notes," *JMT* 3/2.
- Quinn, Ian (2006–2007). "General Equal-Tempered Harmony," *Perspectives of New Music* 44/2– 45/1.
- Amiot, Emmanuel (2013). "The Torii of Phases."
   Proceedings of the International Conference for Mathematics and Computation in Music, Montreal, 2013 (Springer).

Yust, Jason (2015). "Schubert's Harmonic Language and Fourier Phase Spaces." *JMT* 59/1.



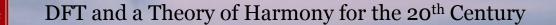


DFT and a Theory of Harmony for the 20<sup>th</sup> Century

## **Characteristic Function of a Pcset**

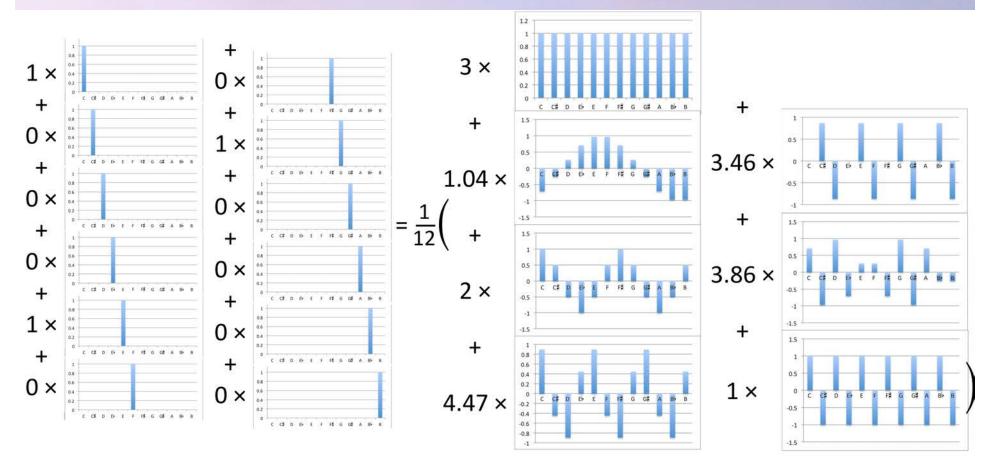


The *characteristic function* of a pcset is a **12-place vector** with 1s for each pc and 0s elsewhere:



Jason Yust

#### **DFT Components**

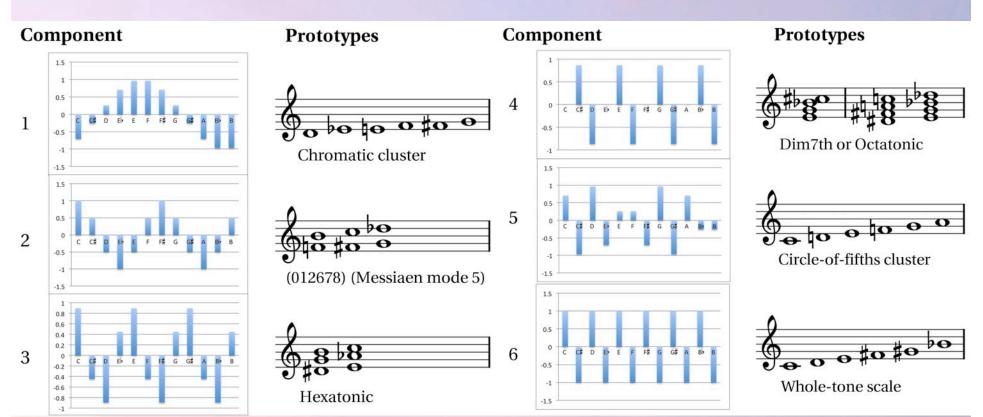


The DFT is a **change of basis** from a sum of pc spikes to a sum of discretized **periodic** (perfectly even) curves.

Jason Yust

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

# **DFT Components**



Quinn's *generic prototypes* are pcsets that maximize a given component. **Subsets** and **supersets** of the prototypes are the best representatives of each component

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

Jason Yust

#### **DFT Components**

#### Notation

| $f_n$           | The <i>n</i> th DFT component                                       |
|-----------------|---------------------------------------------------------------------|
| $ f_n $         | The <i>magnitude</i> of the <i>n</i> th component                   |
| $ f_n ^2$       | Squared magnitude                                                   |
| φ <sub>n</sub>  | The phase $(0 \le \varphi_n \le 2\pi)$ of the <i>n</i> th component |
| Ph <sub>n</sub> | Phase normalized to pc-values: $(0 \le Ph_n \le 12)$                |

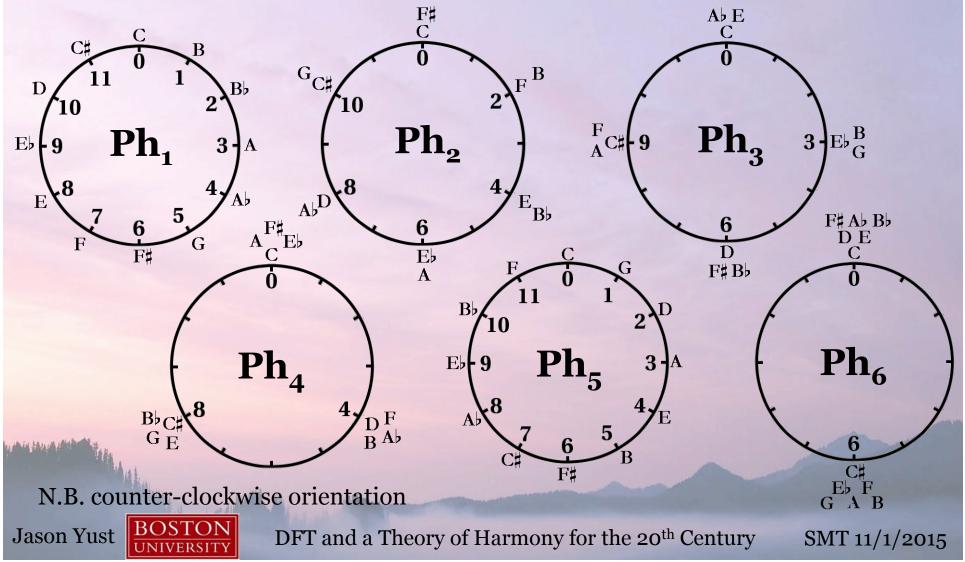
 $\langle \langle (|f_1|^2, Ph_1), (|f_2|^2, Ph_2), (|f_3|^2, Ph_3), (|f_4|^2, Ph_4), (|f_5|^2, Ph_5), (|f_6|^2, Ph_6) \rangle \rangle$ 

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

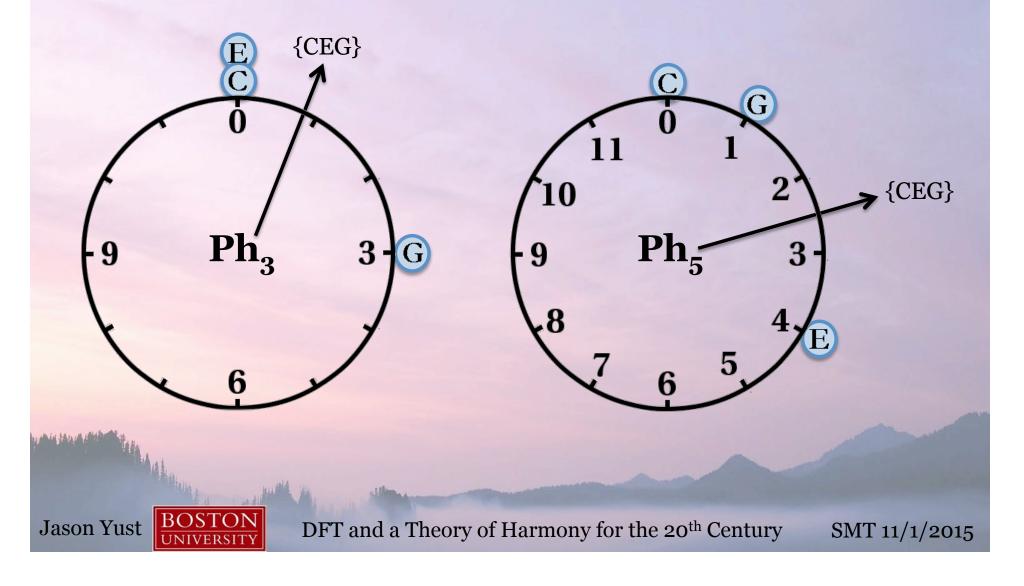
BOST

Jason Yust

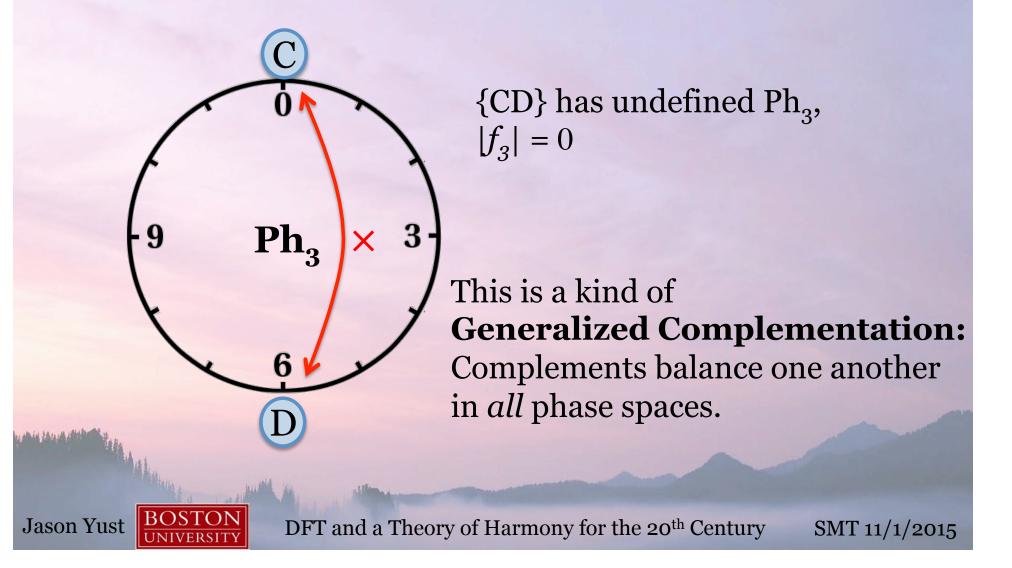
One-dimensional phase spaces are Quinn's *Fourier balances*, superimposed *n*-cycles created by multiplying the pc-circle by *n*.



The position of the pcset in the phase space is the circular average of the individual pcs



Opposite phases cancel one another out. Therefore pcsets can have undefined phases.



An analytical proto-methodology:

Each Fourier component measures an independent musical quality: (1) chromaticism, (2) quartal harmony, (3) triadic harmony, (4) octatonicism, (5) diatonicism, (6) whole-tone balance.

Distances in phase spaces indicate:

- Relatedness of harmonies on the given dimension
- Whether the harmonies **reinforce** one another or **weaken** one another on the given dimension when combined.

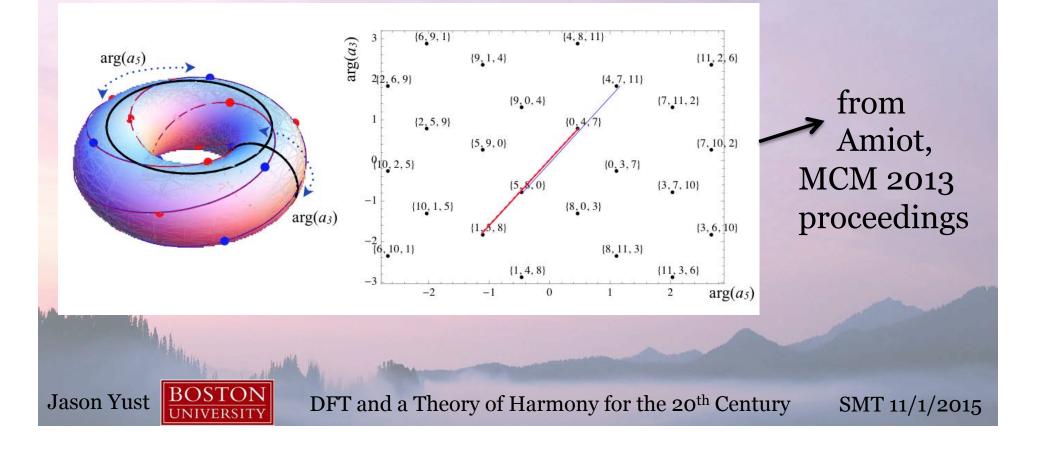
Jason Yust

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

## **Phase Spaces: Two dimensional**

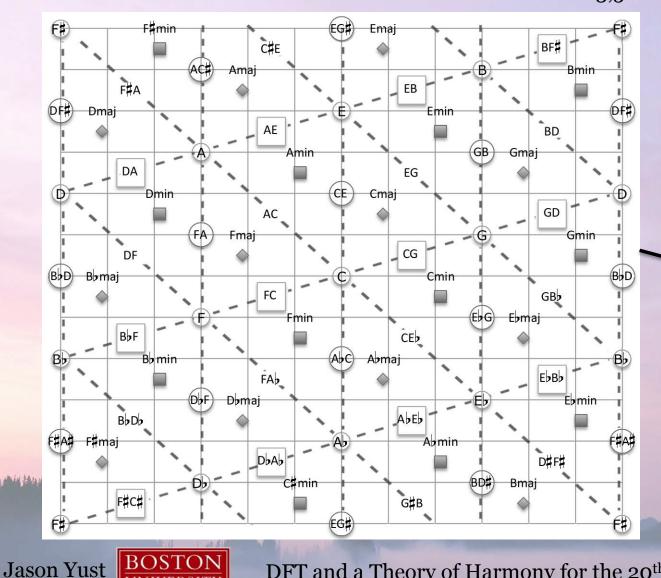
A two-dimensional phase space tracks the phases of two components, and is topologically a *torus*.

Amiot (2013) and Yust (2015) use Ph<sub>3-5</sub>-space to describe tonal harmony.



#### **Phase Spaces: Two dimensional**

Amiot (2013) and Yust (2015) use Ph<sub>3.5</sub>-space to describe



tonal harmony

▹Pcs, consonant dyads and triads, and Tonnetz in Ph<sub>3,5</sub>-space, from Yust (2015) (JMT 59/1)

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

# II. Debussy, "Les sons et les parfums tournent dans l'air du soir"

1. Heptatonic scales and diatonicity

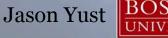
2. Common tones and harmonic qualities

**Scale Theory, Subsets, and Phase Space** Problems in the analytical application of scale theory:

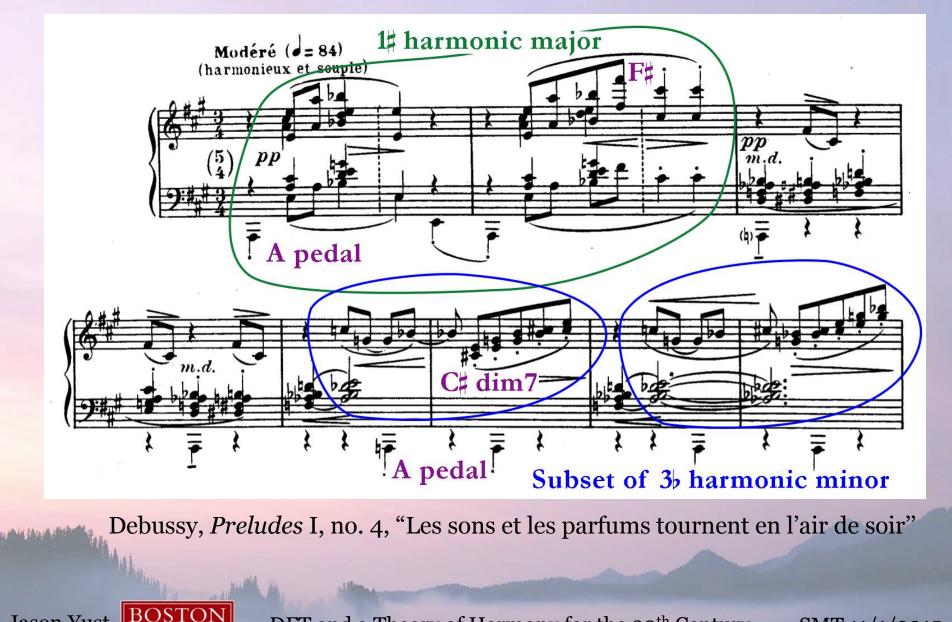
(1) The status of **subsets** of multiple scales and **supersets** of multiple scales.

(2) The range of variability in what counts as a scalar set.

A possible solution: Phase space 5

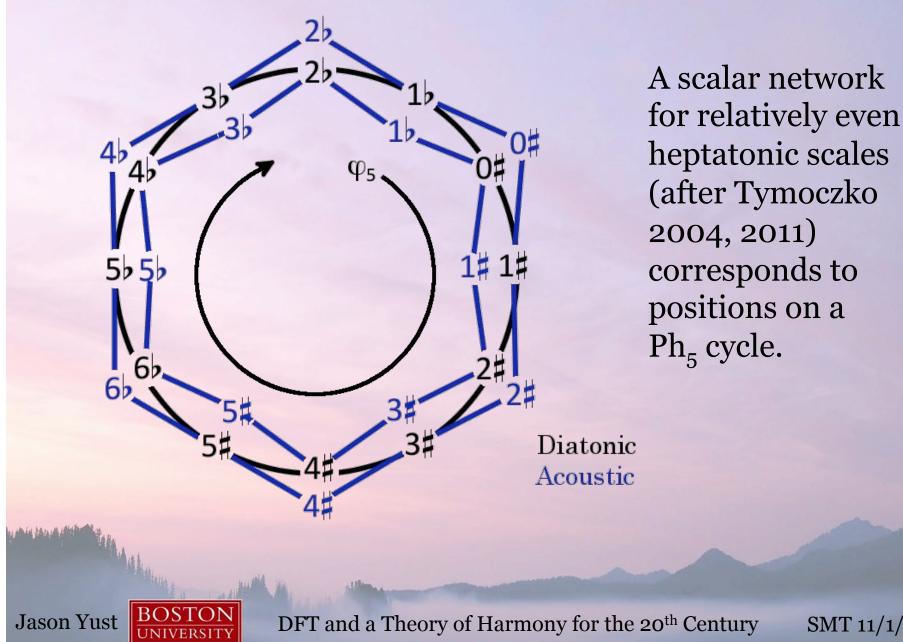


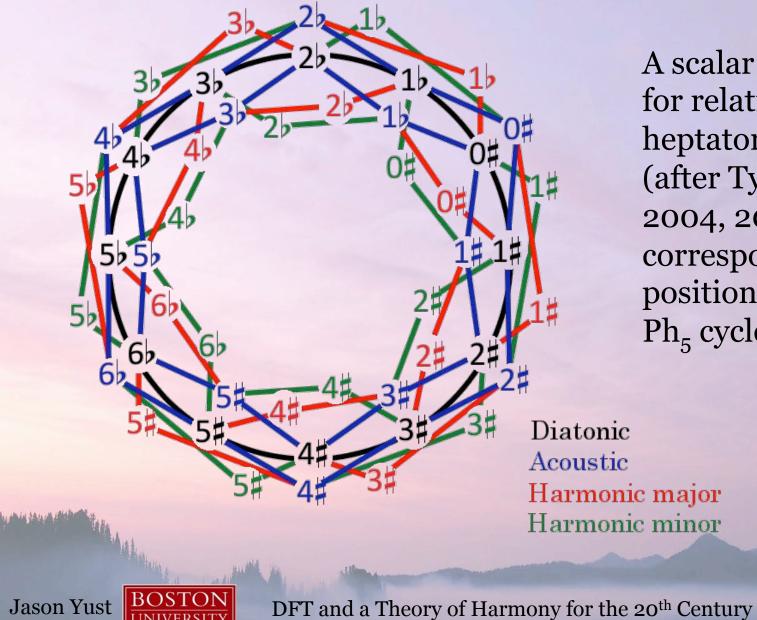
DFT and a Theory of Harmony for the 20<sup>th</sup> Century



Jason Yust

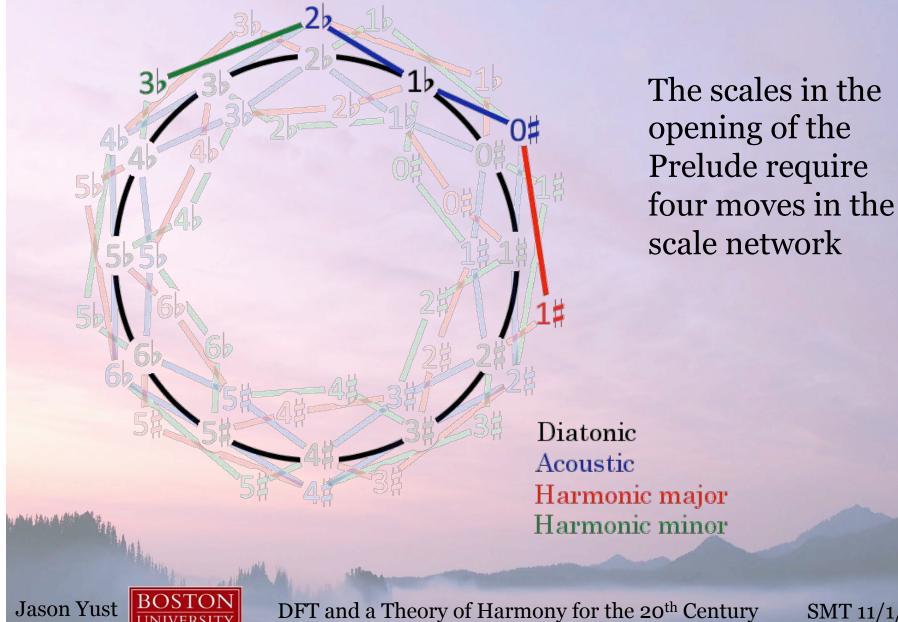
DFT and a Theory of Harmony for the 20<sup>th</sup> Century SMT 11/1/2015





A scalar network for relatively even heptatonic scales (after Tymoczko 2004, 2011) corresponds to positions on a  $Ph_5$  cycle.

Harmonic major Harmonic minor



But . . . These scales can also be connected with just three moves By using Oct<sub>01</sub>

AB>C#DEF#G AB>CD>E>EF#G 1# Harmonic major

 $Oct_{01}$ 

26 Harmonic major

AbbbCDbE(F)G

AB,CD,E(F)G

3 Harmonic minor

Jason Yust

NIVERSITY

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

Or . . . By using  $Oct_{12}$ 

AB♭C#DEF#G 1# Harmonic major
AB♭C#DEFG 0# Harmonic minor
A♭B♭BC#DEFG Oct<sub>12</sub>

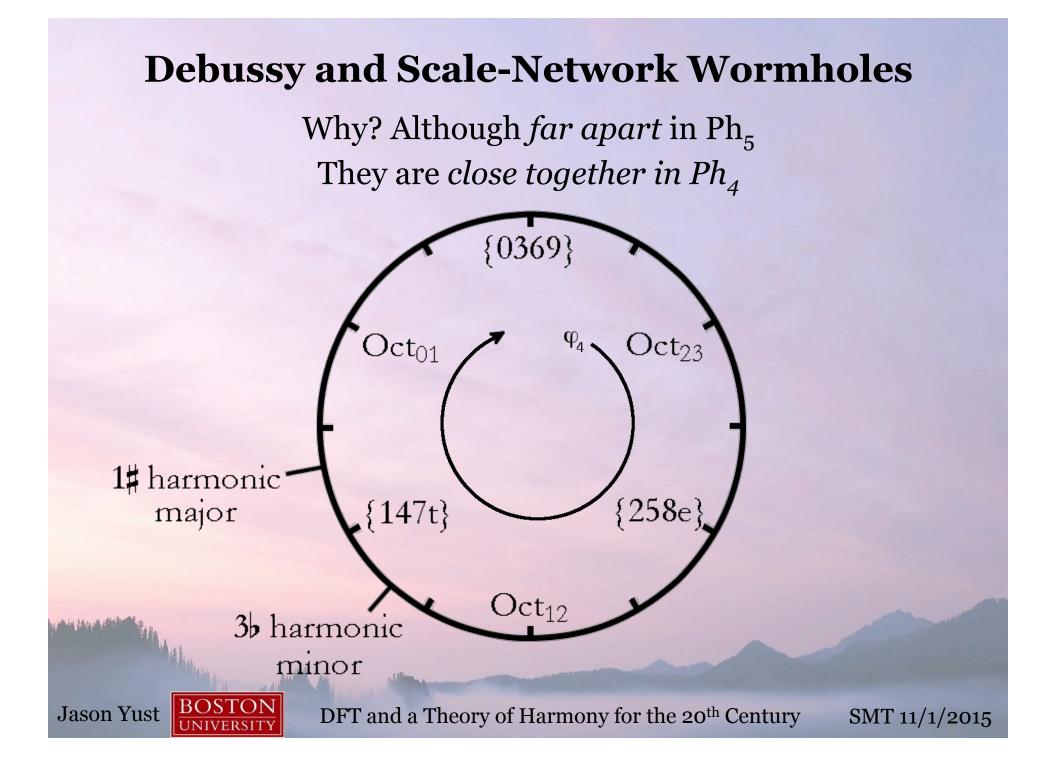
A B C D E(F)G

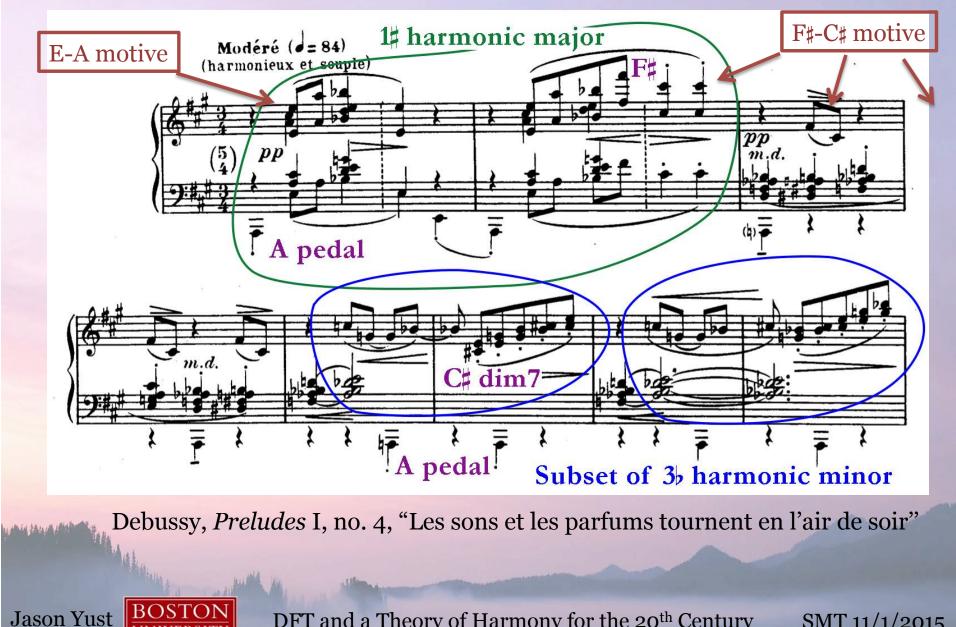
3 Harmonic minor

Jason Yust

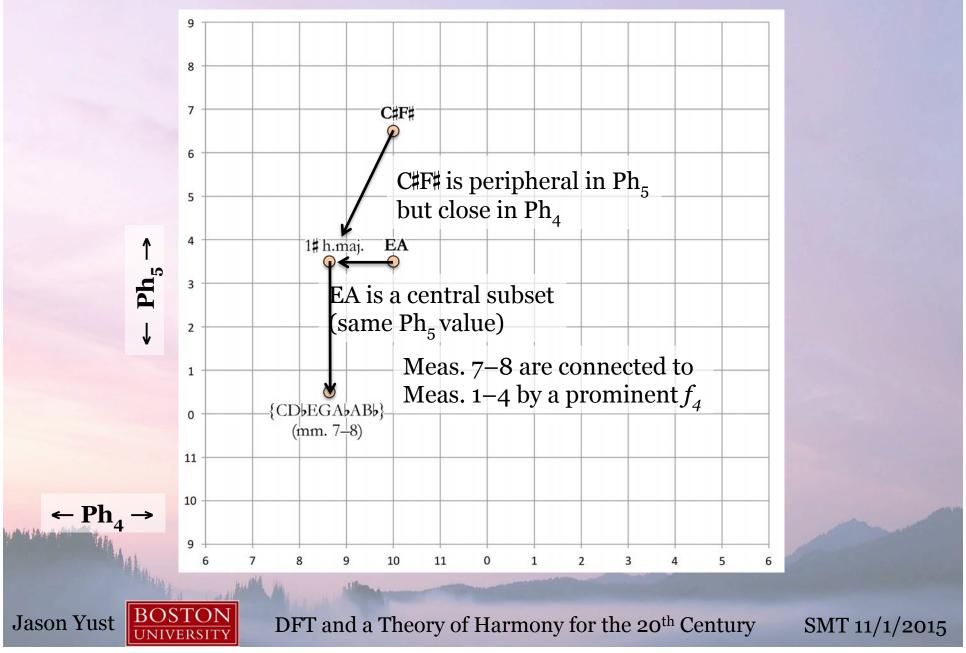
BOSTON JNIVERSITY

DFT and a Theory of Harmony for the 20<sup>th</sup> Century





DFT and a Theory of Harmony for the 20<sup>th</sup> Century SMT 11/1/2015



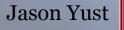
#### **Debussy** *Airs*: Change of Quality



#### **Debussy** *Airs*: Change of Quality

#### DFT magnitudes<sup>2</sup>

# $\{AB \downarrow CD \downarrow EGA \downarrow\}: \qquad \{AC \#D \#E \#\}: \qquad \{\langle \langle 1, 1, 4, 1, 1, 1 \rangle \rangle \}$



BOSTON

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

#### **Common-Tone Theorem**

The number of common tones between sets X and Y =

 $\frac{1}{12}\sum_{n=0}^{1} |f_n(A)| |f_n(B)| \cos(\varphi_n(A) - \varphi_n(B))$ 

For each component (sum over components)

Cosine of the phase difference (ranges from –1 for opposite phases to 1 for same phase)

Weighted by the component magnitudes

Jason Yust

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

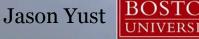
#### **Common-Tone Theorem**

The number of common tones between sets X and Y =

$$\frac{1}{12}\sum_{n=0}^{11} |f_n(A)| |f_n(B)| \cos(\varphi_n(A) - \varphi_n(B))$$

In other words:

Distances in phase space for the most prominent components determine the number of common tones



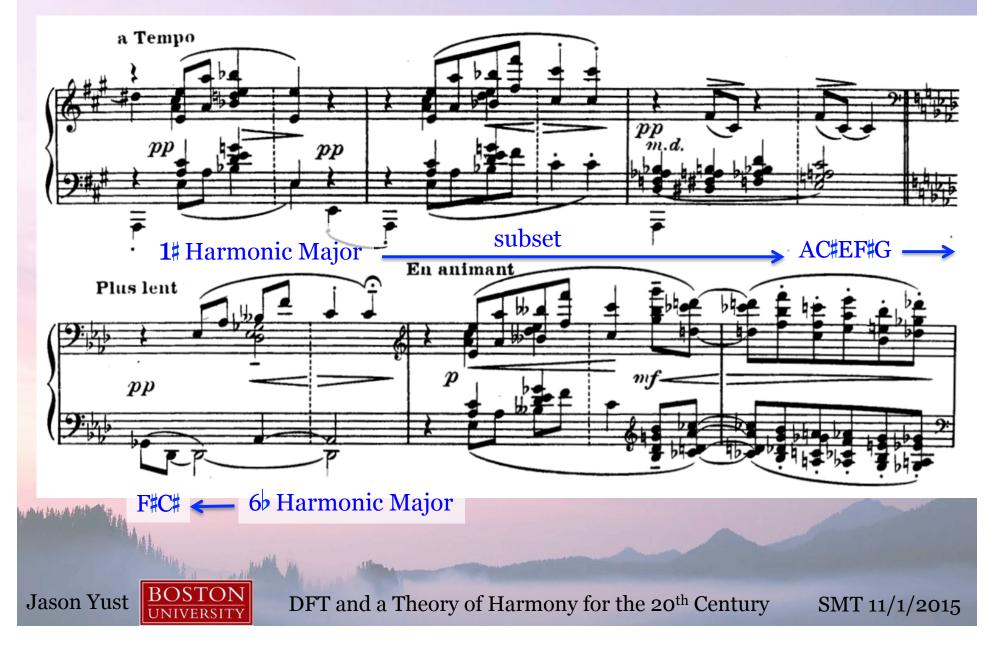
DFT and a Theory of Harmony for the 20<sup>th</sup> Century

#### **Common-Tone Theorem**

#### Example:

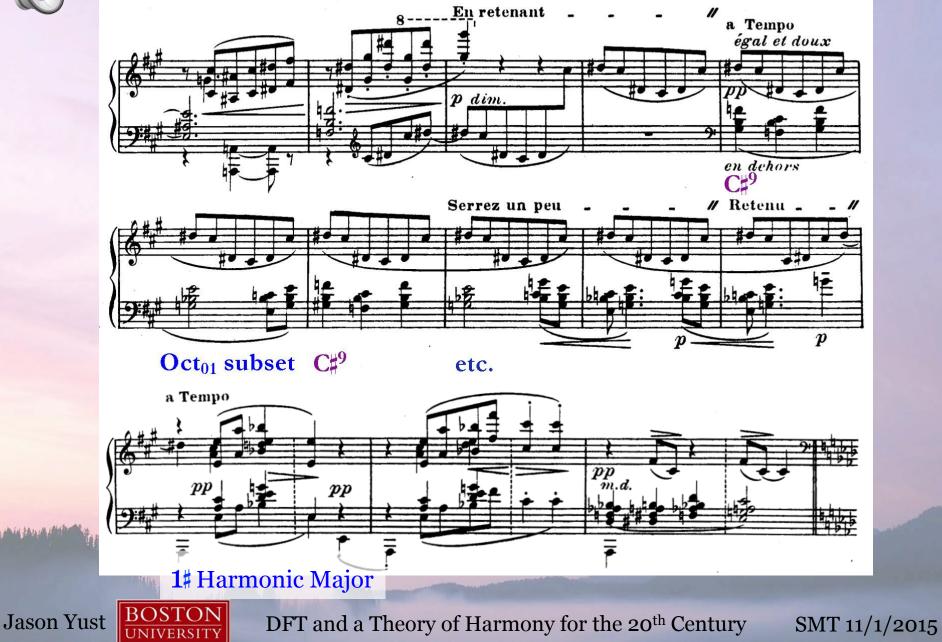
 $|f_0| (|f_1|, Ph_1) (|f_2|, Ph_2) (|f_3|, Ph_3) (|f_4|, Ph_4) (|f_5|, Ph_5) (|f_6|, Ph_6)$  ${AB}CDEGAE: \langle \langle 7, (1.93, 2.5) (1, 8) (2.24, 11.1), (2.65, 8.64) (0.52, 0.5), (1, 0) \rangle \rangle$  ${AC#D#E#}: \langle \langle 4, (1,9) (1,6) (2,9) (1,0) (1,9) (4,6) \rangle \rangle$ Multiply mag., 28, (1.9, -1.0) (1, 0.5) (4.5, 0.45) (2.7, -0.19) (0.52, -0.26) (4, -1)Cosine of Ph. diff. Multiply and 2.33 + -0.31 + 0.08 + 0.33 + -0.08 + -0.02 + -0.33divide by twelve = 2 common tones (A and C#) Sum Jason Yust DFT and a Theory of Harmony for the 20<sup>th</sup> Century SMT 11/1/2015

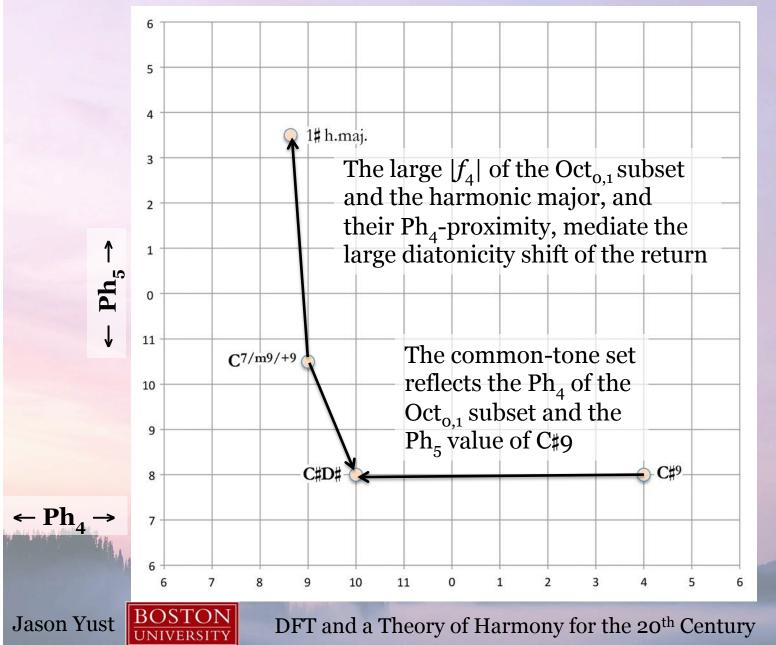












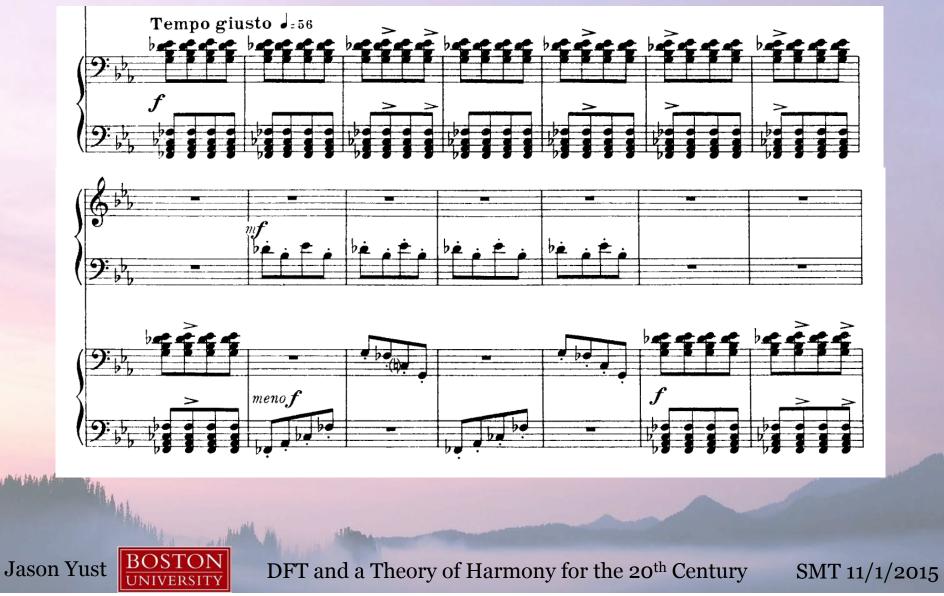
## **Common-Tone Theorem**

#### Example:

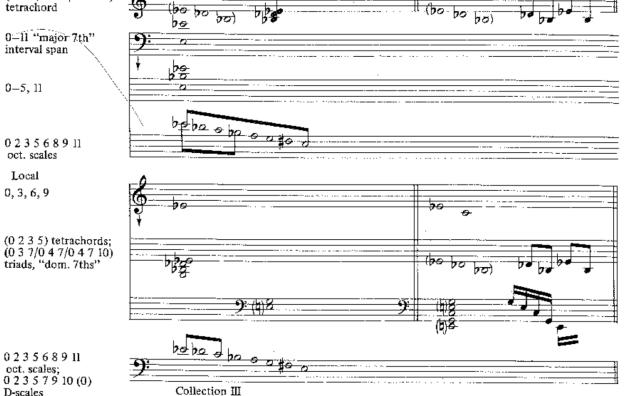
|                                                                                                                                                                                             | $ f_0  ( f_1 , Ph_1)$ | $( f_2 , Ph_2)$ | ) ( $ f_3 $ , Ph <sub>3</sub> ) | $( f_4 , Ph_4)$ | $( f_5 , Ph_5)$ ( | $ f_6 , Ph_6)$               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|---------------------------------|-----------------|-------------------|------------------------------|
| C7/m9/+9                                                                                                                                                                                    | (< 7, (0.52, 5.5)     | (1, 8)          | (2.2, 6.9),                     | (2.6, 8.6)      | (1.9, 3.5)        | (1,0)  angle  angle          |
| 1# h.maj.                                                                                                                                                                                   | (< 6, (1.4, 10.5)     | (0, -)          | (1.4, 1.5)                      | (3.5, 9)        | (1.4, 10.5)       | $\left(0,- ight) ight angle$ |
| Multiply mag.,<br>Cosine of Ph. diff. 42, $(0.7, -0.9) (0, -) (3.2, -0.95) (2.7, -0.19) (0.52, -0.26) (0, -)$<br>Multiply and<br>divide here where $3.5 + -0.1 + 0 + -0.5 + 1.5 + -0.4 + 0$ |                       |                 |                                 |                 |                   |                              |
| divide by twelve                                                                                                                                                                            |                       |                 |                                 |                 |                   |                              |
| Sum = 4 common tones (C $\ddagger$ , E, G, B $\flat$ )                                                                                                                                      |                       |                 |                                 |                 |                   |                              |
|                                                                                                                                                                                             |                       |                 |                                 |                 |                   |                              |
| Jason YustBOSTON<br>UNIVERSITYDFT and a Theory of Harmony for the 20th CenturySMT 11/1/2015                                                                                                 |                       |                 |                                 |                 |                   |                              |

1. *Rite of Spring*, Introduction and *Augurs* 

Is this music octatonic?







Van den Toorn: 5 of the 7 notes in the "Augurs" chord and the C triad come from  $Oct_{0,1}$  $(E + E\flat^7).$ The G<sup>#</sup> and B reinforce E

Jason Yust

BOSTON

UNIVERSITY

Global

0-5

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

# Stravinsky and the Octatonic What are the chances?!?!

# 100%

All 8-note collections overlap at least one octatonic by six or more pitch classes.

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

Jason Yust

Joseph Straus (review of Music of Stravinsky):

Van den Toorn "never provides and systematic criteria for determining the presence of the octatonic collection; as a result, a number of his attributions are suspect. Almost any passage containing nine to twelve pitch classes can be discussed as 'diatonic interpenetration' of an octatonic context."



Jason Yust

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

Dmitri Tymoczko (on the analyses in *Music of Stravinsky*):

"If even *these* passages can be understood as the result of 'octatonic-diatonic interpenetration,' then we should rightly ask whether there is any music that *cannot* be understood in this way.

In a sense, there is not: any proper subset can be decomposed into diatonic and octatonic components."



Jason Yust

DFT and a Theory of Harmony for the 20<sup>th</sup> Century



DFT and a Theory of Harmony for the 20<sup>th</sup> Century

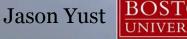
BOSTON UNIVERSIT

Jason Yust

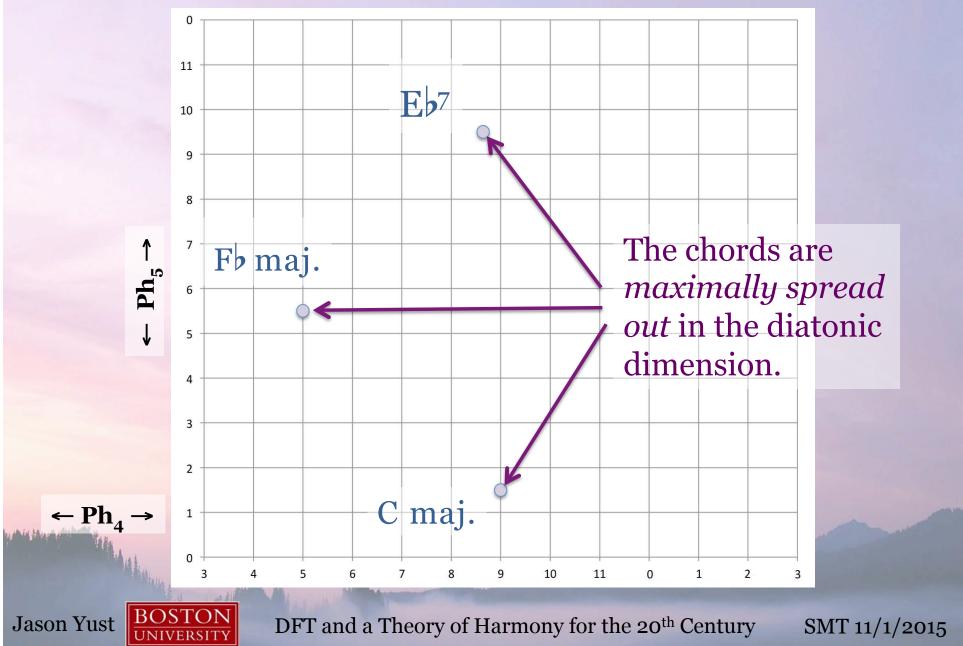
Components  $f_4$  and  $f_5$  are the largest across the set-types

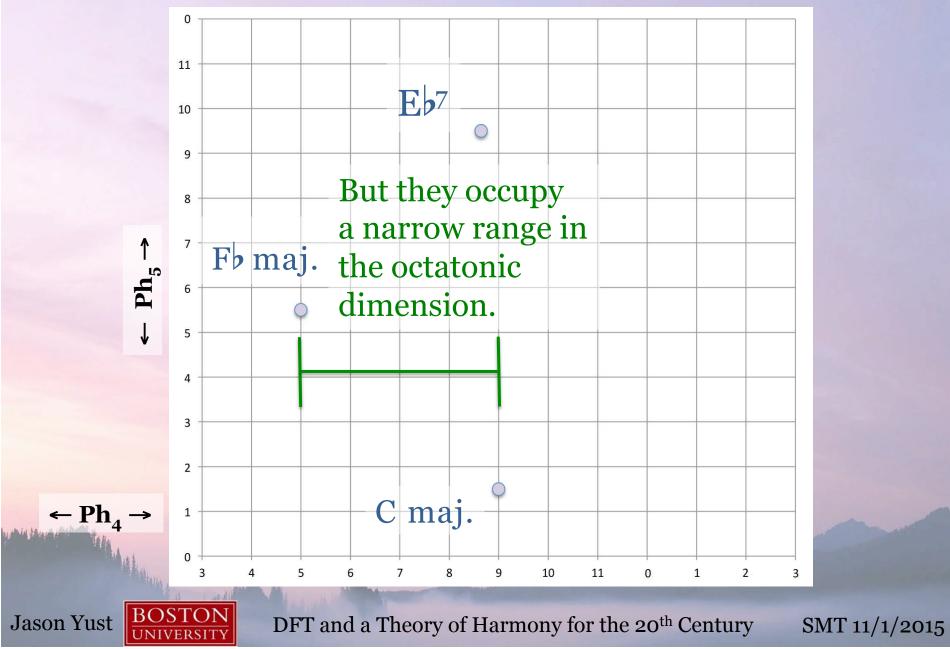
#### DFT magnitudes<sup>2</sup>

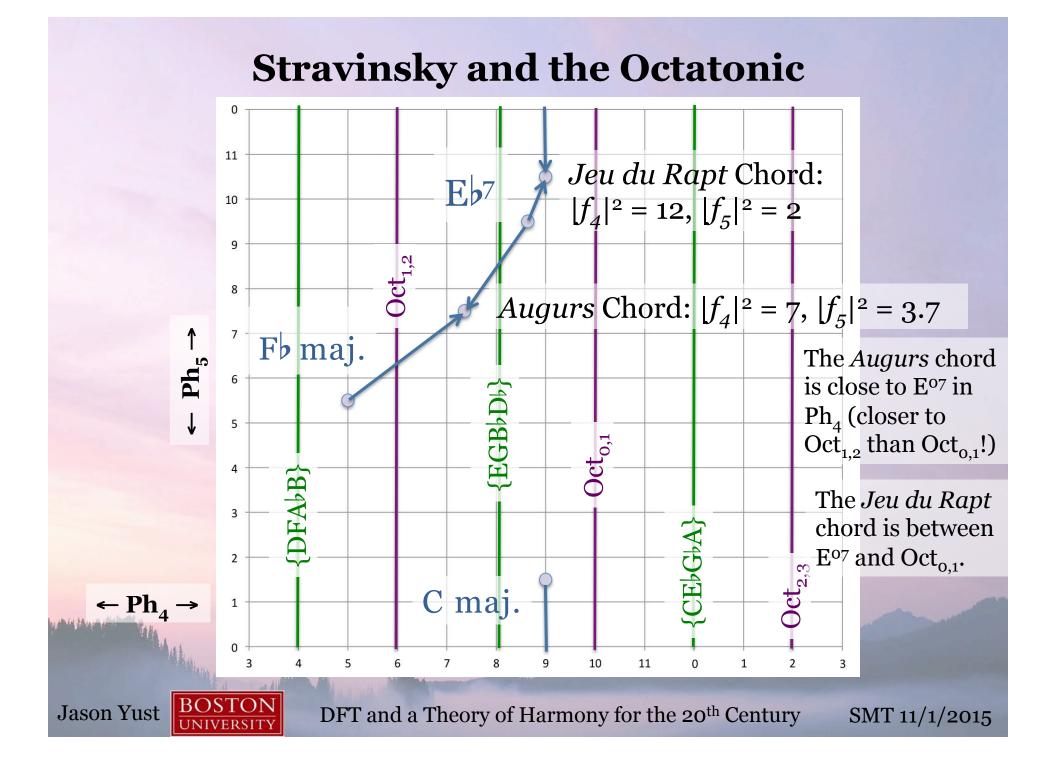
 $|f_1|^2 |f_2|^2 |f_3|^2 |f_4|^2 |f_5|^2 |f_6|^2$ Major/minor triad:  $\langle \langle 0.27, 1, 5, 3, 3.73, 1 \rangle \rangle$ Dominant 7<sup>th</sup>:  $\langle \langle 0.27, 1, 2, 7, 3.73, 4 \rangle \rangle$ 



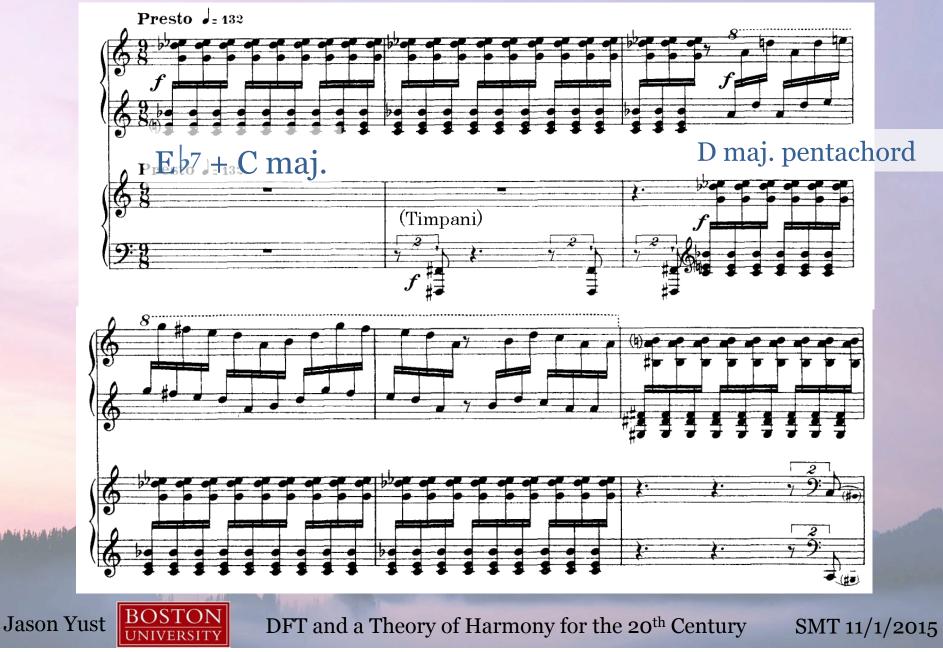
DFT and a Theory of Harmony for the 20<sup>th</sup> Century

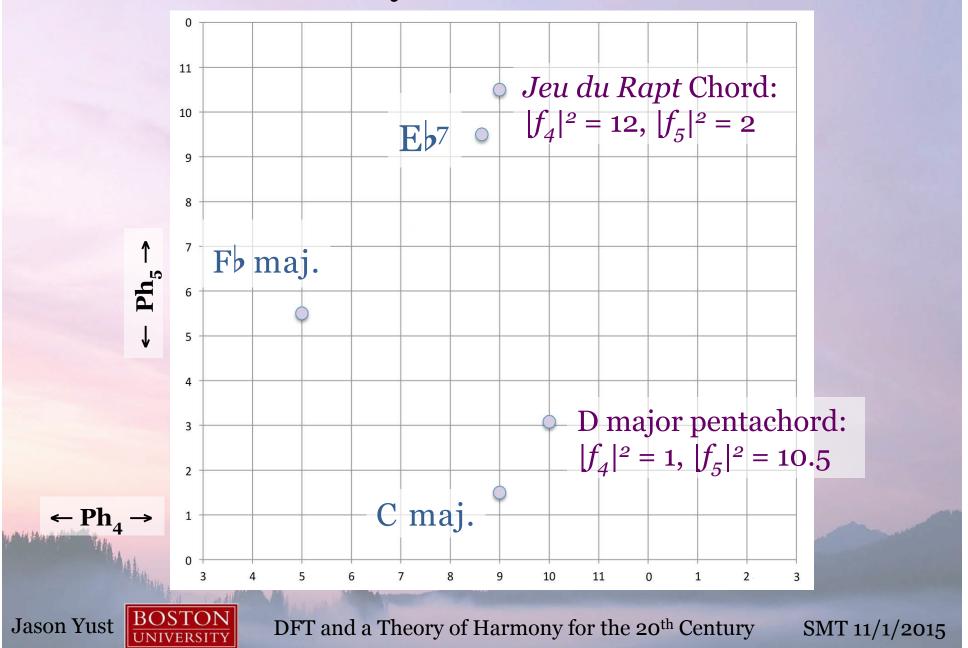


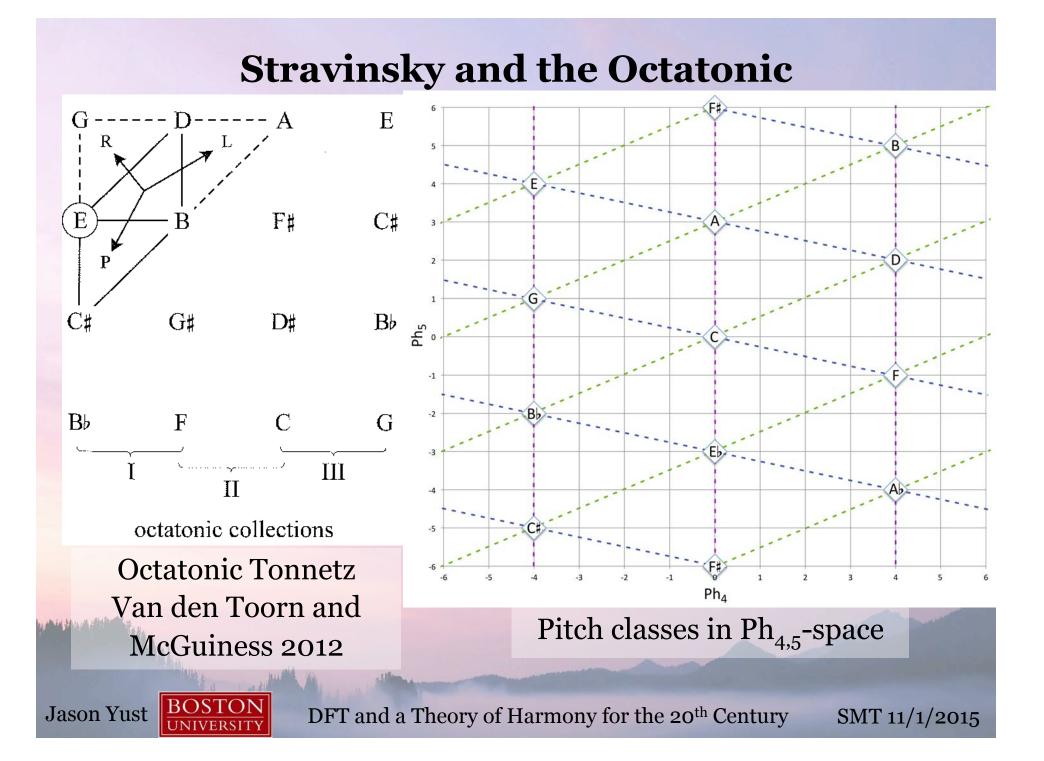




#### Stravinsky and the Octatonic: Jeu du Rapt



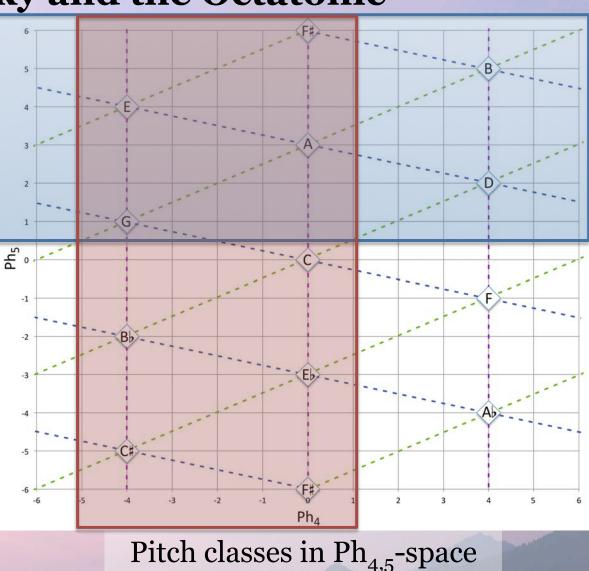




Diatonic materials: D major hexachord

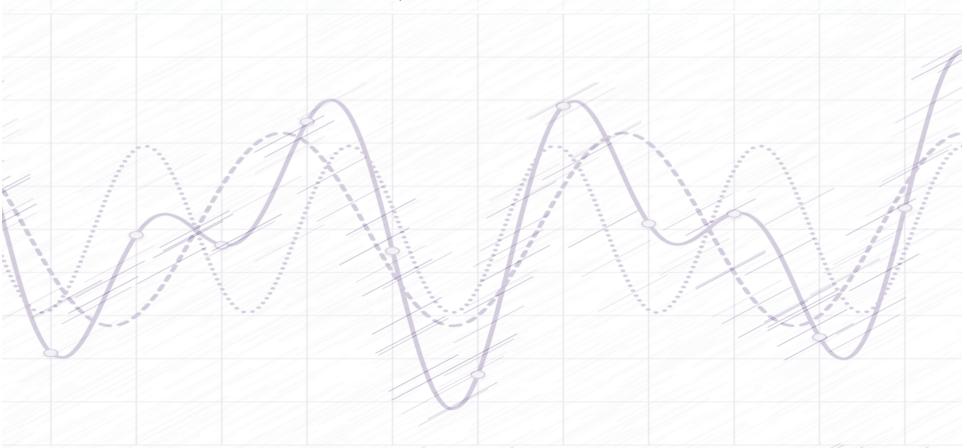
Overlap: A-dorian tetrachord (cf. Jeu du Rapt) Octatonic materials: Oct<sub>0.1</sub>

Jason Yust



DFT and a Theory of Harmony for the 20<sup>th</sup> Century

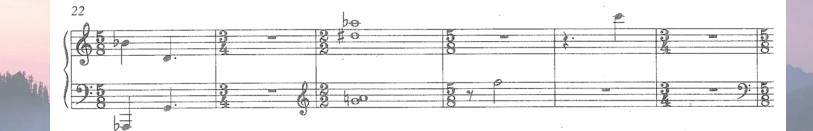
SMT 11/1/2015











BOSTON UNIVERSITY

Jason Yust

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

Features of the piece:

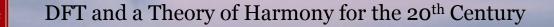
- Composed in 1986, Feldman's last work for solo piano.
- Long but sparse: the 9-page score takes ca. 25 minutes to play.
- Made up of discrete gestures, frequently repeated and varied (often in subtle ways).
- Pedal is held continuously throughout most of the piece. This blurs the distinction between *successive* and *simultaneous* sounds.
- Extended segmentational analysis in Hanninen, *A Theory of Music Analysis* (2012).

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

Jason Yust

Features of the piece:

- Long sections on the piece tend to dwell on a limited set of gestures, giving the piece a sense of trajectory that is nonetheless non-teleological.
- Composed around the same time as his *Second String Quartet*, which Feldman described as "a dialectic of sorts between such elements as . . . chromaticism/consonance."
- "Reverse Development": Gestures often appear *before* the idea from which they are derived, replacing a process of development with one of *revelation*.



Jason Yust

The initial gesture (Hanninen set *A*) stages a chromatic–diatonic conflict

(025) (025) (025) (025) (025) ((12)) (012) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125) ((125)

The first three notes are highly diatonic, but the final E introduces a concentrated chromaticism.

Hanninen: "The contrast between harmonies rich in ics 2 and 5, versus those rich in ic1, resonates throughout the piece."

Jason Yust

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

The initial gesture (Hanninen set *A*) stages a chromatic–diatonic conflict



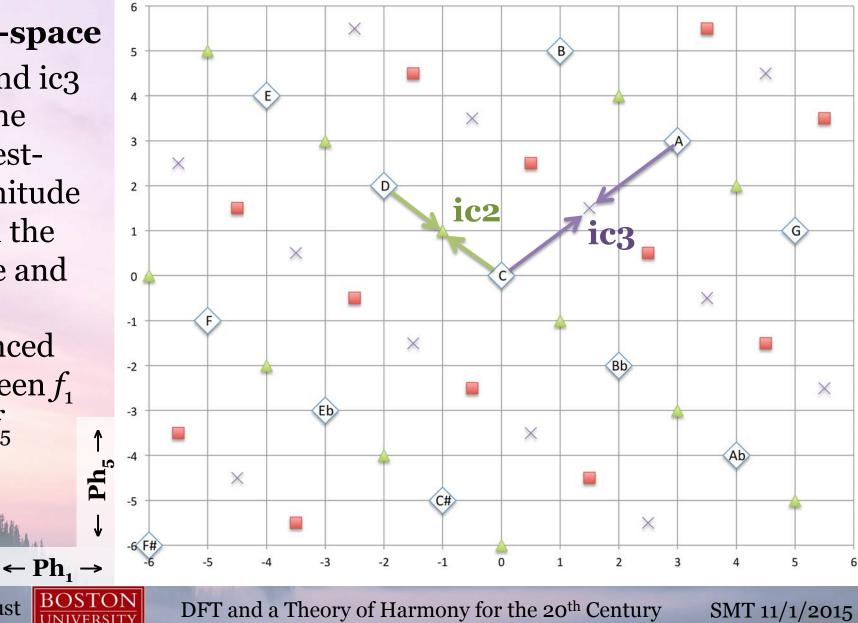
The gesture can also be divided by part into a fourth and a minor second.

Jason Yust

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

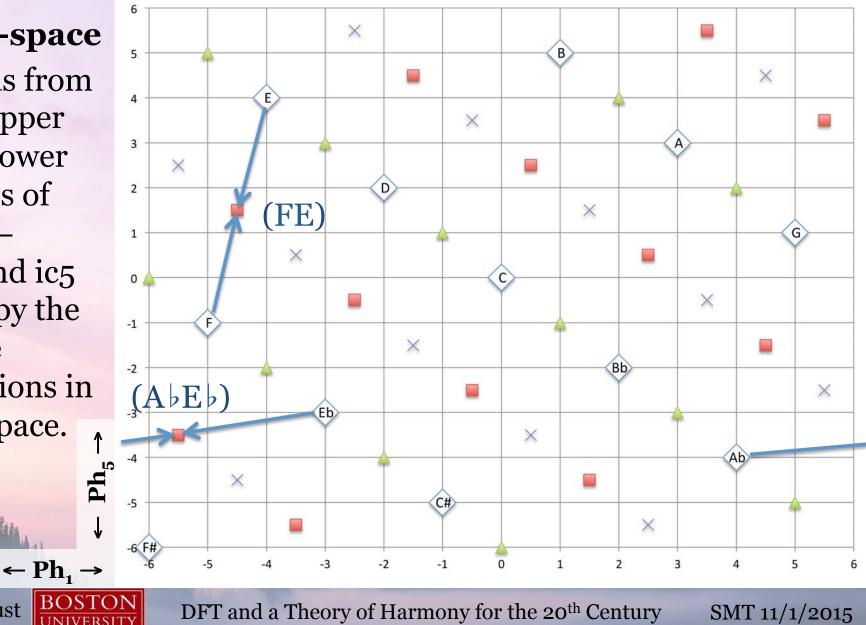
Ph<sub>1,5</sub>-space ic2 and ic3 are the highestmagnitude ics in the space and are balanced between  $f_1$ and  $f_5$ Ph<sub>5</sub>

Jason Yust



Ph<sub>1,5</sub>-space Dyads from the upper and lower voices of m. 1 ic1 and ic5 occupy the same positions in the space.

Jason Yust

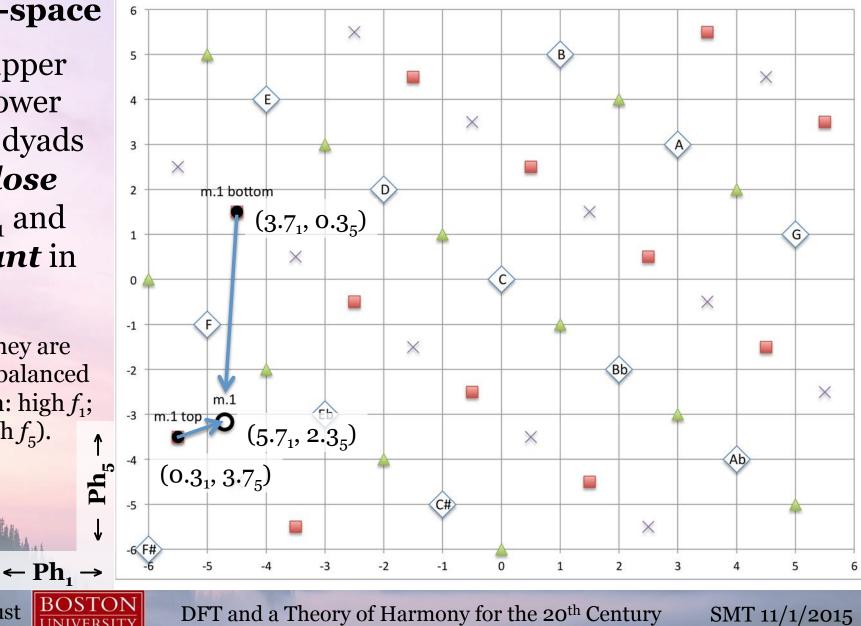


Ph<sub>1,5</sub>-space The upper and lower voice dyads are *close* in Ph<sub>1</sub> and **distant** in Ph<sub>5</sub>.

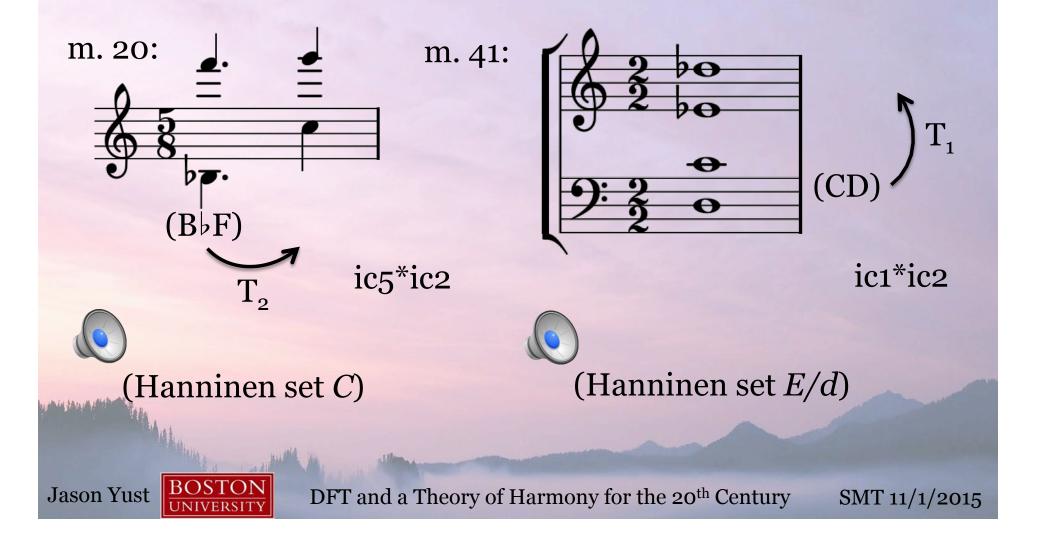
N.B.: They are also imbalanced (bottom: high  $f_1$ ; top: high  $f_5$ ).

Jason Yust

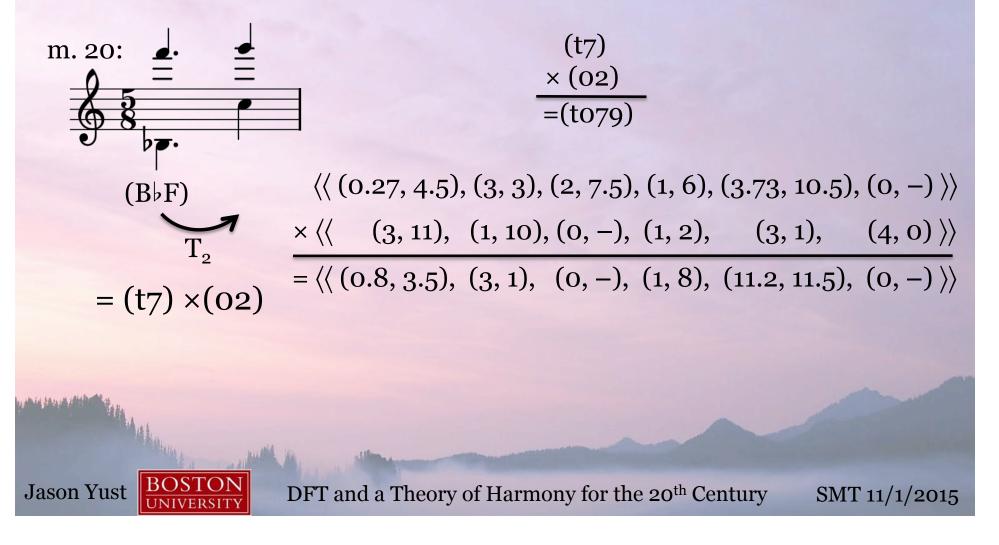
UNIVERSIT



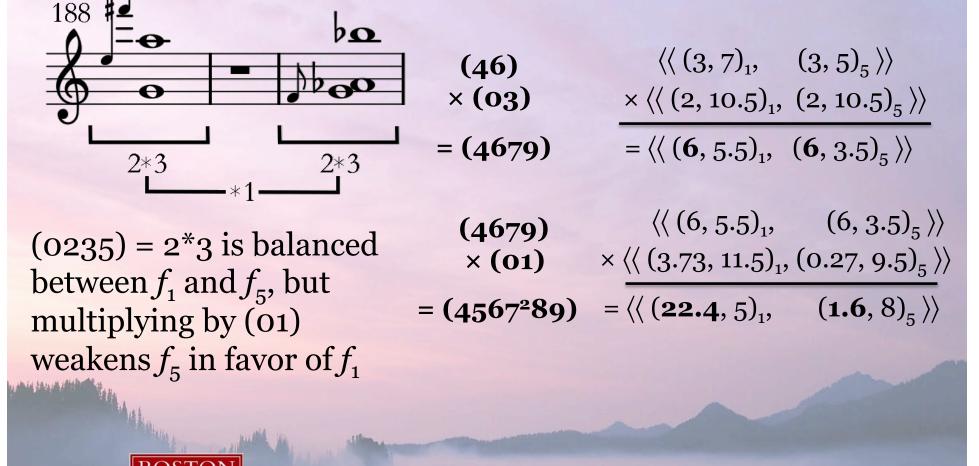
One of Feldman's basic harmonic techniques is **Transpositional Combination** 



Convolution Theorem: Transpositional combination (with doublings retained) is the same as **multiplying DFT magnitudes** and adding the phases.



Transposition of entire gestures by semitone reinforces component 1 and cancels out component 5



DFT and a Theory of Harmony for the 20<sup>th</sup> Century

SMT 11/1/2015

Jason Yust

This idea is repeated frequently throughout the last part of the piece.



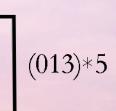
(027) (025)

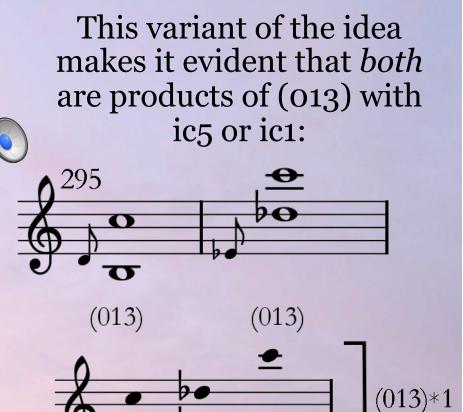


LH

2 \* 3

RH





LH

2 \* 1

RH

(Hanninen G/a)

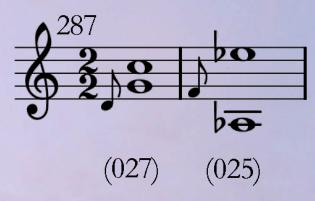


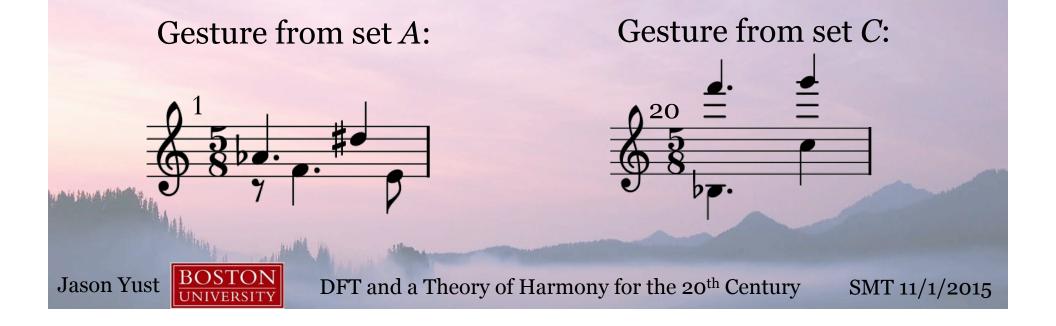
DFT and a Theory of Harmony for the 20<sup>th</sup> Century

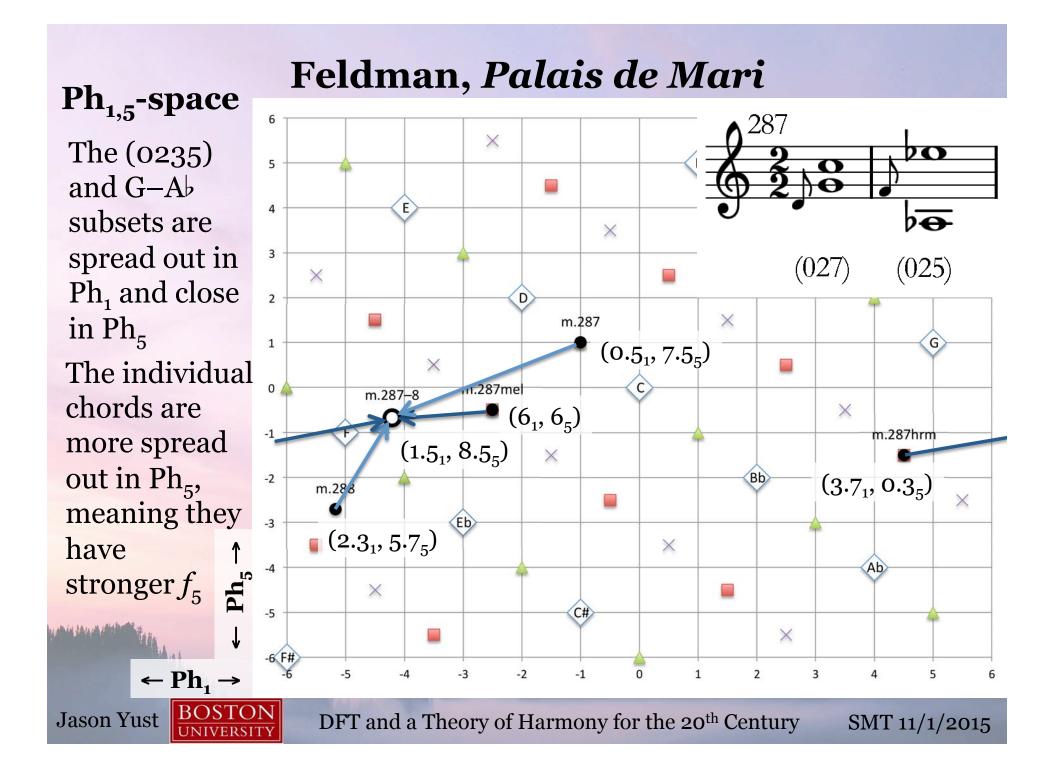
SMT 11/1/2015

Hanninen:

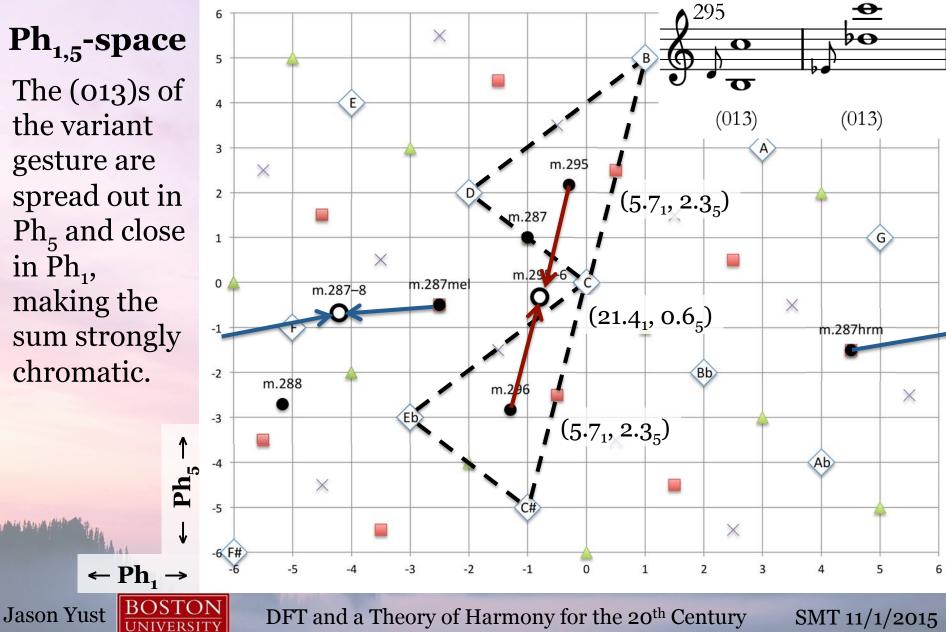
"The arrival of *G*/*a*287–88... is the keystone in a remarkable confluence of events. First, it defines the center of subset *G*/*a*, and also of set *G*. Second, it forms a bridge to set *A*, recalling and rearranging intervals and key pcs of set *A*. Third, it forms a second, and stronger, bridge to set *C*."



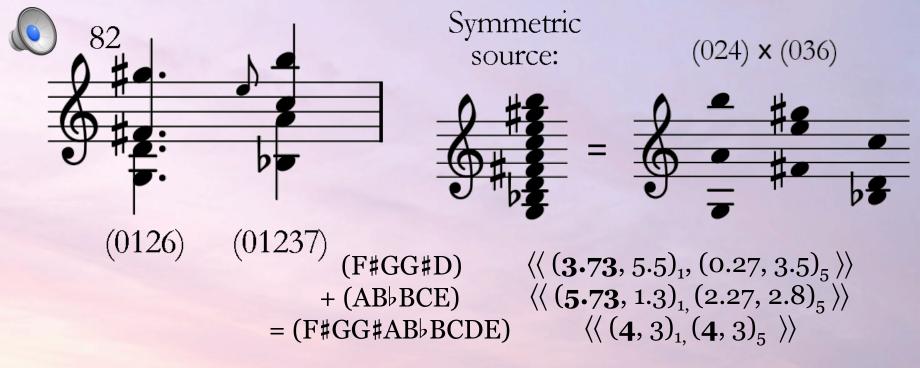




Ph<sub>1,5</sub>-space The (013)s of the variant gesture are spread out in Ph<sub>5</sub> and close in Ph<sub>1</sub>, making the sum strongly chromatic.



One important gesture reveals how Feldman "cripples" symmetries by asymmetrically dividing a symmetric entity

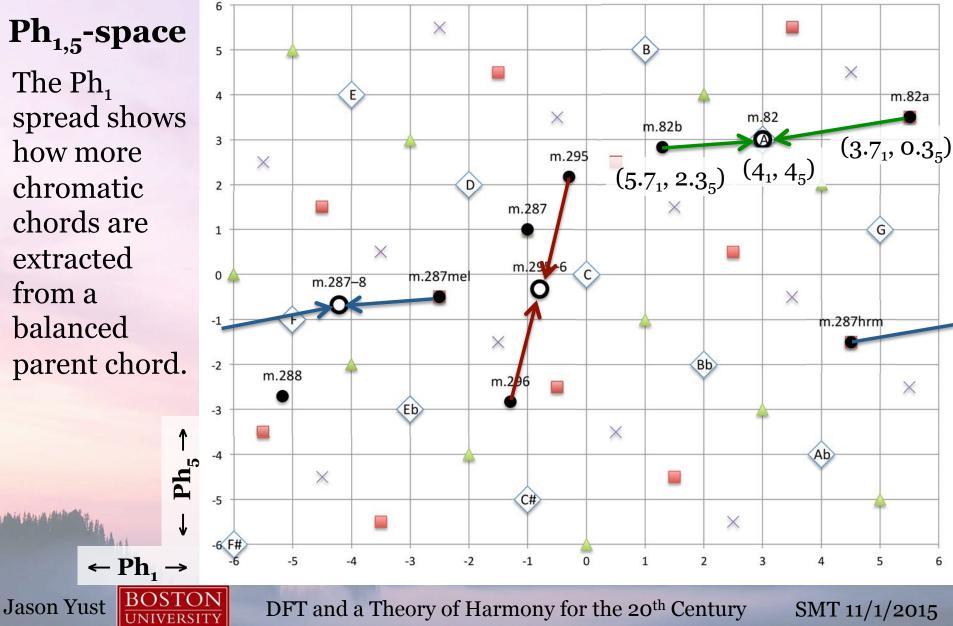


The symmetric source chord is balanced between  $f_1$  and  $f_5$ , but it is split into more heavily chromatic chords.

Jason Yust

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

Ph<sub>1,5</sub>-space The Ph<sub>1</sub> spread shows how more chromatic chords are extracted from a balanced parent chord.



#### Summary

- DFT is a **change of basis** applied to the domain of pc-distributions.
- Each DFT component measures a musically interpretable quality relating to a type of **periodicity**.
- **DFT magnitudes** can replace much of pcset-theory's use of interval content to relate harmonic entities.
- The **fifth Fourier component** measures **diatonicity**, and provides a more systematic approach to reconciling **subsets and supersets** with scale theory.
- The **fourth Fourier component** represents **octatonicity** and is used by composers like Debussy and Stravinsky to relate diatonically distant harmonies.
- Distances in **phase space** provide a common-tone-based measure of relatedness between collections of any size.

Jason Yust

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

- Ames, Paula Kopstick. "*Piano* (1977)." In *The Music of Morton Feldman*, ed. T. Delio (Westport, Conn.: Greenwood Press), 99–146.
- Amiot, Emmanuel. 2007. "David Lewin and Maximally Even Sets." *Journal of Mathematics and Music* 1: 157–72.
- ----. 2013. "The Torii of Phases." *Proceedings of the International Conference for Mathematics and Computation in Music, Montreal, 2013,* ed. J. Yust, J. Wild, and J.A. Burgoyne (Heidelberg: Springer).
- Amiot, Emmanuel, and William Sethares. 2011. "An Algebra for Periodic Rhythms and Scales." *Journal of Mathematics and Music* 5/3, 149–69.
- Burkhart, Charles. 1980. "The Symmetrical Source of Webern's Opus 5, No. 4." In *Music Forum V*, ed. Salzer (New York: Columbia University Press) 317–34.

Callender, Clifton. 2007. "Continuous Harmonic Spaces." Journal of Music Theory 51/2: 277–332.

- Callender, Clifton, Ian Quinn, and Dmitri Tymoczko. 2008. "Generalized Voice-Leading Spaces." *Science* 320: 346–8.
- Cohn, Richard. 1988. "Transpositional Combination and Inversional Symmetry in Bartok." *Music Theory Spectrum* 10: 19–42.
- Delio, Thomas. "*Last Pieces #3* (1959)" In *The Music of Morton Feldman*, ed. T. Delio (Westport, Conn.: Greenwood Press), 39–70.

Jason Yust

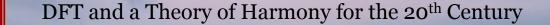
Feldman, Morton. 2000. *Give my Regards to Eighth Street: Collected Writings of Morton Feldman*, ed. B.H. Friedman. Cambridge, Mass.: Exact Change.

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

- Forte, Allen. 1964. "A Theory of Set Complexes for Music." *Journal of Music Theory*, 8: 136–83.
- ----. 1973. *The Structure of Atonal Music*. New Haven: Yale University Press.

Jason Yust

- ----. 1978. *The Harmonic Organization of the Rite of Spring*. Yale University Press.
- ----. 1986. "Letter to the Editor in Reply to Richard Taruskin from Allen Forte." *Music Analysis* 5/2–3: 321–37.
- Hamman, Michael. "*Three Clarinets, Cello and Piano* (1971)" In *The Music of Morton Feldman*, ed. T. Delio (Westport, Conn.: Greenwood Press), 71–98.
- Johnson, Steven. 2013. "It Must Mean Something: Narrative in Beckett's *Molloy* and Feldman's *Triadic Memories.*" *Contemporary Music Review* 36/2: 639–68.
- Hanninen, Dora. 2012. A Theory of Music Analysis: On Segmentation and Associative Organization. Rochester, NY: University of Rochester Press.
- Hook, Julian. 2008. "Signature Transformations." In *Mathematics and Music: Chords, Collections, and Transformations*, ed. Martha Hyde and Charles Smith, 137–60. Rochester: University of Rochester Press.



- Lewin, David. 1959. "Re: Intervallic Relations between Two Collections of Notes." *Journal of Music Theory* 3: 298–301.
- ----. 2001. Special Cases of the Interval Function between Pitch-Class Sets X and Y. *Journal of Music Theory* 45/1: 1–29.
- ----. 2007. *Generalized Musical Intervals and Transformations*, 2<sup>nd</sup> Edition. Oxford University Press.
- Perle, George. Serial Composition and Atonality: An Introduction to the Music of Schoenberg, Berg, and Webern, 6<sup>th</sup> Edition. Berkeley, Calif.: UC Press.
- Quinn, Ian. 2006. "General Equal-Tempered Harmony" (in two parts). *Perspectives of New Music* 44(2)–45(1): 114–159 and 4–63.

Van den Toorn, Pieter. 1983. The Music of Stravinsky. Yale University Press.

Jason Yust

- ----. 2003. "Colloquy: Stravinsky and the Octatonic: The Sounds of Stravinsky." *Music Theory Spectrum* 25/1: 167–85.
- Van den Toorn, Pieter, and John McGuiness. 2012. *Stravinsky and the Russian Period: Sound and Legacy of a Musical Idiom*. Cambridge University Press.

Straus, Joseph. 1982. "Stravinsky's 'Tonal Axis." Journal of Music Theory 26/2: 261–90.

Taruskin, Richard. 1979. "Review: Allan Forte, The Harmonic Organization of the Rite of Spring."

----. 1986. "Letter to the Editor from Richard Taruskin." *Music Analysis* 5/2–3: 313–20.

DFT and a Theory of Harmony for the 20<sup>th</sup> Century

- Tymoczko, Dmitri. 2002. "Stravinsky and the Octatonic: A Reconsideration." *Music Theory Spectrum* 24/1: 68–102.
- ———. 2003. "Colloquy: Stravinsky and the Octatonic: Octatonicism Reconsidered Again." *Music Theory Spectrum* 25/1: 185–202.
- ----. 2004. "Scale Networks and Debussy." *Journal of Music Theory* 44/2: 215–92.
- ----. 2008. "Set-Class Similarity, Voice Leading, and the Fourier Transform." *Journal of Music Theory* 48/2: 251–72.
- ----. 2011. *Geometry of Music*. Oxford University Press.

Jason Yust

- Yust, Jason. 2015a. "Restoring the Structural Status of Keys through DFT Phase Space." *Proceedings of the International Congress for Music and Mathematics* (forthcoming).
- ———. 2015b. "Schubert's Harmonic Language and Fourier Phase Space." Journal of Music Theory 59/1, 121– 181.

