Sailing Off the Edge of Tonality: **Debussy and Scriabin's Harmonic Adventurism Explained with Harmonic Spectra and Tonal Spaces**

Jason Yust, BOSTON

ORGANIZED TIME

YUST

Louisiana State University Music Forum, 2/6/2020

Rhythm, Tonality, & Form

OXFORD STUDIES IN MUSIC

Law of Music Theory Concepts*

Importance : Ambiguity = *k*

See: Phrase Sonata form Meter Key Function **Tonality**

Jason Yust

*This is not entirely serious

Tonality: What is it?

Some ways that music theorists explain tonality:

- Referential pitch (tonic)
- Harmonic Function / Syntax
- Implication
- Diatonic Scales
- Triads

Jason Yust

Tonality: What is it?

Referential pitch (tonic) → **Scale Degree Qualia**

Jason Yust

-Claire Arthur, 2016. "When the Leading Tone Doesn't Lead: Scale Degree Qualia in Context," PhD Diss., Ohio St. Univ.

Tonality: What is it?

Melodic Syntax → **Implication** → **Scale Degree Qualia**

Jason Yust

A melodic syntax (represented by **transition probabilities**) creates expectations that lead to qualia.

E.g.: Relaxed tonic, tense leading tone

-From David Huron 2008. *Sweet Anticipation: Music and the Psychology of Expectation* (Bradford Books)

Tonality: What is it? Harmonic Function / Syntax → Implication

ason Yust

Harmonic function can be understood similarly as a syntax.

Triads and **diatonic scales** are elements of this syntax.

-From Christopher White and Ian Quinn, 2018. "Chord Context and Harmonic Function in Tonal Music." *Music Theory Spectrum* 40/2.

Tonal Space

Tonality as a triadic/diatonic syntax can be represented by a tonal space.

Toroidal map of key profiles from Krumhansl and Kessler 1982

Jason Yust

Jason Yust

Key profiles may be derived from

- Listener rankings of stability of tones in a given context,
- Frequency of occurrence of tones in the given key,

• etc.

Jason Yust

Krumhansl and Kessler's key profiles based on listener ratings

Considered mathematically . . .

Constraint: **Transposability** (Arrangement of keys invariant under transposition).

 \rightarrow

The space is toroidal (circular in two dimensions)
Each dimension represents an interval cycle
Possible interval cycles:
Interval class: 1 2 3 4 5 6
8^{ve} division: 1 6 4 3 5 2

lason Yust

Fourier Transform on Pitch-Class Sets and Distributions

Using discrete Fourier transform, we can

- Identify harmonic qualities, through **spectra**
- Relate harmonies of similar quality through **phase spaces**

Krumhansl's tonal space is a phase space.

Fourier Transform on Pitch-Class Vectors: A brief history

Lewin, David (1959). "Re: Intervallic Relations between Two Collections of Notes," *JMT* 3/2.

---- (2001). "Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1.

Quinn, Ian (2006–2007). "General Equal-Tempered Harmony," *Perspectives of New Music* 44/2–45/1.

Callender, Cliff (2007). "Continuous Harmonic Spaces," JMT 51/2

Amiot, Emmanuel (2007). "David Lewin and Maximally Even Sets." *Journal of Mathematics and Music* 1/3.

——— (2016). Music Through Fourier Space: Discrete Fourier Transform in Music Theory. (Springer)

Yust, Jason (2015). "Schubert's Harmonic Language and Fourier Phase Spaces." *JMT* 59/1.

——— (2016). "Special Collections: Renewing Forte's Set Theory." *JMT* 60/2.

Fourier Transform of a Pitch-Class Vector

Fourier Qualities

 F_1 represents a concentration of pitch-class weight on the full pc circle.

F₂ represents a concentration of pitch-class weight on a half-octave (tritone) cycle.

Fourier Qualities

 f_3 gives the weighting on the nearest *augmented triad* or *hexatonic scale*.

 f_4 gives the weighting on the nearest *diminished seventh* or **octatonic** scale.

Fourier Qualities

 f_5 give the balance on the **circle of fifths**

 f_6 gives the weighting on one of the two **wholetone** collections.

Fourier Transform as Vector Sums

Fourier component f_k can be derived as a vector sum with each pitch class as a unit vector, where the unit circle is the 8ve/k.

The length of the resulting vector is the **magnitude** of the component, and the angle is its **phase.**

Example: C maj. triad, k = 3

Fourier Transform as Vector Sums

Fourier component f_k can be derived as a vector sum with each pitch class as a unit vector, where the unit circle is the 8ve/k.

The length of the resulting vector is the **magnitude** of the component, and the angle is its **phase.**

Example: C maj. triad, k = 5

Single component spaces (complex plane)

Distance from the center is the magnitude of f_5

Example: F₅ space

Angle is the *phase* of f_5

Fourier Spectra

The **spectrum** of a pitch-class vector shows the magnitudes of all its Fourier coefficients (ignoring phases)

The spectrum is **invariant with respect to transposition and inversion** (i.e. it is a *set class* property)

Examples:

Major/minor triad

Dominant 7th

Fourier Spectra

The **spectrum** of a pitch-class vector shows the magnitudes of all its Fourier coefficients (ignoring phases)

The spectrum is **invariant with respect to transposition and inversion** (i.e. it is a *set class* property)

Examples:

Krumhansl-Kessler major key

Diatonic scale

From Spectra to Phase Spaces

Principal components:

The sum of these gives a good approximation:

Sailing off the Edge of '15mancy. Dee

From Spectra to Phase Spaces

Transpositions of the key correspond to phase shifts of the components

From Spectra to Phase Spaces

Krumhansl and Kessler Tonal Space

Alternate Tonalities

Twentieth-century composers extend tonality by redefining the basic space

The Six Harmonic Qualities

ison Yust

 → Use of f₁ and f₂ requires dissonant
 → harmony and abandonment of traditional voice-leading principles

 f_3 represents the **triadic**/ **functional** element of tonality.

 f_4 represents **octatonicism**, a potential extension of tonality.

 f_5 represents the **diatonic** element of tonality.

 f_6 represents the balance between whole tone scales.

Alternate Basic Sonorities

Dominant/half-diminished 7th

Debussy:

Acoustic scale/Dominant 9th

Alternate Basic Sonorities

Automated DFT Analysis of Op. 74/1

ason Yus

By Thomas Noll

Analysis: Debussy "D'un Cahier des Esquisses"

Debussy relates sets via **diatonic** (f_5) and **whole-tone** (f_6) qualities

Diatonic Space (F₅)

Diatonic and **pentatonic scales** have the largest $|f_5|$ **Acoustic scales** and **dominant ninths** also have large $|f_5|$ **Major and minor triads** and **dominant 7ths** are closer to the center **Individual pitch classes** are on the unit circle

ason Yust

Diatonic Space (F₅)

Transposition by fifth circles the space 30°

Jason Yust

...D'un Cahier d'Esquisses.

Jason Yust

6

Jason Yust

Sailing off the Edge of Tonality: Debussy and Scriabin LSU 2/7/2020

Whole tone 1

Jason Yust

F₆ oppositions

Jason Yust

F₆ oppositions

Jason Yust

F₆ oppositions

Jason Yust

F₆ oppositions

Analysis: Scriabin Prelude, Op. 74/5

Scriabin relates sets via **diatonic** (f_5) and **octatonic** (f_4) qualities

Harmonic reduction mm. 1–4

Jason Yust

Harmonic reduction

Jason Yust

Phase space plots

Meas. 1–8 Meas. 9–16 6 6 Oct_{o1}\C Oct Oct A7^{\$11} 4 4 Oct_{o1}\E♭ $A7^{$9$11}$ G7#11 G7#11 2 2 F acoustic F acoust.\C Ph_5 $^{\mathrm{Ph}_{5}}$ Oct_{o1}\F# 0 Eb acoustic\Bb E♭ acoustic E♭ acoustic 10 10 E♭7^{#11} D♭ acoust.\A♭ D♭ acoust.\A♭ Oct_{o1}\A Eb7#9#11 8 8 B acoustic 6 6 Oct_{o1}\C 6 8 6 4 6 8 10 0 4 0 2 2 6 Ph_4 Ph_4

Jason Yust

F⁶ (whole-tone) plot

Jason Yust

Some conclusions

- Conventional tonality is based on f_3 and f_5 . A phase space on these shows relationships between keys and harmonies.
- Other Fourier components were therefore a resource for expanded tonality in the early 1900s. The most attractive alternatives were f_4 and f_6 .
- The organized use of f_4 and f_6 (and manipulation of f_5) explains the sonorities and progressions that characterize the harmonic languages of Debussy and Scriabin.

ason Yust

Sailing Off the Edge of Tonality: Debussy and Scriabin's Harmonic Adventurism Explained with Harmonic Spectra and Tonal Spaces

Jason Yust, **BOSTON** UNIVERSITY

You can download my slides at http://people.bu.edu/jyust

Thanks!

Rhythm, Tonality, & Form

YUST

OXFORD STUDIES IN MUSIC THEORY