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Abstract 
This study examines pitch-class distributions in a large body of tonal music from the seventeenth, 
eighteenth and nineteenth centuries using the DFT on pitch-class sets. The DFT, applied over the 
pitch-class domain rather than a temporal domain, is able to isolate significant and salient qualities 
characteristic of tonal pitch-class distributions, such as diatonicity and triadicity. The data reveal dis-
tinct historical trends in tonal distributions, the most significant of these is a marked decrease in di-
atonicity in the eighteenth and nineteenth centuries. Comparing distributions for beginnings, endings, 
and whole pieces reveals a strong similarity between beginnings and whole pieces. Endings, by con-
trast, are more distinct in the properties of their distributions overall, and show some historical trends 
not shared by beginnings and whole pieces, whose differences do not appear to interact with com-
poser date.  
 
Keywords: Pitch-class distribution, tonality, mode, harmony, corpus analysis, discrete Fourier trans-
form 
 

1. INTRODUCTION 

Pitch-class distributions are central to much re-
search on tonal perception and expectation. Ac-
cording to theories advanced by Carol 
Krumhansl and others, listeners internalize an 
abstract tonal hierarchy associated with major 
and minor keys expressible as a distribution, a 
weighting of the pitch classes. These distribu-
tions, according to the theory, are observable in 
various kinds of listener ratings of tonal stability 
and expectation and in the pitch-class probability 
distributions that can be derived directly from 
symbolic corpora of tonal music. Krumhansl and 
Cuddy (2010) survey the existing evidence for 
this theory.  
Early work in statistical musicology (Meyer 
1957, Youngblood 1958) established the concep-
tual link between style and the probability of oc-
currence of tones and harmonies, with pitch-
class distributions representing the zeroeth order. 
First-order transition probabilities of chords 
have remained a topic of active interest, though 
only occasionally enquiring into how these 
norms have changed over time. Notable here is 
the work of White (2013, 2014) who shows that 
conventional historical style-period divisions are 

largely inferable from chord transition probabil-
ities, but also that aspects of harmonic func-
tion—tonic and dominant as high-frequency 
functional pillars—and the basic separation be-
tween major and minor mode harmonies are con-
sistent across the 1650–1900 historical window. 
Quinn and Mavromatis (2011) show a strong 
shift towards “prograde” (authentic as opposed 
to plagal) harmonic motion from 17th-century 
chorale repertoire to Bach’s.  
More directly pertinent to the present study are 
recent analyses of historical change in pitch-
class distributions. Albrecht and Huron (2014) 
use a data-driven method to challenge an implicit 
assumption of Krumhansl’s theory that the tonal 
distributions defining major and minor keys are 
historically stable, and to investigate the im-
portant musicological question of how and when 
European music transitioned from a modal to a 
tonal system. Their results show a high degree of 
stability in the major/minor distinction and in the 
major and minor distributions themselves from 
1600–1750, and some instability and evidence of 
two minor modes prior to 1600 (a period not well 
represented in the dataset analyzed here). Tomp-
kins’ (2017) cluster analyses of 17th and 18th cen-
tury corpora are consistent with these results, but 
also underline the importance of genre, with 
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secular repertoires and in particular more popu-
lar guitar-based repertoires in the 17th century 
showing much earlier evidence of a major/minor 
tonal system.  
The study presented here examines the possibil-
ity that historical changes in pitch-class distribu-
tions can be better detected by using a technique, 
discrete Fourier transform (DFT) on pitch-class 
sets, developed by theorists to extract diatonicity 
and other tonally-relevant information from 
pitch-class distributions. Albrecht and Huron’s 
pitch-class profiles, like other major/minor key 
profiles, are largely reflective of a basic diatonic 
scale and secondarily of a tonic triad. The DFT 
is a lossless transformation that can separate 
these aspects of the profile from others, and pos-
sibly reveal trends in other aspects of the profile 
that otherwise would be overwhelmed by trends 
in diatonicity.   
Another question actively debated in recent liter-
ature on key-finding and pitch-class distributions 
is whether the key of a passage is better reflected 
by sampling just the beginnings and endings (as 
asserted by Albrecht and Shanahan [2013] and 
Albrecht and Huron [2014]) or by entire pieces 
(as assumed, e.g., by Prince and Schmuckler 
[2014]). The following study investigates this 
question by considering differences between 
profiles for beginnings, endings, and entire 
pieces.  
The DFT method used here applies to symbolic 
data and is not related to the use of DFT on audio 
waveforms, except in the underlying mathemat-
ics. The “signal” space is the pitch-class circle, 
which is periodic at the octave, and the “signal” 
consists of the probability or weight assigned to 
each pitch class in the distribution. The DFT 
transforms the distribution into a set of twelve 
complex numbers that indicate the presence of 
periodic intervallic patterns in the distribution. 
This method, applied to pitch-class sets, was first 
proposed by Lewin (1959, 2001) as a way of un-
derstanding intervallic relationships between 
harmonies in non-tonal music, and subsequently 
promoted by Quinn (2006–7) as an index of 
pitch-class set similarity. The application to 
pitch-class distributions was independently 

discovered by Krumhansl (1990), who used it to 
plot distributions in a tonal space, and is also 
used by Cuddy and Badertscher (1987). Other 
authors have touted its efficacy for detecting har-
monic change in musical audio (Harte et al. 
2006), rating consonance (Bernardes et al. 2016), 
and as a framework for harmonic analysis of to-
nal and non-tonal repertoires (Amiot 2013, 2016; 
Yust 2015b, 2016).  
Most relevant to the present work, Yust (2017) 
analyzes a wide range of data from previously 
published corpus and perceptual studies. Yust’s 
analyses show that tonal distributions are quite 
consistent when viewed through the DFT, and 
that three DFT components (the second, third, 
and fifth) account for the vast share of infor-
mation in distributions from tonal music. These 
results recommend the method for the present 
study, since they imply that the DFT can simplify 
the information in pitch-class distributions by 
sorting out those few parameters of apparent sig-
nificance to tonality. While a data-driven method 
like PCA could be used to achieve a similar sim-
plification, the DFT coefficients have estab-
lished theoretical meaning, as reflected in the ex-
isting literature applying them to concepts of har-
monic analysis. Furthermore, the DFT is a loss-
less transformation, so the observations of Yust 
(2017) concerning the role of the second, third, 
and fifth Fourier coefficients can be replicated 
and further validated on a different dataset by 
comparing the following multiple regressions on 
all components.  

2. METHOD 
2.1 Dataset 

The dataset for this study is taken from the Yale 
Classical Archives (YCA: 
http://ycac.yale.edu/). The dataset and the 
method used to build it are described by White 
and Quinn (2016). Thirty-three composers were 
chosen spanning an approximately 350-year pe-
riod. The criteria for inclusion was the presence 
of a minimum of five monotonic pieces in each 
modes in the YCA, and the coverage of the wid-
est possible historical range. “Monotonic” 
means that the pieces were identified in the 
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corpus metadata as beginning and ending in the 
same key, which is an essential condition for the 
processing of the dataset described below. A few 
composers whose representation was dominated 
by etudes were excluded, because, due to their 
specialized function, etudes could be expected 
to differ systematically in tonal features. The 
composers included are, in order of birthdate, 
Byrd (1547), Lully (1632), Pachelbel and Co-
relli (1653), Purcell (1659), Couperin (1668), 
Vivaldi (1678), Telemann (1681), Rameau 
(1683), J.S. Bach, Handel, and Scarlatti (1685), 
Zipoli (1688), Sammartini (1700), Haydn 
(1732), Cimarosa (1749), Mozart (1756), Bee-
thoven (1770), Hummel (1778), Schubert 
(1797), Mendelssohn (1809), Chopin and Schu-
mann (1810), Liszt (1811), Verdi and Wagner 
(1813), Brahms (1833), Saint-Saens (1835), 
Tchaikovsky (1840), Dvorák (1841), Fauré 
(1845), Scriabin (1872), and Rachmaninoff 
(1873). Non-monotonic pieces (including those 
that change mode) were identified using the 
YCA metadata and manually removed.1 Other-
wise all available pieces were used, except in the 
case of J.S. Bach where the chorales were re-
moved.2 The number of pieces for each com-
poser was highly variable (7–544 in major, mean 
94.2, median 52; 5–251 in minor, mean 43.5, 
median 28).  

As with virtually any historical dataset of music, 
we must acknowledge biases and keep them in 
mind when interpreting results. The YCA data 
itself, because it is sourced from amateur enthu-
siasts rather than musicologists, is already heav-
ily biased towards piano music, and instrumen-
tal music generally, and toward Austro-German 
composers (White and Quinn 2016). The need 
for monotonic pieces also acted to further 

                                                
1 Pieces by Byrd listed as modulating were re-
tained because they appear to be Picardy-third 
endings rather than genuine changes of mode 
2 Previous studies, especially Albrecht & Sha-
nahan (2013), show that the chorales are idiosyn-
cratic due especially to their often short length 

exclude important opera composers such as Ros-
sini. The possibility that some results may re-
flect idiosyncrasies of piano repertoire or Ger-
man-speaking composers must be borne in 
mind, and should be investigated in future re-
search.  

The dataset includes three pitch-class distribu-
tions for each piece: one for the first 20 quarter-
notes of the piece, one for the last 20 quarter-
notes, and one for the entire piece. This is simi-
lar to the procedure used by Albrecht and Sha-
nahan (2013) and Albrecht and Huron (2014), 
although the amount of music is usually some-
what smaller. The distribution tallies when a 
given pitch class is present within each quarter-
note span. Since the YCA data does not include 
metrical information, the quarter-note spans do 
not necessarily correspond to beats.   

One significant shortcoming of the YCA data is 
that, due to many examples being entered at the 
keyboard, note offsets often occur earlier than 
indicated in the score (deClerq 2016). Since this 
typically happens around the sixteenth-note 
level, the data collection procedure of summing 
over quarter-note spans rather than exact dura-
tions should largely eliminate this flaw.  

Distributions are transposed to C, using the key 
identifications from the YCA, the DFT applied 
the DFT and normalized, dividing by f0 (which 
reflects cardinality) and multiplying by 100 for 
convenience. The normalization ensures that all 
pieces are weighted equally, rather than being 
weighted by length. The DFT yields twelve 
complex numbers, f0–f11, but five of these (f7–
f11) are redundant, and the imaginary part of f6 is 
always zero. The resulting useful information 
therefore consists of five complex numbers, f1–

and rapid harmonic rhythm, which is particularly 
important when isolating beginnings and end-
ings (see below). There are also a large number 
of them in the corpus, so they would dispropor-
tionately affect the results for Bach if included.  
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f5, and one real number, f6. These are averaged 
for each composer.  
2.2 Interpreting the DFT 

Previous research (e.g., Quinn 2006–7, Amiot 
2016, Yust 2016) has recommended interpret-
ing the DFT by first assessing the “spectrum” of 
a pitch-class set or distribution—which DFT 
components are the largest, i.e. the farthest from 
zero in the complex plane. This indicates 
whether certain kinds of periodicity characterize 
the set or distribution. Then one may consider 
the phases, or direction from the origin, of the 
most important components, which give trans-
position-dependent information. For instance, 
music based on diatonic materials will have a 
large f5, and the phase of f5 will then correspond 
to the average key signature. Yust (2017) shows 
that distributions from tonal music appear to be 
quite consistent in concentrating the energy of 
their spectra primarily in f5 and secondarily in f2 
and f3, while Cuddy and Badertscher (1987) 
show that the same is typically true for probe-
tone profiles obtained from listener responses to 
simple tonal stimuli. 
We will consider the possibility of locating sty-
listic information in all of the DFT components 
in this study. Let us consider the interpretation 
of each of these in turn as they have been ex-
plained by theorists such as Quinn (2006) and 
Amiot (2016, Ch. 4):  
(f1) Sometimes referred to as “chromaticity,” 
this component indicates the concentration of 
the distribution in a specific location on the 
pitch-class circle. It is low for pitch-class sets of 
relatively even spacing, such as typical tonal 
chords and scales. The term “chromaticity” can 
be misleading in a sense: f1 does not indicate a 
tendency to use all twelve pitch-classes, which 
results in a relatively flat distribution. In flat 
distributions, all qualities are depressed relative 
to the cardinality, f0. Since f0 is used to normal-
ize, flatter distributions will be observable as 
decreases in all components.  

(f2) This component balances the distribution on 
a half-octave periodicity, and therefore 
measures the weight of a prominent tritone or 

(in a more diatonic context) fifth. It has there-
fore been dubbed dyadicity (Yust 2017). Yust 
(2015a, 2016) also refers to it as “quartal qual-
ity” in non-tonal contexts, because it is largest 
for chords made out of stacked perfect and aug-
mented fourths.  
(f3) This is the most important component for 
major and minor triads and therefore has been 
used along with f5 to construct tonal spaces 
(Krumhansl 1990, Amiot 2013, Yust 2015b) 
and may be referred to as triadicity. In tonal 
contexts, it weights a distribution’s position in a 
stack of major and minor thirds, and hence can 
indicate a weighting towards the subdominant 
or dominant side of a particular key. In non-to-
nal contexts, it indicates similarity to an aug-
mented triad or hexatonic scale (Amiot 2016, 
2017). 
(f4) This component weighs the three dimin-
ished seventh chords. In twentieth-century mu-
sic it indicates octatonicity (Yust 2016). In tonal 
contexts, it is strongest for seventh chords and 
may also differentiate distributions by which of 
three harmonic functions is most prominent, 
along the lines of a Riemannian or “axis” sys-
tem (Lendvai 1979).  
(f5) This gives the diatonicity of a distribution, 
its weight and position on the circle of fifths, 
and is of principal significance in tonal distribu-
tions. 
(f6) This is one-dimensional, and weighs one 
whole-tone collection against the other.  
Each of these components (except f6) is a com-
plex number, with real and imaginary parts, 
which is best interpreted by converting to polar 
coordinates, magnitude (distance from the 
origin) and phase (angle). However, statistical 
analysis can only be done in the standard com-
plex coordinates, since phase values are cyclic. 
Therefore, the conversion to polar coordinates 
is done only after the statistical analysis for the 
purpose of interpreting the results. Following 
Yust (2015a), phases are converted from the 
standard 0–2p scale to a 0–12 scale, denoted 
“Phn.”   
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2.3 Examples 

Figures 1 gives a few examples of beginnings 
of pieces in the corpus, with distributions trans-
posed to C in Fig. 2, to illustrate aspects of the 
DFT. The first (Haydn Symphony no. 95) is an 
example of a typical minor-key distribution. 
Only the notes of the harmonic minor scale are 
represented, and the notes of the tonic triad are 
more heavily weighted, with 6̂  and 7̂ the weak-
est. The other two distributions are unusual in 
one way or another. Purcell’s Jig uses a lot of 
minor dominant chords, so that 2̂ and 5̂ (and 
also 6̂) are weighted higher than the tonic, and 
the natural form of 7̂ is somewhat more promi-
nent than the leading tone. Liszt’s opening em-
phasizes the tonic triad, but otherwise is fairly 
chromatic, tending to not favour a particular 
scale, except around ^̂2–3̂.  

Figure 3 shows the sizes of each of the six Fou-
rier components for these distributions, normal-
ized. Haydn’s distribution, because it is more 
concentrated in a smaller number of pitch clas-
ses, is higher overall. Liszt’s flatter distribution 

is lower overall. All distributions have a large 
f5, reflecting concentration on the circle of 
fifths. Liszt’s, however, has almost as much f3, 
due to the emphasis on triad over scale. Pur-
cell’s is unusual in that f2 and f4 are stronger 
than f3. This comes from the prevalence of non-
tonic functions, which reinforces f4 by putting 
greater emphasis on 2̂, 4̂, and 6̂  (the central di-
minished triad of the scale) and the weighting 
of structural fifths 1̂–5̂–2̂–6̂ over thirds (rein-
forcing f2). 

The transposition-dependent information of the 
DFT is in the phases, and these are most signifi-
cant when components are large. Therefore Fig-
ure 4 shows just phases of components 2–5. 
These are shown in 2-d toroidal plots, starting 
with the strongest components, Ph3 and Ph5. 
The Ph3/5-space is the same as Krumhansl’s 
(1990) key-finding space, and typical major/mi-
nor key profiles occur close to their respective 
major/minor triads, which are shown in the fig-
ure. A correlational key-finding algorithm (like 
those of Aarden [2003], Krumhansl [1990], 
Temperley [2007], or Sapp [2011])  would  

43
43

46
46

 

7 7
6

(a) 

(b) 

(c) 

Figure 1. Examples of beginnings from the corpus: (a) Haydn Menuetto from Symphony 95, (b) Purcell, Jig from The 
Fairy Queen and (c) Liszt Hungarian Rhapsody no. 11 
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(a)

 

(b)

 

(c)  

Figure 2. Distributions from the beginnings of  
(a) Haydn Symphony 95 Menuetto, (b) Purcell Jig, and 

(c) Liszt Hungarian Rhapsody no. 11 

 
Figure 3. DFT spectra for the distributions in Fig. 2 

essentially locate the nearest key to the distribu-
tion in this space. Despite the unusual features 
of Purcell’s distribution, which place it some-
what closer to the dominant and relative major, 
a correlational algorithm would have no trouble 
identifying its key (which, n.b., is transposed to 
C). The Liszt distribution is more ambiguous. 
Still, despite being quite unusual, it is still very 
close to the typical Ph5 value for minor-key dis-
tributions, and not too far off the typical Ph3 
value.  

 

(a)

 
(b) 

 
Figure 4. Phase space plots for the distributions 

 
The Ph2/4 plot illustrates the greater volatility of 
Ph4 in particular: the values for the three distri-
butions are widely dispersed and not especially 
close to the tonic triad. The Ph2 values are more 
stable, though, comparable to Ph3. Note that the 
space is invariant under tritone transposition, so 
it would not be suitable for key-finding. How-
ever, key finding with just Ph2 and Ph5 would 
not fare much worse than with Ph3 and Ph5. 
Considering the distributions at hand, it would 
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do somewhat better on the Liszt, somewhat 
worse on the Purcell.  
2.4 Statistical Procedure 

For each composer, an average distribution was 
calculated for the given mode (major or minor) 
and position (beginning, ending, or all), normal-
ized, and converted via the DFT. A series of 11 
multiple regressions was then run on these 198 
data points, one for each possible dependent 
variable (the real and imaginary parts of f1–f5 
and the real part of f6) that included the factors 
of composer’s birthdate, mode (2 levels), and 
position (3 levels), and all possible interactions 
between these. After a first battery of regres-
sions revealed that the influence of date was 
likely to be non-linear, a quadratic factor on 
date and its interactions to the initial model 
were added. 
Starting from a full model on each parameter, 
factors were removed one at a time in a step-
wise procedure from each of these regression 
equations based on a p < .01 criterion. A factor 
was not removed if it was involved in a signifi-
cant interaction, and date was not removed if 
date2 remained in the model, and similarly for 
interactions involving date and date2. Position 
was divided into two Boolean factors, begin-
nings and endings, and these could be removed 
separately. Factors were removed for the real 
and imaginary parts of a given component sim-
ultaneously, and the criterion for the removal of 
a factor was the smaller of the two p values (for 
the real and imaginary parts). Thus, a signifi-
cant result in either the real or imaginary coor-
dinate was sufficient to retain a factor, and the 
significance value for a factor is always consid-
ered to be the lower of the two p values for that 
factor.  
After determining a regression equation, the ob-
served and predicted data points where con-
verted into polar coordinates (magnitude and 
phase), which are of more theoretical interest 
than the real and imaginary parts. This step was 
done last because phase is cyclic, so one cannot 
run an ordinary regression on it.  

3. RESULTS  
3.1 Regression 

Table 1 shows the R2 values of the resulting re-
gression equations averaged between the real 
and imaginary parts. The regressions were 
highly predictive of f5, f2, f3, and f4, less so of f1 
and f6. Figure 5 shows the coefficients of the re-
gression equations and effect sizes in the form 
of non-normalized weights, with date converted 
to number of centuries with the average (1748) 
set to zero, so that its standard deviation was 
close to 1 and balanced. This gives a rough idea 
of which effects were the most substantial. All 
of the simple factors were significant on f2–f5, 
except for endings on f2. Furthermore, all inter-
actions with mode were significant except 
date ´ mode and date2 ´ mode on f1. Interac-
tions between date and position were limited to 
endings; date ´ beginnings interactions were 
eliminated from all models.  
 

 

f1 f2 f3 f4 f5 f6 

0.399 0.817 0.785 0.767 0.821 0.629 

Table 1. R2 values for the resulting regressions, averaged 
between real and imaginary models. 

 
 

 
Figure 5. Effect sizes from the regressions, with Date 
scaled to number of centuries before or after 1748. * p 
< .05, ** p < .01, *** p < .001 
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When considering the effect sizes involving 
mode in Fig. 1, it must be borne in mind that 
they are dependent upon the choice of transpo-
sitions, because modes are largely distinguished 
by phase. C major and C minor have especially 
large phase differences in f5, which leads to a 
very large simple effect of mode. Were the 
transpositions C major and A minor chosen, on 
the other hand, the difference in f2 would be 
very large and the f5 difference would be much 
smaller.  
3.2 Magnitudes for whole-piece data 

Figures 6a–b show the observed and predicted 
magnitudes for each component divided by 
composer, for just the whole-piece data. These 

results agree with the observation of Yust 
(2017) that tonal distributions are dominated by 
f5, followed by f3 and then f2, with little repre-
sentation of the remaining components (f1, f4, 
and f6). The predictability of a component ap-
pears to relate to its size, with higher R2s in Ta-
ble 1 for components more prominent in Fig. 1, 
but with qualifications: f2 gets higher R2s than 
f3, although f3 has a consistently larger presence 
in the distributions. Also, regressions for f4 and 
f6 get higher R2s than would be expected from 
the magnitudes of these components.  
The concentration of energy in f5 testifies to the 
efficacy of using the DFT to discover stylistic 
trends observable in distributional data. 
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Figure 6. Observed and predicted magnitudes of DFT components for whole pieces,  
major keys, (a), and minor keys, (b). 
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Regressions performed on raw scale-degree val-
ues would be dominated by trends related to di-
atonicity. By separating this out into one of six 
orthogonal complex variables, other trends in-
dependent of diatonicity become observable. 

One distinct historical trend is immediately evi-
dent from Fig. 6: diatonicity, though it remains 
the prevailing quality of tonal distributions over 
the full range of dates, decreases markedly over 
time. This component therefore appears to be an 
effective indicator of the gradual shift from dia-
tonic harmonic languages to more chromatic 
ones. The shift is evidently not linear, however: 
a significant quadratic coefficient allows for a 
more rapid decrease in the eighteenth and nine-
teenth centuries. Even the quadratic coefficient 
appears to be insufficient to accurately capture 
the historical pattern, though, since most seven-
teenth century composers have positive residu-
als and nineteenth century composers have neg-
ative ones. To check this, a post-hoc cubic re-
gression was run on just the whole-piece data, 
including interaction factors between all coeffi-
cients on date with mode. The resulting ad-
justed R2s were 0.750 on reals and 0.953 on im-
aginaries as compared to 0.723 and 0.949 with 
just the quadratic factors, and the date3 coeffi-
cient was significant at p < .01 on imaginaries 
(and not significant on reals).  

Figure 7 shows resulting predictions of the cu-
bic regression, which isolates the decrease in |f5| 
primarily to the 1700s. The diatonicity of indi-
vidual composers relative to this trend intui-
tively matches their reputations as more or less 
harmonically progressive. On the progressive 
side are Scarlatti, Bach, Liszt, Verdi, Fauré, and 
Scriabin. Liszt is particularly extreme in this re-
gard.  On the conservative side are Rameau, 
Zipoli, Cimarosa, Mozart, Mendelssohn, and 
Rachmaninoff. Most composers are similarly 
conservative or progressive in both modes, with 
the notable exceptions of Hummel (more con-
servative in major) and Schubert (more progres-
sive in major).  

The total sum of squared residuals from all of 
the regressions was also computed to see how 
well the result accord with musicological intui-
tion. The composers with lower residuals 
(hence representative of their eras) were, in or-
der, Mozart, Vivaldi, Telemann, Brahms, Bee-
thoven, and Handel. Four composers stand out 
as having particularly high deviations from the 
trendlines: Verdi, Rachmaninoff, Liszt, and 
Wagner. Interestingly, these, plus the next two 
(Scriabin and Fauré) were all of the later nine-
teenth century, which is consistent with the in-
tuition that harmonic languages diversified in 
the later nineteenth century, where 
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harmonically adventurous composers like Liszt 
and Wagner co-existed with relatively con-
servative ones like Verdi and Rachmaninoff.  

Triadicity, f3, is consistently the second most 
important component in Fig. 6 and f2 the third, 
although f4 seems to play a role in minor-key 
distributions, enough to outrank f2 in a few indi-
vidual instances (Lully, Pachelbel, Cimarosa, 
Hummel, and Tchaikovsky).  

Also, while f5 tends to decrease in power over 
time in both modes, the trendlines show little or 
no decrease in f3 and f2, so that they take a 
greater share of distributional weight in later 
styles.1 The significant quadratic coefficients on 
date in f1–f4 and f6 allow the regressions to show 
stable magnitudes for these components over 
the seventeenth and eighteenth centuries fol-
lowed by decreases in the nineteenth century. 
For f2 this pattern holds only in major, whereas 
in f3 and f6 it holds only in minor.  
Figures 8a–d compare the historical trendlines 
in component magnitudes for beginnings and 
endings to those for whole pieces (duplicated 
from Fig. 2). These indicate one straightforward 
explanation for the relatively large simple ef-
fects of position: in all cases, beginnings and 
endings have substantially higher magnitudes 
than whole pieces. This reflects the unsurprising 
fact that whole pieces tend to have flatter pitch-
class profiles (with more energy concentrated in 
f0). The trendlines for beginnings are parallel to 
those for whole pieces, showing the lack of in-
teraction between beginnings and date.2 

 
 

                                                
1 One might wonder how all qualities can de-
crease in size, given that data are normalized. 
The DFT conserves total power, the sum of 
squared magnitudes. But data are normalized by 
cardinality (f0) rather than total power. A distri-
bution that is more evenly spread out between 
the pitch classes will have a greater share of its 
power in f0, which means it will normalize to a 
lower-power distribution, and all components 
will tend to be lower. Therefore, an overall 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 8. Predicted magnitudes by date and position for 
(a) f1–f2 in major, (b) f3–f5 in major, (c) f1–f2 in minor, and 
(d) f3–f5 in minor. Error bars represent ± one standard de-
viation of the residuals. 

decrease of DFT magnitudes indicates a more 
chromatic distribution in the sense of more 
evenly spread between all pitch classes.  
2 This appears not to be the case for f4, but this is 
an artifact of the conversion to polar coordinates 
for small-magnitude components. The trendlines 
by date are parallel in complex space, but be-
cause the one for beginnings passes by on a dif-
ferent side of, and much further from, the origin, 
the trend in magnitudes looks different.  
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Notable interactions of date and endings occur 
in f3, f4, and to a lesser extent f2. Fig. 4 shows 
that all of these interactions occur because cer-
tain components become stronger over time in 
endings as compared to beginnings or whole 
pieces. This is evident especially in f3, in both 
modes, and in f4 in major. The trend in f2 ap-
pears instead in minor. The trend in f3 is so 
strong that the model predicts, only for endings, 
f3s larger than f5s in the later nineteenth century 
in minor. The interactions in f3 and f4 show that 
endings become more triadic over time: f3 is the 
predominant component for triads, and f4 is 
prominent in triads but not in typical key pro-
files.  

The trendlines for f6 are shown separately in 
Fig. 9 to allow for negative values. Positive val-
ues indicate weightings of the even whole-tone 
collection and negative values the odd. The 
trendlines are mostly flat, except on endings, 
which ascend markedly in the 1700s and 1800s 
in both modes. This may reflect increasing em-
phasis on the tonic note at endings. 

 

 
Figure 9. Predicted values of f6 by date in all conditions. 

 

To summarize:  
(1) Whole pieces have consistently flatter dis-

tributions than beginnings and endings.  
(2) Endings become stronger over time in f3 

and f4 in both modes, and f2 in minor, and 
more positive in f6. 

The results shown in Figs. 4–9 isolate DFT 
magnitudes from phases. The magnitudes indi-
cate the strength of a given component in the 
profile, whereas phase gives the orientation of 
that component in pitch-class space. Figures 
6a–b show trends in phase for components 2–5, 
separated into three two-dimensional phase 
spaces, Ph3/Ph5-, Ph3/Ph4-, and Ph1/Ph2-spaces. 
(See Yust 2015b, 2016). The first of these is the 

space used by Krumhansl (1990), and the best 
candidate for a two-dimensional map of tonal-
ity. The second duplicates the use of Ph3 in or-
der to compare it to Ph4, which is intuitively 
similar as a thirds-based component and one 
that may relate to functional categories. The last 
plot (Ph1/Ph2) involves the remaining two com-
ponents.  
The Ph3/Ph5 plot (Fig. 10a) shows quite stable 
phase values, especially in major. The values 
are consistently very close to those of the tonic 
triads, but a little higher in f5, indicating a slight 
tendency towards the sharp side. In major, the 
whole-piece data leans most sharpward (proba-
bly reflecting modulations to the dominant), 
whereas in the minor-key data the endings are 
more sharpward. There is more motion to the 
left in Ph3 over time. In major, this motion is 
isolated roughly to the 1800s. This reflects in-
creasing weight towards the subdominant side, 
especially in the nineteenth century. Endings 
also tend more towards the subdominant in mi-
nor (in the triadic sense—they are at the same 
time more sharpward in the diatonic sense).   
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(b) 
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(c) 

 
Figure 10. Trends by date, position, and mode in Ph3/Ph5-
space, (a), Ph3/Ph4-space, (b), and Ph1/Ph2-space, (c). Er-
ror bars show ± one standard deviation of the residuals. 

 

The Ph3/Ph4 plot (Fig. 10b) reveals trends in Ph4 
that are of an entirely different order of magni-
tude than those in Ph3. Over the historical win-
dow examined, endings and whole pieces trav-
erse about one third of a full Ph4 cycle. They go 
in opposite directions in major and minor, but in 
both cases move from remote locations in the 
seventeenth century to values approximating the 
tonic triad in the late nineteenth century. The 
strength of this phase-based trend accounts for 

the relatively high predictive value of the re-
gression on f4 (Table 1) despite the generally 
low magnitude of this component in the pro-
files. The seventeenth-century Ph4 positions 
may be understood as reflective of the diatonic 
scales for C major and C natural minor, which 
are included in Fig. 10(b) for comparison. 
Whole pieces are closer to the diatonics in the 
seventeenth century, while beginnings, espe-
cially in major, are somewhere between the Ph4 
position of the diatonic and that of the tonic 
triad. All positions move close to the tonic tri-
ads in the nineteenth century. 

The other small magnitude component, f1, also 
has large changes of phase over date, especially 
for whole pieces (Fig. 10c), where the predicted 
Ph1 goes from a center of balance between D 
and E∫ (10–9) to between F and F# (7–6), a 
shift of melodic activity from the vicinity of 1̂ 
to that of 5̂. The trajectories of beginnings and 
endings is similar but less dramatic, stopping 
around E∫ (9) in minor and between E and F 
(8–7) in major. The significance of these trends, 
however, (as evident in Table 1 and Fig. 5) is 
weak.  
In contrast, f2 is a higher-magnitude component 
and its phase values are much more restricted, 
remaining close to the tonic triads. In major, 
there is very little systematic variation in Ph2 
motion, either by date or position, only a slight 
upward motion for whole pieces and begin-
nings. Minor key distributions, on the contrary, 
see a distinct increase in Ph2 of about 0.5 over 
the historical window, across all positions. Fur-
thermore, endings are about 0.5 above begin-
nings and beginnings about 0.5 above whole 
pieces in the 17th century, with that gap narrow-
ing towards the 19th century. The higher values 
for endings and for later styles may reflect 
greater relative weight on the tonic note. 

  

4. DISCUSSION 

The results allow us to address two broad ques-
tions: How do pitch-class distributions in the 
corpus change over time? And, how do pitch-
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class distributions for whole pieces differ from 
beginnings and endings of pieces?  
4.1 Trends by date 
The strongest trend relating to date is the de-
crease in the strength of diatonicity over time, 
which is dramatic, and as Fig. 7 shows, seems 
to be concentrated in the eighteenth century. 
Given the substantial changes in f5, it is also im-
pressive that its phase (Fig. 10a) is so stable 
over time. The trend by date is also nearly 
equivalent between the modes when stated in 
polar coordinates. The apparent large 
date ´ mode interaction in Fig. 5 is attributable 
to the substantial Ph5 difference between major 
and minor, which puts f5 in a different orienta-
tion with respect to the origin when reckoned in 
regular complex coordinates. 
The f5 trends suggest that diatonicism, or bal-
ance on the circle of fifths, remains primary for 
establishing tonality over the period studied, 
and that the circle-of-fifths positions associated 
with each key is stable. In other words, there is 
no evidence of a shift, say, from a more Dorian 
to a more Aeolian minor over the time period 
studied. What does change over time is the 
strength of diatonicity, which participates in an 
overall trend towards flatter distributions, but is 
more concentrated in f5 than in other compo-
nents. This accords with musicological intui-
tion: not only does the music in this corpus be-
come more chromatic over the 18th and early 
19th century, in the sense of using all twelve 
pitch classes more frequently, but it does so 
largely at the expense of diatonic qualities ra-
ther than triadic ones.  
This conclusion, like others here, warrants a 
note of caution, since it only applies to the cor-
pus at hand, not necessarily to a “typical” sam-
ple of music from these periods, however that 
may be construed. Indeed, of the various ways 
the corpus may be biased, perhaps the strongest 
bias is simply towards music that has survived 

                                                
1  This is not a perfect one-to-one correspond-
ence, however, and the numerical correspond-
ence of category 5 and f5 is accidental. Category 
2 corresponds roughly to f6 and category 6 

history and continues to be performed and val-
ued by listeners. It is quite likely that the music 
that is the most unique for its time is heavily fa-
vored for inclusion in this “canon,” and there-
fore analyzing this canon, rather than, say, a 
typical concert program of the Musikverein, 
probably exaggerates trends like the weakening 
of diatonicity, and the diversification of the 
later nineteenth-century harmonic palette (noted 
in the results section).  
The f5 by date trends were also not found to in-
teract with position. The decrease in diatonicity 
is uniform between beginnings, endings, and 
whole pieces. This is not true of other subtler 
trends relating to changes in the corpus over 
time, which are  

(1) increase in triadicity for endings,  
(2) triadic weight shifting towards the sub-

dominant overall,  
(3) move towards the Ph4 value of the tonic 

triad versus the home-key scale, and  
(4) greater weight placed on the tonic note in 

minor, especially at endings.  
Use of the DFT in this study was partly inspired 
by the work of Honingh and Bod (2010, 2011), 
which showed promising results distinguishing 
types of music on the basis of interval-type cat-
egories proposed by Quinn (2001). Quinn ar-
gued in his later work (2006–7) that the DFT 
improves upon and eclipses his earlier classifi-
cation by interval content. In particular, their 
category 5 (ic5-based sets), which proves useful 
in, e.g., distinguishing tonal and atonal music, 
correlates with diatonicity (f5).1 But, as Amiot 
(2017) demonstrates, the DFT better reflects the 
intuitive sense of “diatonicity” than interval 
content. In addition, it is a more flexible tool, 
allowing us to assess not only the strength of di-
atonicity, |f5|, but also gives a sensitive measure 
of the diatonic position, Ph5.  
The present results reinforce and refine a num-
ber of Honingh and Bod’s conclusions. They 

imperfectly to f2, while category 3 tends to cor-
respond to f4 and category 4 to f3. In general, such 
correspondences need not exist at all—see Quinn 
2006–7.  
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find that tonal music has a higher proportion of 
category-5 sets. Although atonal music was not 
used in the present study, the consistently very 
high diatonicity values reflected in Figs. 2–4 is 
undoubtedly characteristic of tonality. They 
also found a trend of decreasing proportion of 
category-5 sets from Bach to Mozart to Beetho-
ven to Brahms. This is reflective of the robust 
trend of decreasing diatonicity over the eight-
eenth and nineteenth centuries found above. 
One might even speculate that atonality repre-
sents the logical continuation of such a trend. 
Perttu’s (2007) conclusion that use of non-scale 
tones increases over time (1700–1960) is also 
consistent with this finding.  

The data in Figs. 2–3 also show that minor-key 
music has a lower diatonicity (and hence fewer 
category-5 sets, and Honingh and Bod find) 
overall. However, since diatonicity is influ-
enced by other factors (such as date), modes are 
better distinguished by phase values, which, as 
is clear from Fig. 6, are well differentiated by 
mode. Indeed, as mentioned in section 2.3, this 
is essentially the method of distributional key 
finding algorithms. These typically rely upon 
correlation between distributions which, as Yust 
(2017) shows, essentially amounts to comparing 
positions in an appropriate two-dimensional 
phase space like Figs. 4a or 10a.  

 
4.2 Functional categories 

Two of the DFT components, f3 and f4, relate to 
theories of functional classification because of 
the thirds-based organization of their spaces. 
The present study cannot, of course, say any-
thing about harmonic function per se, in the 
sense of a syntax of progressions (as the term is 
used, e.g., by White [2013], White and Quinn 
[2018], and others) since all data points average 
over multiple measures of music and will typi-
cally contain multiple chords. Yet both compo-
nents separate notes typical of tonic (1̂, 3̂), dom-
inant (7̂), and subdominant (4̂, 6̂) functional cat-
egories, so they will reflect the overall fre-
quency of chords of one type versus another. 

The two components are mathematically inde-
pendent of one another, and hence reflect differ-
ent concepts of “dominantness” and “subdomi-
nantness.” Cohn’s (1999, 2012) idea of hex-
atonic function is represented by f3, whereas f4 
represents the kind of “axial” or Riemannian 
function advanced by DeJong and Noll (2008, 
2011). 
Two stylistic trends found above have opposite 
implications according to the two functional 
classifications. Distributions move toward the 
subdominant side in Ph3 in the nineteenth cen-
tury, while moving towards the tonic in Ph4 
(Figs 10a–b).  
Overall the data show that hexatonic function 
(f3) is stable, strong, and tonic-centered, 
whereas axial function (f4) is weak in the over-
all distribution. This may reflect the fact that 
dominant and subdominant cancel one another 
out in f3, whereas they reinforce one another, 
opposite tonic, in f4, particularly in minor.  

The pronounced Ph4 trend by date therefore re-
flects a greater presence of tonic versus domi-
nant and subdominant in the nineteenth century 
pieces, which effects the phase of f4 (which is 
highly sensitive due to low magnitude) but ef-
fects f3 primarily in magnitude. The trend in Ph3 
is then able to show a concurrent slight shift in 
from dominant to subdominant.  

The trend in Ph3 lends some support to claims 
made by theorists such as Harrison (1994) that 
subdominant-type functions gain in importance 
over the nineteenth century.  

The relatively high R2 reported here for f4 may 
suggest revising one of the conclusions of Yust 
2017, who implies that f4 is negligible for tonal-
ity because of its suppression in pitch-class dis-
tributions for whole-piece data. This finding is 
replicated here, but at the same time f4 helps 
distinguish between beginnings, endings, and 
whole-piece data, and reveals historical trends. 
The suppression of f4 when averaging over 
many measures may instead reflect a relative 
balance between harmonic functions being av-
eraged together. There is therefore a strong pos-
sibility that f4 may be important at the level of 
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local harmonic motion. Whether this is so, and 
whether local f3 or f4 motion may reflect syntac-
tic norms of harmonic progression, can only be 
determined by further research, analyzing time-
dependent distributions taken over smaller win-
dows. 
4.3 Beginnings and endings 

The inclusion of a position factor allows us to 
address a question posed in the literature on dis-
tributional studies of key and mode: Are short 
passages from the beginning and ending of 
pieces more representative of a given key than 
entire pieces? Albrecht and Shanahan (2013) 
and Albrecht and Huron (2014) argue that be-
ginnings and endings will tend to be better rep-
resentatives of a key’s distributional properties, 
since they are less likely to include modula-
tions. The regressions presented here, as Fig. 5 
indicates, did indeed find a number of differ-
ences between beginnings and endings and en-
tire pieces, differences that interact with mode 
and, only for endings, with date.  
One strong difference between beginnings and 
endings versus whole pieces is found here, but 
it is an obvious one, that entire pieces have flat-
ter overall distributions than beginnings and 
endings. The DFT isolates this difference in f0, 
allowing us to make other comparisons that 
would have meaningful implications for, e.g., 
algorithmic key finding.  
It is difficult to directly litigate the question of 
whether beginnings and endings or whole 
pieces better represent a key because there is no 
ground truth for what a “better” representation 
of a key is. Nonetheless, the present results pro-
vide some significant qualifications and cau-
tions regarding such claims.  

The most important qualification is that lump-
ing together of beginnings and endings is not 
appropriate, in that endings behave differently 
than beginnings in a number of ways. The data 
do, on the other hand, show a remarkable corre-
spondence between beginnings and entire 
pieces. This correspondence suggests that be-
ginnings and whole pieces constitute a fairly ro-
bust common distributional representation of a 

key, and the typical choices of contrasting key 
areas tend to reinforce the distributional proper-
ties of the home key in some respects and can-
cel one another out in others. 
The two kinds of effects involving beginnings 
in the regressions, a main effect and an interac-
tion with mode, may be accounted for by the 
fact that beginnings are more concentrated in 
their pitch-class content and therefore have 
higher magnitude coefficients. This can be seen 
in Figs. 4–5; note also that the magnitude differ-
ences are approximately the same in major and 
minor. The mode ´ beginnings interactions, like 
the date ´ mode interaction, are an artifact of 
the conversion to polar coordinates. Because 
major and minor have substantially different 
phase values, motion to or from the origin is ac-
complished differently in complex coordinates.  

Besides this difference in magnitudes, begin-
nings are very similar to whole pieces. With a 
few small qualifications, the predicted phases 
for beginnings and whole pieces are quite close 
in Fig. 10. In the small magnitude components, 
f1 and f4, the less dramatic changes of phase for 
beginnings are a consequence of the magnitude 
difference, since a similar motion in complex 
space further from the origin amounts to a 
smaller change of phase. This leaves two other 
small differences that can be identified. First, in 
Fig. 10a, beginnings have a slightly lower Ph5 
than whole pieces in major, which probably re-
flects the tendency to choose sharp-side second-
ary key areas in major-mode pieces. Second, in 
Fig. 10c, beginnings in minor tend to have a 
slightly higher Ph2. This may reflect a greater 
weight on the tonic note, C, in beginnings, 
and/or a greater representation of the third, Eb—
the tonic of the relative major—in whole pieces. 
Thus, there do seem to be some reliable differ-
ences in whole pieces that may be attributed to 
the inclusion of passages in common secondary 
keys. However, these differences are surpris-
ingly slight.  

Endings, on the other hand, are different from 
whole-piece distributions in a number of re-
spects. Like beginnings, they also have higher 
magnitude coefficients overall. But unlike 
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beginnings, the differences interact with date. In 
particular, the magnitudes of f3, f4, and f6—and 
f2 in minor—increase over time for endings but 
not for beginnings or whole pieces. The differ-
ence is especially strong for f3. This indicates 
that endings become more triadic over the time 
period examined. In addition, endings have 
more differences of phase from whole pieces 
(Fig. 10), particularly in minor. In major, they 
have lower Ph5 (flatter distributions). In minor, 
they have substantially higher Ph5 (sharper), 
lower Ph3 (more subdominant), and higher Ph2.  

5. CONCLUSION 

The results reported here validate the premise 
that using the DFT to interpret pitch-class distri-
butions helps to separate out trends that would 
otherwise be overwhelmed by diatonicity, which 
is consistently orders of magnitude larger than 
other components. Yust’s (2017) main result, 
that tonal distributions averaged over multiple 
measure are primarily determined by three com-
ponents, f5, f3, and f2, in that order, is replicated 
on a larger body of data. However, the results 
also suggest that the low value of f4 for distribu-
tions taken over large spans of music may not 
necessarily mean that f4 is irrelevant to tonality, 
and its role may become more clear in a study of 
more local distributions, where it might have a 
role in something like functional syntax.  

Consistent with other studies, this one drives 
home the obvious fact that music becomes more 
chromatic over the eighteenth and nineteenth 
centuries. However, it also refines this observa-
tion in important ways, showing that increased 
chromaticism comes largely at the expense of the 
diatonic rather than the triadic aspect of tonal 
profiles, and that the circle-of-fifths locations of 
keys remain remarkably stable as diatonicity de-
creases in overall weight. Furthermore, other 
more subtle trends, such as an increased weight 
towards the subdominant in the nineteenth cen-
tury, become observable after factoring out the 
much larger diatonic trend. Also, individual 
composers may be compared to the overall trend, 

substantiating and supplementing musicological 
evaluations of these composer’s relationship to 
their historical era. Future studies might also 
consider how trends within the output of individ-
ual composers (such as Beethoven) compare to 
the overall historical trends found here.  

The results also show that beginnings have tonal 
profiles more similar to whole pieces than end-
ings. The question of what kind of profile is a 
better representative of a key is harder to defini-
tively answer. 

Overall, the results here suggest that future re-
search should consider using the DFT when an-
alyzing trends in pitch-class distributions. One 
worthwhile goal would be to validate conclu-
sions arrived at here in other corpora that may 
not have the same biases as the YCA data. Per-
haps the most pressing question for further study, 
however, is whether there are significant regular-
ities in more local distributions and how they 
change over time in tonal music, and whether the 
DFT can aid in discovering such regularities. 
Further differentiating such temporal dependen-
cies of local distributions over historical periods 
may significantly fill out the picture of stylistic 
change drawn here.  
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