Restoring the Structural Status of Keys through DFT Phase Space

Jason Yust, Boston University

Presentation to the International Congress on Music and Mathematics Nov. 26–29, 2014

A copy of this talk is available at people.bu.edu/jyust/

Outline

I. Schenker, Brahms, and Keys: The Problem

- 1. Schenker's analysis of Brahms's F major Cello Sonata
- 2. Structure as long-range voice leading
- 3. An alternative: DFT phase space

II. DFT and Triadic Orbits

- 1. DFT components as sinusoidal approximations
- 2. Triadic orbits

III. Beethoven's Heiliger Dankgesang

- 1. Scalar context and triadic orbits
- 2. The D–C motive

Jason Yust

3. Strength and weakness

Restoring the Structural Status of Keys

Schenker's analysis of Brahms's F major Cello Sonata
Structure as long-range voice leading
An alternative: DFT Phase Space

Schenker, Brahms, and Keys A Music-Analytic Problem with a Mathematical Solution

The Schenkerian Syllogism False!

Hidden Premise: Voice leading is always a relationship between individual harmonies.

Premise: Long-range structure is contrapuntal (based on voice-leading).

Conclusion: Long-range structure is *reductive*—i.e., it consists of relationships between non-adjacent harmonies.

Jason Yust

Restoring the Structural Status of Keys

ICMM 11/26–29, 2014

Problematic

Schenker, Brahms, and Keys A Music-Analytic Problem with a Mathematical Solution

So what's wrong with reductive analysis?!?

Schenker: *Der Freie Satz* Fig. 110d(2)

Jason Yust

Restoring the Structural Status of Keys

Structure is based on large-scale voice leadings, which must occur between distinct musical objects (chords). This leads to a reductive approadential points must take precedence as structural events

Jason Yust

Restoring the Structural Status of Keys

Alternative: A spatial concept of tonality .

Amin

F#min

F#A

Ama

DFT phase space

Amiot, Emmanuel. (2013). "The Torii of Phases," *Mathematics and Computation in Music, MCM 2013* (ed. Yust, Wild, & Burgoyne) 1–18.

Yust, "Schubert's Harmonic Language and Fourier Phase Space." *Journal of Music Theory* (forthcoming). Available at http://people.bu.edu/jyust/SchubertDFT.pdf

Jason Yust

Restoring the Structural Status of Keys

Abma

Emai

Properties of DFT Phase Space

C#E:

- Objects are pcsets, multisets, or statistical pc distributions
- Toroidal geometry

F#min

- Vertical axis indicates circle-of-fifths position
- Horizontal axis captures triadic voice-leading properties
 - Many kinds of harmonic objects exist in the space: single pcs, harmonies, scales, etc.

Jason Yust

Restoring the Structural Status of Keys

ICMM 11/26–29, 2014

GBb

FbBb

Emai

Properties of DFT Phase Space

C#E;

FAb

F#min

Bbmin

- •Space is *continuous*—paths connect points via a potential infinite series of intermediate states (pc distributions)
- Spatial conceptualization of DFT is inspired by Mazzola's concept of **gesture**.
- Nearness in the space (its *topology*) is based on *common pc content*.

Jason Yust

Restoring the Structural Status of Keys

CEb

Abma

ICMM 11/26–29, 2014

GD

EbBb

Emai

Properties of DFT Phase Space

C#E:

F#min

BbF

Jason Yust

Bbmin

A *path* can represent a motion from *A* to *B*, but it can also represent "*B* in the context of *A*."

Combination of pcsets is highly tractable: the position of A + B is easily predictable from the path $A \rightarrow B$.

Averaging over *more objects* (pcs, triads) restricts the range of activity.

FAb

Restoring the Structural Status of Keys

CEb

Abma

ICMM 11/26–29, 2014

GBb

EbBb

2. DFT and Triadic Orbits

1. DFT components as sinusoidal approximations

2. Triadic orbits

Discrete Fourier Transform on Pcsets

Lewin, David (1959). "Re: Intervallic Relations between Two Collections of Notes," *JMT* 3/2.

--- (2001). "Special Cases of the Interval Function between Pitch Class Sets X and Y." *JMT* 45/1.

Quinn, Ian (2006–2007). "General Equal-Tempered Harmony," *Perspectives of New Music* 44/2–45/1.

Amiot, Emmanuel (2013). "The Torii of Phases." Proceedings of the International Conference for Mathematics and Computation in Music, Montreal, 2013 (Springer).

Jason Yust

Restoring the Structural Status of Keys

Triadic Orbits

D# C# **(C)** С Ε The peaks of the sinusoid are shown The treuthsheftthnes. sinusoid are the boundary points E (+

Restoring the Structural Status of Keys

ICMM 11/26–29, 2014

Jason Yust

NIVERSIT

Triadic Orbits

The triadic orbits go from trough to trough, and group pcs that may be considered displacements of those in the triad

Jason Yust

Restoring the Structural Status of Keys

G

F,

Triadic Orbits

Any pc-distribution can define a set of triadic orbits, including scales.

3. Heiliger Dankgesang

Scalar contexts and triadic orbits
The D–C motive
Strength and weakness

Chorale phrase 4:

Ending high in the orbit gives the effect of suspension

Jason Yust

Restoring the Structural Status of Keys

Heiliger Dankgesang: Motivic D–C

Final form of the intonation:

Jason Yust

Restoring the Structural Status of Keys

Heiliger Dankgesang: Motivic D-C

Heiliger Dankgesang: Motivic D–C

Heiliger Dankgesang: Motivic D–C

End of Neue Kraft section

Weakness and Strength

Jason Yust

Restoring the Structural Status of Keys

Weakness and Strength

End of chorale

Conclusions

- DFT phase space effectively reflects tonal process at multiple **levels of structure**.
- It does so through processes of **combination** rather than **reduction**.
- Relating levels through combination better reflects the **traditional notion of keys**.
- Motions in DFT phase space can be construed as a kind of **voice leading** through the idea of **triadic orbits**.
- Triadic orbits also have hermeneutic value in showing the **gravitational forces** that color tones and distinguishing **strong** and **weak** melodic motions.

Jason Yust

Restoring the Structural Status of Keys

Restoring the Structural Status of Keys through DFT Phase Space

Jason Yust, Boston University

Presentation to the International Congress on Music and Mathematics Nov. 26–29, 2014

A copy of this talk is available at people.bu.edu/jyust/

Appendices:

A1: Derivation of tonal regions

Derivation of Tonal Regions

Boundaries between major and minor follow the circle of fifths through diatonic scales and dominant sevenths / individual pcs.

Jason Yust

VIVERSIT

Restoring the Structural Status of Keys

Derivation of Tonal Regions

A characteristic hexachord is at the center of the major regions. Boundaries between fifth-related major regions are parallel to an axis that approximately passes through this hexachord.

Jason Yust

JNIVERSITY

Restoring the Structural Status of Keys

Derivation of Tonal Regions

Minor region boundaries are parallel to an axis that approximately passes through the harmonic minor scale

Jason Yust

UNIVERSITY

Restoring the Structural Status of Keys

Discrete Fourier Transform: Periodicity

See Quinn "General Equal-Tempered Harmony," *Perspectives of New Music* 44/2–45/1 (2006–2007).

Jason Yust BOS

Restoring the Structural Status of Keys

Discrete Fourier Transform: Balances3-component balance5-component balance

C major triad

Restoring the Structural Status of Keys

Discrete Fourier Transform: Balances3-component balance5-component balance

A minor triad

9

Restoring the Structural Status of Keys

ICMM 11/26–29, 2014

9

Restoring the Structural Status of Keys through DFT Phase Space

Jason Yust, Boston University

Presentation to the International Congress on Music and Mathematics Nov. 26–29, 2014

A copy of this talk is available at people.bu.edu/jyust/

Bibliography

- Amiot, Emmanuel. (2013). "The Torii of Phases." *Proceedings of the International Conference for Mathematics and Computation in Music, Montreal, 2013*, ed. J. Yust, J. Wild, and J.A. Burgoyne (Heidelberg: Springer).
- Callender, Clifton, Ian Quinn, and Dmitri Tymoczko. (2008). "Generalized Voice-Leading Spaces." *Science* 320: 346–8.
- Childs, Adrian (1998). "Moving beyond Neo-Riemannian Triads: Exploring a Transformational Model for Seventh Chords." *JMT* 42(2): 181–193.
- Clark, Suzanna (2011). "On the Imagination of Tone in Schubert *Liedesend* (D473), *Trost* (D523), and *Gretchens Bitte* (D564). " In *The Oxford Handbook of Neo-Riemannian Music Theories* ed. Gollin and Rehding (New York: Oxford Univ. Press), 249–321.
- ——— (2011). *Analyzing Schubert* (New York: Cambridge Univ. Press).

Jason Yust

- Cohn, Richard (1999). "As Wonderful as Star Clusters: Instruments for Gazing at Tonality in Schubert." *19th Century Music* 22(3): 213–232.
- ——— (2011). *Audacious Euphony: Chromaticism and the Triad's Second Nature* (New York: Oxford Univ. Press).
- Cone, Edward (1982). "Schubert's Promissory Note: An Exercise in Musical Hermeneutics." *19*th-*Century Music* 5(3): 233–241.
 - (1984). "Schubert's Unfinished Business." 19th-Century Music 7(3): 222–232.

Restoring the Structural Status of Keys

Bibliography

Damschroder, David. 2010. "Schenker, Schubert, and the Subtonic Chord." *Gamut* 3/1, 127–166.

———. 2010. *Harmony in Schubert* (Cambridge, Eng.: Cambridge Univ. Press).

Fisk, Charles. 2001. *Returning Cycles: Contexts for the Interpretation of Schubert's Impromptus and Last Sonatas* (Berkeley, Calif.: UC Press).

Gollin, Edward (1998). "Some Aspects of Three-Dimensional 'Tonnetze." JMT 42(2): 195–206.

Kopp, David. 2002. *Chromatic Transformations in Nineteenth-Century Music* (Cambridge, Eng.: Cambridge Univ. Press).

- Krumhansl, Carol (1990). *Cognitive Foundations of Musical Pitch* (New York: Oxford Univ. Press).
- Krumhansl, Carol, and Edward Kessler (1982). "Tracing the Dynamic Changes in Perceived Tonal Organization in a Spatial Representation of Musical Keys." *Psychological Review* 89/4, 334–368.
- Lewin, David. 1959. "Re: Intervallic Relations between Two Collections of Notes." *Journal of Music Theory* 3: 298–301.
- Quinn, Ian. 2006. "General Equal-Tempered Harmony" (in two parts). *Perspectives of New Music* 44(2)–45(1): 114–159 and 4–63.

Pesic, Peter. 1999. "Schubert's Dream." 19th-Century Music 23, no. 2: 136–144.

Jason Yust

Restoring the Structural Status of Keys

Bibliography

Rothstein, William (1991). "On Implied Tones." Music Analysis 10(3): 289-328.

- Sobaskie, James William. 2003. "Tonal Implication and the Gestural Dialectic in Schubert's A minor Quartet." *Schubert the Progressive*, ed. B. Newbould. (Aldershot: Ashgate), 53–80.
- Temperley, David (2007). *Music and Probability* (Cambridge, Mass.: MIT Press).
- Temperley, David and Elizabeth Marvin (2008). "Pitch-Class Distribution and the Identification of Key," *Music Perception* 25/3, 193–212.
- Tymoczko, Dmitri (2012). "The Generalized Tonnetz." JMT 56(1): 1–52.
- ---- (2013). "Geometry and the Quest for Theoretical Generality." *JMM* 7(2).
- Webster, James. 1978/79. "Schubert's Sonata Form and Brahms's First Maturity," *19th-Century Music* 2: 18–35.
- Wollenberg, Susan. 2011. *Schubert's Fingerprints: Studies in the Instrumental Works* (Surrey, Eng.: Ashgate).
- Yust, Jason (forthcoming). "Distorted Continuity: Chromatic Harmony, Uniform Sequences, and Quantized Voice Leadings." *MTS* 36.
- ——— (forthcoming). "A Space for Inflections: Following up on *JMM*'s Special Issue on Mathematical Theories of Voice Leading" *JMM* 7(3).
 - (2013). "Tonal Prisms: Iterated Quantization in Chromatic Tonality and Ravel's 'Ondine.'" JMM 7(2), 145–165.

Jason Yust

Restoring the Structural Status of Keys