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Abstract

Studies show that people’s beliefs about randomness are systematically misspecified – for
instance they do not expect streaks to persist. In a canonical coin-tossing environment, this
paper models such “streak aversion” in terms of a belief in Mean Reversion along the sequence
of outcomes. Beliefs that exhibit Mean Reversion can be represented as if the bias of the coin is
path-dependent and self-correcting. Consistent with other findings, such beliefs may fail the Law
of Large Numbers. In the setting of Bayesian inference, Mean Reversion ensures that the agent
never rules out the true parameter. In an evolutionary setting, Mean Reversion agents are never
pushed out of the evolutionary race by standard agents who correctly understand randomness.
This paper suggests several directions for both theoretical and empirical investigation of beliefs
about randomness.
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1 Introduction
A large number of empirical studies show that people do not understand the nature of random-
ness, in that their static beliefs about the outcomes of an i.i.d. random process are systematically
misspecified. Two well-known findings are:

Gambler’s Fallacy : Subjects believe that the probability of tails is higher following a streak
of heads: for instance, P (HHHT ) > P (HHHH). While there is a large experimental literature
establishing the Gambler’s Fallacy (see Benjamin (2019) for a comprehensive review), there is also
substantial evidence from the field. Studying betting on lottery numbers, Terrell (1994) demonstrates
that people are significantly less likely to bet on a lottery number if it was recently a winning
number (see Suetens et al (2016) for a more recent study). Using data from a field experiment,
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Chen, Moskowitz and Shue (2016) document that loan officers are more likely to reject (accept) a
loan application after they have accepted (rejected) the previous application, and estimate that in
some treatments up to 9% of decisions are erroneous due to such a sequencing effect. They find
a similar bias in decisions by US judges in refugee asylum cases. Jin and Peng (2022) show that
various puzzles in finance (such as the disposition effect, where traders hold on to recently losing
stock and sell recently winning stock) can be explained by the Gambler’s Fallacy.

Excessive Alternation: Subjects believe that random processes feature a lot of switching and few
streaks on the path of any sequence of outcomes. For instance, P (HHTHTH) > P (HHHHTT ).
Rapoport and Budescu (1997), and Bar Hillel and Wagenaar (1991) propose that subjects believe in
an alternation rate of approximately 60%. In 2014, Spotify changed its perfectly random shuffling
algorithm to a non-random algorithm, due to complaints by users that the original shuffle was not
random because one artist’s songs would sometimes play in succession.1

The celebrated Heuristics and Biases paradigm due to Kahneman and Tversky proposes a theory
of beliefs based on heuristics. In order to explain the above findings, they hypothesize that people
believe that “even small samples are highly representative of the populations from which they are
drawn” (Tversky and Kahneman (1974, pg 1125-1126), a property dubbed the Law of Small Numbers.
In the context of a fair coin, this asserts the belief that small samples will have approximately an
equal proportion of heads and tails. The term “small samples” extends further to segments within
any sample: “each segment of the [sequence] is highly representative of the “fairness” of the coin”
Tversky and Kahneman (1971, pg 106). 2 The Law of Small Numbers generates a disbelief in streaks,
which explains both Excessive Alternation and the Gambler’s Fallacy.

The Law of Small Numbers is an informal theory.3 The formalization of the Law of Small
Numbers in economics is due to the seminal work by Rabin (2002). Given a coin of perceived bias
θ∗ ∈ [0, 1], the belief assigned to a sequence xn = (x1, ..., xn) of outcomes of n tosses (for odd n) in
the model is:

P (xn) = P (x1x2)× P (x3x4)× ....× P (xn−1xn),

where each P (xi−1xi) is the distribution generated by an urn containing N balls with an integer
θ∗N number of balls labelled “heads”, from which draws are made without replacement.4 Sampling
without replacement from urns is the tool used to generate the Gambler’s Fallacy. The “i.i.d. by
pairs” feature of the model makes it tractable for analysis and enables an exploration of the economic
implications of the Gambler’s Fallacy.

This paper is interested in foundational questions pertaining to the Law of Small Numbers.
Specifically:

Q1. What is the general structure required for a model to capture LSN?
Taking the axiomatic approach, we first identify a property of beliefs that captures the essence

of the Law of Small Numbers, and then we prove a representation theorem that delivers a class
of models. We propose two nested defining properties. Our first proposal is that the Law of
Small Numbers is defined by a Mean Reversion axiom: in a canonical coin-tossing context, the
agent believes that the sample mean will tend to stay close to the bias of the coin along the entire
sequence. We prove a representation theorem that states that beliefs satisfy Mean Reversion, a weak

1https://engineering.atspotify.com/2014/02/how-to-shuffle-songs/
2The term “Law of Small Numbers” is coined in Tversky and Kahneman (1971) but, in their 1974 paper, the

authors appear to prefer to use the term “Local Representativeness” instead. Local Representativeness describes the
belief that “the essential characteristics of the process will be represented, not only globally in the entire sequence,
but also locally in each of its parts” (Tversky and Kahneman (1974, pg 1125)). In this paper we treat the two terms
as interchangeable.

3Indeed, the lack of formal specification of heuristics has been criticized by Gigerenzer (1996) on the grounds that
they offer too much flexibility and risk being unfalsifiable.

4Therefore the belief that the outcome of a single flip of the coin is heads is P (H) = θ∗ while the belief that two
flips generate a heads followed by a tails P (HT ) = θ∗ (1−θ

∗)N
N−1

. Since the urn is “renewed” after every two periods,

the belief in HTH is P (HTH) = P (HT )P (H) = θ∗ (1−θ
∗)N

N−1
× θ∗.
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Independence property and a standard Marginal Consistency property if and only if it is as if the
agent believes the bias θi,xi−1 of the coin is path-dependent and self-correcting:

P (xn) =

n∏
i=1

(θi,xi−1)xi(1− θi,xi−1)1−xi ,

where xi−1 is the sample mean for the sequence xi−1 = (x1, ..., xi−1).
Our second, more general, proposal is that LSN is defined by Local Mean Reversion, an analog

of Mean Reversion where the sample mean is computed “locally” at each point of the sequence. The
corresponding representation requires the bias of the coin to be locally self-correcting: the bias in
toss i depends not on the sample mean of (x1, ..., xi−1) at toss i− 1 but rather that of the segment
(xi−k, ..., xi−1) defined by the “last k tosses”. We argue that Local Mean Reversion is closer in spirit
to Tversky and Kahneman (1971, 1974), and show that it nests Rabin (2002).

We find that the “segments” that determine what “local” means are not generally identified in
the model. Thus, the generality of LSN as a hypothesis comes with an identification problem. Mean
Reversion is a specification of the model that yields complete uniqueness.

Q2. How are we to formalize the statement that LSN is a theory of “streak aversion”?
To our knowledge, a “streak” has never been formally defined. It is easy to agree that 10 con-

secutive heads is constitutes a streak for a fair coin, but what is the smallest number of heads that
constitute a streak for a coin with general bias θ∗ ∈ (0, 1)? We define a (generalized) streak of heads
not in terms of a number of consecutive heads, but rather in terms of the sample mean induced
locally by the sequence. Thus, Streak Aversion is the property that if the local sample mean exceeds
the bias (that is, if there are “too many heads in the last few tosses”), a tails is considered more likely
on the next toss. We show that Local Mean Reversion implies Streak Aversion. The result invites
further experimental exploration of the Gambler’s Fallacy: is a higher belief in tails on the next toss
driven by the contiguity of heads preceding it, or on the local concentration of heads? When being
elicited the probability of tails on the next toss, would a subject pay to know the outcomes that
occurred prior to a contiguous streak of heads?

Q3. Does a belief in LSN imply a Law of Large Numbers?
We show that in a large class of Mean Reversion models, the Law of Large Numbers generically

fails. Specifically, the sampling distribution does not collapse in the limit – this property is dubbed
Nonbelief in the Law of Large Numbers by Benjamin, Rabin and Raymond (2016), and evidence
is provided in Benjamin, Moore and Rabin (2018). We therefore show that LSN may serve as a
unifying principle for more than just the Gambler’s Fallacy and Excessive Alternation.

Future research might also study if our models can accommodate the stronger finding of Sample
Size Neglect, where sampling distributions are believed to be insensitive to sample size more generally
(Kahneman and Tversky (1972)). The literature has treated LSN and Sample Size Neglect as
nonintersecting phenomena (Tversky and Kahneman (1974), Rabin (2002), Benjamin, Rabin and
Raymond (2016)), but our analysis suggests that they may be related.

Q4. What do LSN agents learn?
We study Bayesian inference under Mean Reversion. We establish that, in the limit, the Mean

Reversion agent almost surely puts strictly positive probability on the true parameter θ∗. Intuitively,
this is because the Mean Reversion agent believes that the sample mean tends to the (unknown)
true parameter, while the Law of Large Numbers ensures that it does. This is in contrast with Local
Mean Reversion (and therefore Rabin (2002)) where the agent may become fully confident in the
wrong parameter in the limit. This establishes that learning depends on how one formalizes LSN.
Moreover, the formulation in terms of Mean Reversion has some appealing implications for learning.

Q5. Does LSN offer an evolutionary advantage?
We consider an evolutionary setting, where a population containing Mean Reversion agents and

IID agents (that is, agents who understand i.i.d. randomness) must decide whether to hunt in a
“safe small stakes” hunting ground or a “risky high stakes” hunting ground. Their decision is based
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on a public signal about the risky hunting ground, which they use to determine their beliefs about
a parameter that captures the desirability of the risky ground. We show that, almost surely, the
Mean Reversion agents will eventually become more confident about the true parameter than the IID
agents, and consequently, relative to the IID population, a larger proportion of the Mean Reversion
population will hunt in the “correct” hunting ground. This will guarantee that the Mean Reversion
population will survive asymptotically.5 We also establish a lower bound on the probability that the
IID population does not survive asymptotically. This lower bound gets arbitrarily close to 1, as the
desirability of the risky ground gets close to 1.

The paper is organized as follows. Section 2 axiomatizes the “correctly specified” model. Sec-
tions 3 presents the Mean Reversion model, while Section 4 generalizes it to allow for Local Mean
Reversion. Section 5 derives implications of the models, and discusses how they connect with the
evidence on beliefs about randomness. Section 6 studies Bayesian inference while Section 7 contains
an application to evolution. Section 8 relates this paper to the literature. All proofs are relegated
to appendices.

2 Rational Benchmark
The evidence on beliefs about randomness is both static (ex-ante, is it more likely to get HHHH
or HHHT?) and dynamic (given HHH, is it more likely that the next toss is H or T?). The static
evidence is, by definition, revealing properties of the agent’s ex-ante beliefs about a sequence of
coin tosses. In particular the evidence necessitates a model of misspecified beliefs about the data
generating process. An important observation is that the dynamic evidence, which reveals properties
of posterior beliefs, is entirely consistent with Bayesian updating of an incorrect prior. Parsimony
demands that we visualize the evidence in terms of incorrect ex-ante beliefs alone rather than
incorrect updating as well. Consequently, the theory we present is static, with the understanding
that dynamic applications will assume Bayesian updating.

2.1 Primitives
Consider a canonical coin-tossing environment: the possible realizations of a coin toss in any period
i are Ωi = Ω = {0, 1}, and the space of all realizations of any n ≤ ∞ tosses is Ωn =

∏n
i=1 Ωi.

Throughout, we use x = (x1, x2, ....) ∈ Ω∞ to denote an infinite sequence and xn = (x1, ..., xn) ∈ Ωn

to denote a finite sequence of length n. The concatenation of two sequences xn ∈ Ωn and ym ∈ Ωm

is denoted xnym ∈ Ωn+m. Our results do not hinge on the binariness of Ω, which we maintain for
simplicity of exposition, and can be readily extended at least to any finite set Ω.

Our primitive consists of a family of beliefs,

{Pn}∞n=1,

where each Pn is a probability measure (henceforth, belief ) on the measurable space (Ωn,Σn) defined
by the sample space Ωn and the σ-algebra Σn = 2Ωn of all subsets An ⊂ Ωn. As our axioms are
ordinal in nature, they can be derived from the betting behavior of Subjective Expected Utility
agents. Since the translation to betting behavior is obvious, we take beliefs {Pn} directly as our
primitive and interpret them as behavioral objects.

5It is natural to consider whether survival can be ensured in a market setting as well. Sandroni (2000) shows
that agents who eventually make accurate forecasts will push out agents who do not. This applies to all agents with
misspecified priors, which include Mean Reversion agents. However, his result hinges on the market for assets for
being complete, as well as other technical assumptions that ensure that two Bayesian agents will eventually agree in
the limit. Acemoglu et al (2016) point out that such Bayesian asymptotic agreement results are fragile.
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We presume throughout that the coin tosses are objectively i.i.d. with bias θ∗ ∈ [0, 1], so that
the objective probability for any sequence xn is given by:

Q(xn) =

n∏
i=1

(θ∗)xi(1− θ∗)1−xi .

In this paper we will model the agent’s misspecified understanding of what an i.i.d. data-generating
process looks like.

Throughout the paper, our examples will presume a fair coin unless stated otherwise.

2.2 Correctly Specified Beliefs
As a benchmark we characterize the model with correct understanding of the data generating process.
There are several ways of doing so but we present one that provides perspective on subsequent results.

In economics it is typical to posit the existence of a belief P∞ over the infinite horizon sample
space (Ω∞,Σ∞), and to consider its marginals.6 If we begin with a family of beliefs {Pn}∞n=1,
Kolmogorov’s extension theorem tells us that a necessary and sufficient condition on {Pn}∞n=1 for
the existence of P∞ is:

Axiom 1 (Marginal Consistency) For any n and any event An ⊂ Ωn,

Pn(An) = Pn+1(An).

Marginal Consistency embodies horizon-independence of beliefs, in the sense that the agent does
not think differently about a given event An if the horizon is extended by a period. Such horizon-
independence is satisfied by standard models. An interesting question is whether the evidence on
beliefs about randomness is at odds with Marginal Consistency. We will see that it is not.

The next axiom expresses that the agent knows that the objective bias of the coin is θ∗ and that
it is constant across tosses. It states that the agent’s marginal belief on obtaining a heads in toss n
is precisely θ∗.

Axiom 2 (Knowledge of Bias)For any n,

Pn(Ωn−11n) = θ∗.

The next property involves a recognition that the tosses are independent:

Axiom 3 (Independence)For any n, any xn, yn ∈ Ωn and any xn+1 ∈ Ω s.t. Pn(yn) > 0 and
Pn+1(ynxn+1) > 0,

Pn+1(xnxn+1)

Pn(xn)
=
Pn+1(ynxn+1)

Pn(yn)
.

It will be useful to interpret Independence in the following way. Define the conditional probability
of xn+1 given x1, ..., xn by

Pn+1(xn+1|x1, .., xn) :=
Pn+1(x1, ...., xn, xn+1)

Pn(x1, ...., xn)
.

This is not the usual definition of conditional probability (given by Pn+1(x1,....,xn,xn+1)
Pn+1(x1,....,xn) ), but it is

equivalent to the usual definition when Marginal Consistency is satisfied. Nevertheless, it indicates
6As is standard, we identify any n-event An ∈ Σn with the event AnΩ∞ = {(xnz) ∈ Ω∞ : xn ∈ An and z ∈ Ω∞}

in the infinite horizon space Ω∞ known as the n-cylinder. Let Σ∞ = σ(∪∞n=1Σn) denote the σ-algebra generated by
all the n-cylinders, n = 1, 2, ..... Then P∞ is a probability measure of a well-defined space (Ω∞,Σ∞). The marginal
belief on (Ωn,Σn) is defined by Pn(An) = P∞(AnΩ∞) for each n-event An ∈ Σn.
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the agent’s belief about the probability of outcome xn+1 given the history x1, .., xn. Independence
states that the conditional probability of xn+1 is independent of the history: for any n and any
xn+1 ∈ Ω and xn, yn ∈ Ωn,

Pn+1(xn+1|x1, .., xn) = Pn+1(xn+1|y1, .., yn).

A similar property is that the relative probability of sequence xn and yn does not change if both
are shifted into the future by one step and a common first period outcome x1 is appended to them.
This “stationarity” type property is interpreted in terms of time-invariance of the bias of the coin.
This is clearly also contradicted by the Gambler’s Fallacy.

Axiom 4 (Time-Invariant Bias)For any n, and xn, yn ∈ Ωn and any x1 ∈ Ω s.t. Pn(yn) > 0 and
Pn+1(x1y

n) > 0,
Pn+1(x1x

n)

Pn+1(x1yn)
=
Pn(xn)

Pn(yn)
.

We show that these properties characterize an agent who correctly understands the coin. See
Appendix B for more general versions of the results in this section that drop Marginal Consistency
and Knowledge of Bias.

Theorem 1 A family of full support beliefs {Pn}∞n=1 satisfies Knowledge of Bias, Marginal Consis-
tency, Independence and Time-Invariant Bias if and only if it is θ∗-i.i.d: for all n and xn ∈ Ωn,

Pn(xn) =

n∏
i=1

(θ∗)xi(1− θ∗)1−xi .

The evidence is incompatible with Independence and Time-Invariant Bias. For instance, the
Gambler’s Fallacy requires that the presence of a streak of heads prior to toss n + 1 is believed
to impact the probability of heads on n + 1, directly contradicting Independence. Similarly, in
contradiction to the Gambler’s Fallacy, Time-Invariant Bias requires that P (HH)

P (HT ) = P (H)
P (T ) = 1 for

a fair coin. In the sequel, we will drop Time-Invariant Bias and relax Independence. The proof of
Theorem 1 shows that dropping Time-Invariant Bias leads to a similar representation where the bias
θi can vary exogenously with each toss i. By relaxing Independence our results will generalize the
model even further, so that the bias varies endogenously with the outcomes of previous tosses.

3 Mean Reversion
As noted in the Introduction, the Law of Small Numbers is the term given to the belief that “even
small samples are highly representative of the populations from which they are drawn” (Tversky and
Kahneman (1974, pg 1125-1126). We seek to articulate this as an axiom on beliefs. We interpret
the Law of Small Numbers as a belief that the sample mean in any finite sequence will be close to
the bias, and moreover, that this belief extends also to subsegments in the sequence (Tversky and
Kahneman (1971, 1974)). Since the Law of Small Numbers is an informal hypothesis, it does not
specify which subsegments it extends to. Indeed, the property has almost no content if it is meant
to apply to all subsets of the sequence. In this section, we formulate the parsimonious case where
it applies to segments that start from the first toss. In Section 4, we relax this to obtain a more
general model.

3.1 Axioms
Denote the sample mean number of heads at any point n of a sequence x = (x1, x2, ....) by

xn :=

∑
i≤n xi

n
,
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and denote the distance between the sample mean and the true bias by

d(xn) = |xn − θ∗|.

Adopt the convention that d(xi−1) = xi−1 = 0 when i = 1.
The following axiom captures the Law of Small Numbers through the idea that beliefs are driven

by a consideration of the distance between sample mean and true bias, and that “dominance on
path” implies higher beliefs.

Axiom 5 (Mean Reversion) For any n and x, y ∈ Ωn s.t. d(xn−1) = d(yn−1),

d(xi) ≤ d(yi) for all i ≤ n =⇒ Pn(x) ≥ Pn(y).

The axiom states that if the sample means of the sequences x and y are equally distant from
θ∗ at throw n − 1, and if x dominates y on path for all n throws, then xn is deemed more likely
than yn. It is immediate that Mean Reversion implies a degree of disbelief in streaks: for instance it
implies the Gambler’s Fallacy, P (HHHT ) > P (HHHH), due to the obvious dominance on path. It
also gives rise to Excessive Alternation – taking P (HTHTTH) > P (HHHTTT ) as an illustrative
example, Table 1 computes the sample mean of both sequences at each toss and verifies that there is
dominance on path. However, Mean Reversion does not embody unconditional disbelief in streaks.
For instance, it implies that HHTTTT is more likely than TTTHHT , because the former better
maintains the sample mean on path, despite the longer streaks.

HTHTTH HHHTTT
n = 1 1 1
n = 2 1

2 1
n = 3 2

3 1
n = 4 1

2
3
4

n = 5 2
5

3
5

n = 6 1
2

1
2

Table 1. The entries are xn =

∑n
i=1 xi
n

for x = HTHTTH,HHHTTT and n = 1, ..., 6.

By definition, Mean Reversion embodies a degree of awareness that the true bias is θ∗, since
beliefs respond to deviations from θ∗. While such an expression of awareness is suggested by the
Gambler’s Fallacy and Excessive Alternation, future research might investigate whether the addi-
tional expression of knowledge captured in the Knowledge of Bias axiom holds empirically.

The requirement “d(xn−1) = d(yn−1)” is often satisfied in the evidence. For instance it is satisfied
in the Gambler’s Fallacy where HHHT is deemed more likely than HHHH, and it is also satisfied
in the Excessive Alternation example where HTHTTH is deemed more likely than HHHTTT .
Nevertheless, we now write a weaker and a stronger version of Mean Reversion that will appear in
our applications. The Weak Mean Reversion axiom weakens Mean Reversion by restricting attention
to x, y that have the same sample mean in throw n− 1, rather than the same distance to the mean:

Axiom 6 (Weak Mean Reversion) For any n and x, y ∈ Ωn s.t. xn−1 = yn−1,

d(xi) ≤ d(yi) for all i ≤ n =⇒ Pn(x) ≥ Pn(y).

In contrast, the Strong Mean Reversion axiom requires that dominance on path is respected for
all pairs of sequences.

Axiom 7 (Strong Mean Reversion) For any n and x, y ∈ Ωn,

d(xi) ≤ d(yi) for all i ≤ n =⇒ Pn(x) ≥ Pn(y).
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The Mean Reversion axioms only place structure on beliefs that can be ranked by dominance on
path. Such beliefs admit a very general representation – see Appendix B. But economic applications
will require additional structure to generate sharper predictions. For such additional structure it is
worth retaining some version of standard axioms, so that our model serves as a generalization of the
standard model presented in Section 2.2. In our main result we will maintain Marginal Consistency
and drop Time-Invariant Bias. Independence is too strong since it requires P (HH)

P (TH) = P (H)
P (T ) = 1, in

contradiction to Excessive Alternation. However, consider the following weakening of Independence:

Axiom 8 (MR Independence)For any n, any xn, yn ∈ Ωn and any xn+1 ∈ Ω s.t. Pn(yn) > 0 and
Pn+1(ynxn+1) > 0,

xn = yn =⇒ Pn+1(xnxn+1)

Pn(xn)
=
Pn+1(ynxn+1)

Pn(yn)
.

MR-Independence states that the conditional probability of xn+1 can depend on the history
xn only through its sample mean xn. This is consistent with Mean Reversion, but not implied
by it, since Mean Reversion does not make any statement about conditional probabilities. MR-
Independence rules out some degree of disbelief in streaks that might cause the agent to feel that
the conditional probability of tails is lower when the history is HHTTT rather than TTTHH, that
is, P

6(HHTTT,T )
P 5(HHTTT ) < P 6(TTTHH,T )

P 5(TTTHH) .

3.2 Representation Result
The well-specified model (Theorem 1) satisfies the standard Marginal Consistency condition, allowing
beliefs to be fully described by a belief P on the infinite sample space Ω∞. Can findings such as
the Gambler’s Fallacy be modeled with a belief P on Ω∞? Our main theorem assures us that Mean
Reversion is not fundamentally incompatible with Marginal Consistency.

Recall that for any sequence x ∈ Ω∞, the sequence truncated at i is denoted xi ∈ Ωi. Adding an
outcome of heads (respectively, tails) in the i+ 1st toss yields xi1 ∈ Ωi+1 (respectively xi0 ∈ Ωi+1).

Theorem 2 A family of full support beliefs {Pn}∞n=1 satisfies Weak Mean Reversion, MR Indepen-
dence and Marginal Consistency iff for each i ≥ 1 there exists a continuous function gi : [0, 1]2 →
(0, 1] that is weakly decreasing in its first argument, and for all n and xn ∈ Ωn,

Pn(xn) =

n∏
i=1

(θi,xi−1)xi(1− θi,xi−1)1−xi ,

where
θi,xi−1 = gi(d(xi−11), xi−1) and 1− θi,xi−1 = gi(d(xi−10), xi−1).

In the representation, {Pn} satisfies Mean Reversion (resp. Strong Mean Reversion) iff gi has
d(xi−1) as its second argument (resp. gi is constant in its second argument).

The representation is reminiscent of a “belief that a random process is self-correcting” (Kahneman
and Tversky (1974)). The result tells us that the axioms are characterized by a path-dependent bias
that is self-correcting in that it varies so as to keep the sample mean near the bias θ∗. Specifically,
θi,xi−1 ∈ (0, 1) is the propensity for heads in the ith flip, conditional on a sample mean xi−1 up to
that point. The dependence of the bias θi,xi−1 on i and xi−1 is described by the gi function. This
function is weakly decreasing in the distance to θ∗, hence the bias is only weakly self-correcting.
When gi is constant in its arguments then θi,xi−1 = 1

2 and the agent perceives a fair coin at i, xi−1.
Observe that gi depends on the toss i, so that the model permits the sensitivity of beliefs on the

sample mean to change with the toss – for instance, sensitivity may increase as we go deeper into
the sequence. This reflects the generality of the Mean Reversion axioms, which are silent on how
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the sample means at different points i in the sequence impact the probability of heads on the nth
toss.

The representation is “essentially” unique. The bias θn,xn−1 is identified uniquely by conditional
beliefs:

θn,xn−1 =
Pn(xn−11)

Pn−1(xn−1)
= Pn(xn−11|xn−1).

However, the model is defined using gn(d(xn), xn−1) that is a function on [0, 1]2, whereas in toss n
there are only finitely many values for (d(xn), xn−1) generated by all sequences xn ∈ Ωn. Thus gn
is uniquely defined by beliefs only on a finite set of points, and can be defined arbitrarily on other
points.

The next theorem collects several results of interest. It shows that Weak Mean Reversion and
MR Independence imply that the representation can be written as a product of the gi functions.
Some of our applications will use this formulation of the model for its generality.7

Theorem 3 Beliefs {Pn} satisfy Weak Mean Reversion and MR Independence if and only if for
each i ≥ 1 there exists a continuous function gi : [0, 1]2 → (0, 1] that is weakly decreasing in its first
argument such that for any n and xn ∈ Ωn,

Pn(xn) =

n∏
i=1

gi(d(xi), xi−1).

In the representation, {Pn} satisfies Mean Reversion (resp. Strong Mean Reversion) iff gi has
d(xi−1) as its second argument (resp. gi is constant in its second argument).

Furthermore:
(i) {Pn} satisfies Marginal Consistency iff gi(d(xi−11), xi−1)+gi(d(xi−10), xi−1) = 1 for all x, i.
(ii) {Pn}∞n=1 satisfies Knowledge of Bias if and only if {gi : [0, 1]2 → (0, 1]}∞i=1 inductively

satisfies
g1(1, ·) = θ∗,

and for each n+ 1, ∑
xn

gn+1(d(xn1), xn)Pn(xn) = θ∗.

(iii) If {Pn} satisfies Strong Mean Reversion and Marginal Consistency then it can be represented
by taking gn = 1

2 for all n > 3.

Part (i) is a restatement of Theorem 2. It shows that Marginal Consistency is characterized by
the requirement that the bias for heads and the bias for tails necessarily sum to 1 for any i, xi−1,
leading to the readily interpretable self-correcting bias representation in Theorem 2.

Mean Reversion already embeds awareness of the true bias θ∗, through the reliance on the
distance d between the sample mean and θ∗, but the marginal probability she assigns to a heads in
toss n is allowed to differ from θ∗. A stronger statement of awareness is to assume Knowledge of
Bias. Part (ii) provides a characterization. At each step n, the functions g1, .., gn define Pn through
the representation. This in turn defines the restriction on the average of gn+1(d(xn1), xn) wrt Pn
stated in the result. Observe that this a restriction on gn+1 only for sequences xn1 that end in a
heads.

Finally, part (iii) demonstrates that Strong Mean Reversion, while yielding an attractively simple
model, is quite strong. When imposed together with Marginal Consistency, the model reduces to
one where the agent believes the coin to be fair after the 4th toss, regardless of θ∗.

7Speaking of generality, one may wonder what an extension of our model may look like when the outcome of the
random process lies in R. Suppose the objective distribution over sequences of outcomes in Rn is a product of normals
N(µ, σ2) with some mean µ and variance σ2. Let the density of any normal be denoted by ϕ(µ, σ2). In this case our
model could be written in terms of a density fn that maps sequences of outcomes in Rn to R+. It would be such
that fn(xn) =

∏n
i=1 ϕ(µxi−1 , σ2)(xi) where the mean µxi−1 is self-correcting as in our model. The variance could

also depend on xi−1, reflecting the strength of the self-correction as a function of the deviation from the true mean.
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3.3 Illustration
The Friedman Urn (Friedman (1949)) is a special case of our model with θ∗ = 1

2 . Imagine that an
urn initially contains one ball labelled “heads” and one ball labelled “tails”. Inductively, at any toss
n, if a heads (resp. tails) is drawn, then one ball labelled “tails” (resp. “heads”) is added to the urn.
This generates conditional probabilities for any n ≥ 1 given by

PF (Hn|xn−1) =
(n− 1)(1− xn−1) + 1

n+ 1
and PF (Tn|xn−1) =

(n− 1)xn−1 + 1

n+ 1

with the convention that x0 = 1, so that PF (H1) = PF (T1) = 1
2 . The Friedman Urn is a probability

distribution PF on Ω∞ that satisfies:

PF (xn) =

n∏
i=1

PF (xi|xi−1).

The Friedman Urn corresponds to our model where gn(d(xn), xn−1) = PF (xn|xn−1).8 The Friedman
Urn satisfies Weak Mean Reversion and MR Independence. It also satisfies Marginal Consistency
(since gn+1(xn1, xn) + gn+1(xn0, xn) = 1) and Knowledge of Bias (since the symmetry implies that
for every sequence with mean xn there exists a sequence – with tails substituted for heads – with the
same probability but mean 1− xn). Thus it satisfies many axioms of interest for the case θ∗ = 1

2 .
Consider a more flexible specification of the model that might be useful for empirical work: take

a one-parameter specification of the Strong Mean Reversion model

gi(d) =
1

Zi

(
1

1 + d

)λi
where, of course, the normalizing constant Zi satisfies Zi =

∑
xi∈Ωi

(
1

1+d(xi)

)λi
. Then according to

the model
P (xi−11)

P (xi−10)
=

(
1 + d(xi−10)

1 + d(xi−11)

)λi
.

Observe that λi is completely identified by this equation, and indeed can be estimated empirically
using data on beliefs. A comparative static wrt λi is useful to interpret this parameter. Taking a
derivative yields

dP (xi−11)
P (xi−10)

dλi
=

(
1 + d(xi−10)

1 + d(xi−11)

)λi
ln

(
1 + d(xi−10)

1 + d(xi−11)

)
.

Thus, if heads on toss i brings the mean closer to the bias than does a tails (d(xi−11) < d(xi−10))
then the derivative is strictly positive and so increasing λ increases the relative likelihood P (xi−11)

P (xi−10) .
That is, a higher λ captures a stronger belief in Mean Reversion.

An example of an empirical question is whether the strength of mean reversion (parametrized by
λi) changes with the toss i. Do subjects believe that mean reversion becomes stronger further down
the sequence, or do they become more tolerant towards deviations from θ∗ ?

4 Local Mean Reversion
While Mean Reversion is global in the sense of computing the sample mean at toss i using the entire
sequence of outcomes x1....xi, we now formulate a notion where the agent may be concerned with

8To see that gn is well-defined, first observe that PF (·|xn−1) depends only on n and the sample mean of the
history. Next observe that if d(xn−11) = d(xn−10) then it must in fact be that xn = 1

2
. In that case, PF (Hn|xn−1) =

PF (Tn|xn−1), since there must be an equal number of heads and tails in the urn.
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the sample mean computed using only the outcomes of the “last few” tosses. This is compatible with
Tversky and Kahneman (1974)’s Local Representativeness and Rabin (2002)’s seminal model of the
Gambler’s Fallacy (see Section 8). It is also plausible when n is large, since cognitive constraints
may lead the agent to focus on parts of the sequence – although alternatively they could form a
coarse perception of the mean number of heads in the entire sequence.

4.1 Axioms
Recall that the conditional probability of xn given x1, ..., xn−1 is defined by Pn(xn|x1, .., xn−1) :=
Pn(x1,....,xn−1,xn)
Pn−1(x1,....,xn−1) . Mean Reversion and MR-Independence permit the entire history x1, .., xn−1 to
matter (through the sample mean xn−1). Consider now that the agent may only be concerned with
a subset of the history, which we refer to as the “segment at n”. An immediate question that arises
is: how do we identify the segment the agent is looking at? We posit that at the very least:

Definition 1 (Segments) For any n, a segment at n is a set of contiguous indicesWn = {kn, .., n} ⊆
{1, .., n} containing n and satisfying

Pn(xn|x1...xkn−1xkn ...xn−1) = Pn(xn|y1...ykn−1xkn ...xn−1) for all x, y ∈ Ω∞.

Thus, tosses {kn, ..., n} are referred to as a segment at n if the outcomes outside those tosses
never impact the conditional probability of xn. The definition assumes that a segment necessarily
consists of contiguous tosses and depends only on n (rather than the outcome xn). This is to keep
notation clean and the model simple, and can be easily relaxed. We expect that, empirically, for very
long sequences attentional constraints may prompt the agent to focus on recent history, though this
does not preclude the possibility that early history may still attract attention if it has very skewed
outcomes. An empirical evaluation of segments is an interesting direction for future research.

Segments are always nonempty (since they contain the last toss n). Segments also always exist.
For instance, {1, .., n} is trivially always a segment. In the (strict version of the) Mean Reversion
model it is the unique segment at n. But in general, there are potentially many segments at n that
satisfy the definition. For now, we suppose that there is some family of segments {Wn}n≥1 selected
by the analyst. We assume that the family has some structure that is possessed by Mean Reversion
and the literature as well (Section 8). Specifically we assume that a segment does not extend back
farther than the previous segment: if Wn = {kn, .., n} and Wn = {kn+1, .., n + 1} then kn ≤ kn+1.
An equivalent way to state this is:

Axiom 9 (Segment Regularity) For all n,

Wn+1\{n+ 1} ⊆Wn.

Define the segment mean and distance by the following natural generalizations of sample mean
and distance

xn(Wn) =

∑
i∈Wn

xi

|Wn|
and dWn(xn) = |xn(Wn)− θ∗|.

The Mean Reversion axiom can be generalized as follows:

Axiom 10 (Local Mean Reversion) For any n and x, y ∈ Ωn s.t. xn−1(Wn−1) = yn−1(Wn−1),

dWi(x
i) ≤ dWi(y

i) for all i ≤ n =⇒ Pn(x) ≥ Pn(y).

To illustrate, consider the Excessive Alternation example where P (HTHTTH) > P (HHHTTT )
for a fair coin, and suppose the segment length is fixed at 2, so that the relevant segment are
{1, 2}, {2, 3}, .., {5, 6}. The sample mean in each segment is closer to 1

2 in sequence HTHTTH than
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in sequence HHHTTT — see Table 2. The axiom implies P (HTHTTH) > P (HHHTTT ). For a
fair coin, if the segment is {n}

HTHTTH HHHTTT
{1, 2} 1

2 1
{2, 3} 1

2 1
{3, 4} 1

2 1
{4, 5} 0 0
{5, 6} 1

2 0

Table 2. The entries are xn({n−1, n}) =
xn−1 + xn

2
for x = HTHTTH,HHHTTT and n = 2, ..., 6.

Local Mean Reversion is strictly more general than Mean Reversion. For instance if θ∗ = 3
4 and

W1 = {1}, W2 = {1, 2} and W3 = {3}, then HTH dominates HHT according to Local Mean
Reversion, and so P (HTH) ≥ P (HHT ). Mean Reversion on the other hand requires both sequences
to be equally likely.

Finally, we weaken MR Independence in the natural way:

Axiom 11 (Local MR Independence) For all n,

xn(Wn) = yn(Wn) =⇒ Pn+1(xnxn+1)

Pn(xn)
=
Pn+1(ynxn+1)

Pn(yn)
.

Local Mean Reversion and Local MR Independence rely on the family of segments {Wn}n≥1

selected by the analyst. The agent will not satisfy Local Mean Reversion for every family of segments,
and therefore the axiom itself becomes a means of practically determining the family {Wn}n≥1.
There may in principle still be more than one family that is consistent with Local Mean Reversion
and Local MR Independence (in the extreme case of uniform beliefs, all segments are consistent
with the axiom). This reveals an identification problem in “local” versions of the Mean Reversion
model, in the absence of further structure. Further structure can be exploited in an experimental
setting. For instance, subjects can be asked their assessed probability of heads following a concealed
sequence xn, and they can then be asked how much they would pay to see different lengths of the
concealed history.

Our Mean Reversion model can alternatively be generalized to Weighted Mean Reversion where,
instead of tracking the sample mean xn =

∑n
i=1 xi
n , the agent tracks a weighted sample mean such as∑n
i=1 δ

n−ixi∑n
i=1 δ

n−i .

Mean Reversion obtains as the special case where δ = 1. Such a model is different in spirit than
Tversky and Kahneman (1974)’s Local Representativeness and it excludes Rabin (2002), but is
reminiscent of Rabin and Vayanos (2010)’s history dependence of signals in a learning problem. We
expect an identification problem to arise in this model as well. We leave an analysis of this notion
of Mean Reversion to future research.

Terminology notwithstanding, Local Mean Reversion contains Mean Reversion as a special case.
When Wn  {1, ..., n} for some n, the model can be referred to as one of nontrivial Local Mean
Reversion.

4.2 Representation Result
Theorem 4 A family of full support beliefs {Pn}∞n=1 satisfies Marginal Consistency, Local Mean
Reversion, LMR Independence and Segment Regularity iff there exists a regular family of segments
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{Wn}∞n=1 and for each n ≥ 1 there exists a continuous function gn : [0, 1]2 → (0, 1] that is weakly
decreasing in its first argument such that for any n and xn ∈ Ωn,

Pn(xn) =

n∏
i=1

(θi,xi−1(Wi−1))
xi(1− θi,xi−1(Wi−1))

1−xi ,

where

θi,xi−1(Wi−1) = gi(dWi(x
i−11), xi−1(Wi−1)) and 1− θi,xi−1(Wi−1) = gi(dWi(x

i−10), xi−1(Wi−1)).

The representation is similar to that for Mean Reversion except that the bias at toss i is de-
termined by dWi(x

i−11), rather than d(xi−11). The bias is greater than 1
2 in toss i if and only

if dWi(x
i−11) ≤ dWi(x

i−10), that is, if and only if a heads leads to mean reversion locally within
segment ending in toss i. There is an obvious counterpart of Theorem 3 that we omit.

In general, the segments proposed by the representation are not unique, that is, two different
families of segments may be consistent with the same beliefs (albeit with different g functions).9
Under a stronger Local MR Independence condition we can show that the segments must be unique.

Proposition 1 Suppose that, given a regular family of segments {Wn}∞n=1, the family of full support
beliefs {Pn}∞n=1 satisfies Local Mean Reversion and for all n,

dWn
(xn) = dWn

(yn) ⇐⇒ Pn+1(xnxn+1)

Pn(xn)
=
Pn+1(ynxn+1)

Pn(yn)
.

Then in any representation {(gn, Ŵn)}∞n=1 of {Pn}∞n=1, it must be that Wn = Ŵn for all n.

A parsimonious specification of the Local Mean Reversion model is one where gn is independent
of n, and the segments have fixed length of k ≥ 1 for all n ≥ k and length n for n < k. Such a model
can be viewed in terms of a Markov Chain. Define a Markov Chain {st} that map S into itself as
follows. The state space is the space of all configurations of a segment, S = Ωk. The transition
probability p(s′|s) for going to state s′ from s equals zero except when the states are overlapping in
the sense that s = (xi, .., xi+k) and s′ = (xi+1, .., xi+k+1), in which case the transition probability is
defined by

p(xi+1, .., xi+k+1|xi, .., xi+k) = g(dW (xi, .., xi+k), xi+1, .., xi+k+1).

Initial probabilities of the states are defined by π(x1, .., xk) =
∏k−1
i=1 g(d(xi), xi−1). The probability

of a sequence of states (s, s′, s′′, ..) is given by µ(s, s′, s′′, ..) = π(s)p(s′|s)p(s′′|s′).... Then for n ≥ k
we see that

Pn(xn) =

k−1∏
i=1

g(d(xi), xi−1)×
n∏
i=k

g(dWi
(xi−11), xi−1(Wi−1)) = µ((x1, .., xk), (x2, .., xk+1), ...).

4.3 Illustration: Rabin (2002)
Rabin (2002)’s model is a special case of our Local Mean Reversion model. For any θ∗, it corresponds
to the model where (i) for even n the relevant segment is {n − 1, n} and for odd n it is {n},

9Take θ∗ = 1
2
and a Local Mean Reversion model defined as follows: Wn = {n} for any odd n andWn = {n−1, n}

for all even n, gn(0) = 1 for all even n and gn(·) = 1
2
for all odd n. The corresponding beliefs are described as follows.

If xn−1 = 0.5, the conditional probability of a heads is 1
2
in period n. If xn−1 > 0.5 (resp. xn−1 < 0.5) then the

conditional probability of a tails (resp. heads) is 1 in period n. These beliefs satisfy the Strong Mean Reversion and
MR-Independence axioms. They can be represented using segments Ŵn = {1, ..., n} and the same gn as before.
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(ii) gi(dW (H)) = θ∗ for all odd i and (iii) gi(dWi
(HT ), 1) = (1−θ∗)N

N−1 , gi(dWi
(TH), 0) = θ∗N

N−1 ,
gi(dWi

(HH), 1) = θ∗N−1
N−1 and gi(dWi

(TT ), 0) = (1−θ∗)N−1
N−1 for all even i. When θ∗ = 1

2 then gi is
constant in the second argument for all i, and so the model satisfies a strong version of Local Mean
Reversion.

A property of Rabin (2002) is that HT and TH are equally likely. This is due to the exchange-
ability of sampling without replacement from an urn. Local Mean Reversion permits violations of
this exchangeability property, as HT may be viewed as more likely if θ∗ > 1

2 . Thus Local Mean
Reversion defines a strictly larger class of models.

As a model of nontrivial Local Mean Reversion, Rabin (2002) can violate Weak Mean Reversion:
when beliefs have full support and θ∗ = 1

2 , then the model requires P (HHHTTH) > P (TTHHHH)
while Weak Mean Reversion requires P (HHHTTH) ≤ P (TTHHHH). Note however that the
model violates the condition in Proposition 1, since for n even it implies P

n+1(xnxn+1)
Pn(xn) = Pn+1(ynxn+1)

Pn(yn)

regardless of xn, yn. Indeed, the example in footnote 9 shows how a special case of Rabin (2002)
can be replicated by Mean Reversion.

5 Out-of-Sample Predictions

5.1 Streak Aversion: Gambler’s Fallacy and Excessive Alternation
It is not possible to formally prove that our model exhibits, say, the Gambler’s Fallacy without first
defining the Gambler’s Fallacy formally. However, further research is required to understand the
conditions under which a Gambler’s Fallacy arises (e.g. do subjects think in terms of local segments
or the entire sequence, do they make an assessment of the arithmetic mean, do they use some
generalized mean, etc?), and the formulation of a Gambler’s Fallacy axiom is best left pending until
then. To the extent that Gambler’s Fallacy and Excessive Alternation both intuitively express a
disbelief in streaks, we formalize a “Streak Aversion” axiom and note that our general model satisfies
it.

The term “streak” is used pervasively in the literature, but a moment’s thought reveals that it is
hardly obvious what a streak is. Two agents may agree that 6 heads constitutes a streak, but they
may differ on whether 1 head constitutes a streak. More to the point, what constitutes a streak if
the bias is 0.6? A formalization of the notion of a disbelief in streaks, which we refer to as Streak
Aversion, demands us to make precise the notion of a streak.

If a streak of heads means “too many heads have occurred recently”, we require two components:
a “recent” history and the proportion of heads in it. Given our general model, if we are interested
in the outcome of toss n then it is natural to take the recent history to be Wn\{n}, the relevant
segment at n excluding n. It is natural to say that “too many heads have occurred” if the sample
mean within the recent history Wn\{n} has already exceeded θ∗.

Definition 2 (Streak) For any sequence x ∈ Ω∞, there exists a streak of heads preceding toss n−1
if ∑

i∈Wn\{n} xi

|Wn|
≥ θ∗.

Similarly, there exists a streak of tails preceding toss n− 1 if
∑
i∈Wn\{n} xi

|Wn| ≤ θ∗.

Our definition of streak of (say) heads does not require contiguous heads. For instance if the
agent’s relevant segment is of length 5 then HHTH contains a streak of heads, as does THHH. We
define Streak Aversion as a belief in mean reversion in toss n conditional on a streak preceding n.

Axiom 12 (Streak Aversion) For any n, outcome ω ∈ {0, 1} and sequence x ∈ Ωn,

xn contains a streak of ω at n− 1 =⇒ Pn(xn−1(1− ω)) ≥ Pn(xn−1ω).
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A trivial observation is that:

Proposition 2 If {Pn}∞n=1 satisfies Local Mean Reversion, then it exhibits Streak Aversion.

Local Mean Reversion readily implies Streak Aversion. It is strictly stronger since Streak Aversion
has bite only when the segment mean in the relevant segment at n has already crossed θ∗ by toss
n − 1, whereas Local Mean Reversion has bite even if it has not. The proposition tells us that
our model explains the Gambler’s Fallacy and Excessive Alternation to the extent that these are
driven by an aversion to streaks. The proposition also suggests further research on the Gambler’s
Fallacy: is a higher conditional belief in tails driven by the contiguity of a streak of heads, or a local
concentration of heads? It would be interesting to explore if there exists a segment {kn, .., n} such
that the Gambler’s Fallacy (leading to a tails, say) arises when the sample mean is too high within
it: ∑n

i=kn
xi

n− kn + 1
> θ∗ =⇒ Pn+1(xnT ) ≥ Pn+1(xnH).

We close with comments on evidence related to the Gambler’s Fallacy.
The Retrospective Gambler’s Fallacy refers to the belief that outcome of the flip preceding a streak

of heads is most likely to be a tails (Oppenheimer and Monin (2009)). This is directly implied by
Local Mean Reversion. It is consistent with Mean Reversion, albeit with some nuance. For instance,
observe that when θ∗ = 1

2 , Weak Mean Reversion implies

P 4(HHHH) < P 4(THHH),

because THHH dominates HHHH on path. However, unlike a comparison of sequences of the form
xnH vs xnT used in the Gambler’s Fallacy, there does not always exist dominance in sequences of the
form (H,x2...xn+1) vs (T, x2...xn+1). For instance, when θ∗ = 1

2 , the sequence HTHH dominates
TTHH by the end of the the second toss, but is dominated by it at the end of the fourth toss.
Consequently, Mean Reversion is silent on such comparisons.

The Long-Distance Gambler’s Fallacy in Benjamin, Moore and Rabin (2018). Following a streak
of r = 1, 2, 5 heads on consecutive flips up to the nth flip, their subjects exhibited that a probability
of heads on flip n+ 1 was respectively 44%,41% and 39%. But when the streak came from noncon-
secutive draws from random locations flips, the probability of heads on another randomly chosen flip
was 45%,42% and 41% resp. That is, Gambler’s Fallacy appeared in randomly chosen subsequences
from the original sequence. This is difficult to reconcile in any of the models in the literature, espe-
cially if the number n of flips is large. Accommodating it in our model requires reinterpreting the
primitive: a stream xn presented to the agent is not necessarily generated by consecutive tosses.

5.2 Belief in Early Switching
A direct consequence of Mean Reversion is a belief in early switching. For instance, consider

P (HTH) > P (HHT ).

Although both sequences reach the same mean by the last toss, an early switch guarantees dominance
on path. This is a general consequence of Mean Reversion.10

To see that the above example does not hold in general for Local Mean Reversion, consider the
case where segments have length 2 (except thatW1 = {1}). Then P (HTHH)

P (HHTH) = g1(1)g2(0.5,1)g3(0.5,0.5)
g1(1)g2(1,1)g3(0.5,1) =

g2(0.5,1)
g2(1,1)

g3(0.5,0.5)
g3(0.5,1) . Although g2(0.5,1)

g2(1,1) ≥ 1, there is no restriction on g3(0.5,0.5)
g3(0.5,1) since this involves a

comparison across different segment means. If g is constant in the second argument then a belief in
early switching is recovered.

10For an example that holds constant the total number of switches in the two sequences, take P (HTHH) >
P (HHTH).
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Although the effect does not exist in general under Local Mean Reversion, it exists in a limited
form in earlier throws. Consider the largest n s.t. Wn = {1, .., n}. By definition, the model satisfies
Mean Reversion for sequences up to that n, and thus exhibits a belief in early switching there. For
instance, if W1 = {1}, W2 = {1, 2}, W3 = {1, 2, 3} and all subsequent segments exclude the first
toss, then we will have P 3(HTH) > P 3(HHT ).

5.3 Non-Belief in the Law of Large Numbers
If, as per the Law of Large Numbers, the sampling distribution generated by a fair coin collapses
on θ∗ as n → ∞, then should it not also collapse on θ∗ if the coin is continually self-correcting
towards θ∗? Perhaps surprisingly, the answer is no. Intuitively, Mean Reversion requires a negative
correlation between outcomes on consecutive tosses i and i + 1, but a positive correlation between
outcomes on i and i+ 2. The evolution of these correlations with i is not restricted by the axioms,
and consequently the Law of Large Numbers is not guaranteed.

In the case of θ∗ = 1
2 and an extreme version of Weak Mean Reversion, where the agent is sure

that the outcomes will alternate perfectly after every toss, it is easy to see that the Law of Large
Numbers holds. In the next theorem we prove formally that the Law of Large Numbers is not
generally implied by Weak Mean Reversion.

Theorem 5 If {Pn} satisfies Weak Mean Reversion then the Law of Large Numbers is not implied,
that is, it may not be the case that for all ε > 0,

lim
n→∞

Pn(|xn − θ∗| > ε) = 0,

if the limit exists.

The proof constructs an example of a Weak Mean Reversion model that satisfies Exchangeability
and Marginal Consistency, but generically fails MR-Independence.11 The sampling distribution
generated by the Rabin (2002) model necessarily collapses to a degenerate distribution.12 Our
result clarifies that this feature is not driven by the Law of Small Numbers but rather by the
model’s simplifying assumption that pairs of throws are i.i.d.

A striking finding in the literature is that of Sample Size Neglect : subjects do not recognize that
sampling variance decreases with sample size.13 Sample Size Neglect suggests that, in contrast to the

11Exchangeability states that for any n and k ≤ n, all sequences of length n with k heads are deemed equally likely.
12The proof is as follows. For any even n+ 1 consider the segments {i, i+ 1} for i = 1, 3, 5, ..., n. There are a total

of n+1
2

segments and each segment generates a segment mean of xi+xi+1

2
that can only take values λ = 1

2
, 1, 0. Let

I(
xi+xi+1

2
= λ) denote the indicator function for whether segment {i, i+ 1} generates a mean λ. By the Strong Law

of Large Numbers, the limit of the mean of any sequence x ∈ Ω∞ is then

lim
n→∞

xn+1 = lim
n→∞

∑
i=1,3,..,n

2

n+ 1

xi + xi+1

2

= lim
n→∞

∑
i=1,3,..,n I(

xi+xi+1

2
= 1

2
)

n+1
2

1

2
+
I(
xi+xi+1

2
= 1)

n+1
2

1 +
I(
xi+xi+1

2
= 0)

n+1
2

0

= UNθ∗N ({HT, TH})
1

2
+ UNθ∗N ({HH})1 + UNθ∗N ({TT})0.

where UNθ∗N is the hypergeometric distribution generated by sampling without replacement from an urn with N balls
of which θ∗N are labelled “heads”. This limit equals 1

2
for θ∗ = 1

2
but in general deviates from θ∗.

13Kahneman and Tversky (1972) report an experiment where subjects are told that 45 babies are born per day in
a large hospital and 15 babies are born per day in a small hospital, and each hospital has recorded the daily gender
distribution over a full year. Subjects were asked which hospital had more days with over 60% boy births. Subjects
had to respond “larger hospital”, “smaller hospital” or “about the same”, and the vast majority believed that both
hospitals had a similar number of such days, not recognizing that the variance of the sampling distribution should be
higher in the small hospital.
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Law of Large Numbers, people believe that the sampling distribution will not concentrate around
the population as the sample size gets large – this is referred to as Non-Belief in the Law of Large
Numbers (Benjamin, Rabin and Raymond (2016)), and Benjamin, Moore and Rabin (2018) provide
evidence in an incentivized experiment. The literature has different explanations and models for the
Gambler’s Fallacy and Sample Size Neglect/Non-Belief in the Law of Large Numbers ((Tversky and
Kahneman (1974), Rabin (2002), Benjamin, Rabin and Raymond (2016)). Our theorem, however,
suggests that these findings may arise from a single building block, namely, Mean Reversion. We
leave it to future research to explore this message.

5.4 Hot-hand Effect
The Hot Hand Effect is the finding that subjects sometimes expect a streak to be more likely to
continue, in sharp contrast to the Gambler’s Fallacy. This has been demonstrated in a sports context
(Gilovich, Tversky and Vallone (1985)). To our knowledge there is no evidence of a Hot Hand Effect
in the context of coin tosses. The leading explanation for the Hot Hand Effect is that it arises from
uncertainty about the true bias of the coin.

We note that the Hot Hand Effect can be generated by a standard well-specified agent engaging
in Bayesian inference: if an agent’s prior is that the bias of a coin is either 0.5, 0 or 1, then a streak
of (say) heads will naturally push the Bayesian posterior towards the high bias, and thus lead to
a belief in the continuation of the streak. The intuition in Gilovich, Tversky and Vallone (1985),
formalized in Rabin and Vayanos (2010), is the same except that the prior is misspecified due to
the Gambler’s Fallacy: for any medium or low bias, after seeing a heads the agent expects a tails,
but seeing another heads will push her posterior closer to the higher bias. Thus she expects the
streak to continue. The Hot Hand Effect can similarly be generated in our model. We eschew a
demonstration.

5.5 Disbelief in Patterns
Studies show that subjects believe that a random sequence will not having any discernible systematic
patterns, such as the recursions HTHTHT and HHTTHHTT (Wagenaar (1970), Kahneman and
Tversky (1972)). This countervails Excessive Alternation which taken to its logical conclusion would
favor the maximally alternating sequences HTHT.. and THTH..

Both Mean Reversion and Local Mean Reversion (with constant segment length 2) regard the
recursions HTHTHT.. and THTHTH.. as being among the most likely sequences. But since these
sequences are recursions, a Disbelief in Patterns would lead to an expectation of some streaks that
break the recursion.

The upshot is that a Disbelief in Patterns is not consistent with Mean Reversion nor Local Mean
Reversion. We regard some notion of “Order Aversion” to be a psychological building block besides
Local Mean Reversion. The question of what constitutes “lack of order” is conceptually difficult
and is addressed in the computer science literature on pseudo-randomness. An interesting direction
for future research is to take inspiration from the computer science literature in modeling Order
Aversion in the context of beliefs about randomness. Kahneman and Tversky (1972) suggest that
random-seeming sequences will have the longest descriptions, in that they will not be compressible
into short descriptions like “repeat HT three times”. This suggests modeling Order Aversion as
Kolmogorov complexity, but there are sequences (such as 314159265359 which correspond to π) that
are of low Kolmogorov complexity and yet may not be regarded as orderly.

5.6 The St. Petersburg Paradox
The classic justification for Expected Utility is the St. Petersburg paradox where it is observed that
people generally would not pay a lot of money to play the following gamble with an infinite expected
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value:a fair coin is tossed repeatedly until it lands heads, in which case it pays $2n, where n is the
toss yielding a heads. A strong belief in Mean Reversion would imply that the subjective expected
value is not very large.

6 Bayesian Inference
In this section we study whether an agent with misspecified beliefs about randomness can learn the
bias of a coin after observing an infinite sequence of i.i.d. outcomes.

6.1 Model
Let Θ = {θ1, ..., θn} and let Pnθ (xn) denote the ex-ante probability she assigns to a sequence xn
conditional on the true bias being θ. Define dθ(xi) := |xn − θ|. Suppose it is given by the following
model which satisfies Weak Mean Reversion and MR Independence:

Pnθ (x) =

n∏
i=1

gi(dθ(x
i), xi−1).

where we assume that gi is strictly positive. (so that Pnθ has full support) and strictly decreasing.
Moreover, we assume gi is independent of θ.

Suppose she has a prior µ ∈ ∆(Θ) over the parameter. Then, her ex-ante beliefs over sequences
of length n is given by

Pn(xn) =
∑
θ

Pnθ (xn)µ(θ).

Let Pn(θ|xn) denote her Bayesian posterior after observing xn:

Pn(θ|xn) =
Pnθ (xn)µ(θ)∑

θ′∈Θ P
n
θ′(x

n)µ(θ′)
.

Since for each given θ, the family of beliefs{Pnθ } is permitted to violate Marginal Consistency,
the Bayesian posteriors may be computed with respect to ex-ante beliefs Pn ∈ ∆(Θ× Ωn) that are
not consistent in the sense that Pn(xn) need not be equal to Pn+1(xnΩ). However, if each of these
families satisfies Marginal Consistency, our model reduces to a Bayesian Model that is misspecified
in that the true data generating process (the i.i.d. model) is not in the support of the prior.

6.2 Results
Suppose the data is generated by pθ on (Ω∞,Σ∞) that is i.i.d. with bias θ∗. We first establish
a general property of the model: the agent always places a non-vanishing probability on the true
parameter.

Theorem 6 Assume that conditional on a bias θ, the agent satisfies Weak Mean Reversion and
MR Independence, and the corresponding beliefs have full support. Then for any prior over the bias,
µ ∈ ∆(Θ),

lim inf
n
Pn(θ∗|xn) > 0 a.s-pθ

∗
.

There is no guarantee that posteriors converge along each sequence x. Nevertheless, the theorem
establishes that across all streams outside a set of measure 0, the posterior always places a non-
vanishing probability on the true parameter. The reason is that the agent believes the sample mean
tends to the true parameter at every point of the path, and the Law of Large Numbers ensures that
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the agent does not rule out the true parameter. Her misspecified prior, however, may keep her from
ruling out other parameters when she sees unexpected patterns along the path.

The result stands in contrast with Rabin (2002), where the agent’s beliefs always converge a.s.
to a degenerate posterior, but may well be degenerate on the wrong parameter. The reason is
that in Rabin’s model, for any given bias different from 1

2 , the agent’s beliefs predict a different
proportion of heads that the one implied by LLN. Therefore, in a learning context, Rabin’s agent
places probability zero on the true proportion of heads and her beliefs concentrate on the least
implausible bias. As Rabin (2002) is a special case of Local Mean Reversion, we conclude that such
mislearning is possible under Local Mean Reversion but impossible under Mean Reversion.

The following result provides sufficient conditions on {Pn} for Pn(θ∗|xn) to converge, providing
both a case where the agent learns the truth and a case where she fails to rule out some wrong
parameters.

Theorem 7 Suppose µ ∈ ∆(Θ) and each Pn ∈ ∆(Ωn) have full support, and that gi is strictly
decreasing in its first argument and continuous in its second argument for each i.

1. If gi → c uniformly faster than 1
n2 → 0,14 where c > 0 is a constant function, then

pθ
∗
(limn→∞ Pn(θ∗|xn) ∈ (0, 1)) = 1, that is,

0 < lim
n→∞

Pn(θ∗|xn) 6= 1 a.s.- pθ
∗
.

2. If gi = g for all i > 1, then pθ
∗
(limn→∞ Pn(θ∗|xn)→ 1) = 1, that is,

lim
n→∞

Pn(θ∗|xn)→ 1 a.s.- pθ
∗
.

Claim (i) assumes that gi approaches a constant g “fast enough”. As noted after Theorem 3, a
constant g corresponds to a belief that the bias is constant and equals 1

2 . In the current context,
the agent believes that, for every θ, the coin becomes less self-correcting with n, that is, the belief in
Mean Reversion weakens with n. As a result, the progression of the sample mean is viewed as less
informative about the true parameter, and the posteriors correspondingly become less responsive to
the sample mean as n grows. Indeed, posteriors may be critically shaped by what she sees early in
any sequence xn. The result states that the agent’s posterior beliefs will not converge to a degenerate
distribution almost surely. In line with Theorem 6, in the limit the agent places strictly positive
probability on the true parameter θ∗. Indeed, patterns observed early in the sequence can never lead
the agent to discard the truth. Claim (ii) assumes that gi = g does not change with i and so the
agent maintains a consistent degree of belief in Mean Reversion. In this case the agent eventually
learns the true parameter θ∗.

7 Application: Evolutionary Survival of MR vs IID Agents
We study the survival of Mean Reversion (MR) agents in a specific evolutionary context. Consider
two populations of agents. The “IID agent” has an accurate perception of i.i.d. sequences. The
“MR” agent is specified by the following simple Strong Mean Reversion model: there exists ε∗ > 0
and α > 1

2 such that for all i > 1, each gi is given by

giε∗(|xi − θ∗|) =

{
α
Zi |xi − θ∗| ≤ ε∗

1−α
Zi otherwise

(1)

where {Zi}i=1,..,n normalize the representation so that each P i, i = 1, .., n is a probability. Thus,
when facing sequence x, the agent “rewards” (in the sense of boosting the probability of the sequence)

14That is, there exists N such that for all n > N , |gn(a, θ)− c| < 1
n2 for all a, θ in the support of gn.
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the outcome of flip n by α > 1
2 if xn is within ε∗ of θ∗, and otherwise “punishes” it by 1 − α when

determining her belief Pn(xn).
Suppose there is a continuum of “safe” hunting grounds where hunting yields a small reward r = 1

(a “rabbit”). There is a continuum of “risky” hunting grounds of which a fraction θ ∈ Θ = {θ̂, 1− θ̂},
where θ̂ > 1

2 , contains a large reward, r = 2 (a “deer”), and the remaining fraction contain no reward,
r = 0. The fraction θ is an unknown parameter. In every period, one risky ground is randomly
chosen and publicly sampled by both MR and IID agent types. The agents update their beliefs about
θ based on whether a deer is sighted in the sampling hunting ground. Let xi = 0 (resp. xi = 1)
denote that the deer was not present (resp. present), in which case we can write the reward in
period i as r = 2xi. Each type A = IID,MR determines the fraction of its population, kAxi ∈ [0, 1],
that hunts in the risky grounds in period i conditional on having observed xi signals, which the
remainder fraction 1− kAxi hunting in the safe ground.15 Letting ΛAi−1 denote the population of type
A at the start of period i. The total reward per capita received by type A is

cAxi :=
RAxi

ΛAi−1

= kAxi(2θ) + (1− kAxi).

Both types of agents have a common prior over Θ:

µMR(θ̂) = µIID(1− θ̂) =
1

2
.

Both maximize expected utility using a common strictly increasing strictly concave utility index u to
determine the optimal (kAxi , 1− k

A
xi) based on history of deer sightings xi from the sampled hunting

ground. We assume that agents do not observe the outcome of other agents’ hunting. Consequently,
they cannot deduce θ by observing the fraction of agents that found a deer.

The population of type A agents grows by a factor of λc
A
xi in period i, where λ > 1. Thus, higher

per capita consumption leads to faster growth in the population. Assuming that both populations
start with the same size, we are interested in determining which grows faster over time, that is, we
are interested in the ratio:

n∏
i=1

λc
MR
xi

λc
IID
xi

,

and in particular how this ratio grows as n→∞. Note that we have effectively assumed that even
if an entire population A hunts in the risky grounds and no deer appears, then that population is
not wiped out, but rather it does not grow in that period.

We show that:

Proposition 3 Denote the true parameter as θ ∈ Θ = {θ̂, 1− θ̂}. Then the following hold for MR
agents with 0 < ε∗ < 2θ̂ − 1.

(i) The MR agents are eventually more confident about the true parameter, a.s.:

PnMR(θ|xn) ≥ PnIID(θ|xn) for all sufficiently large n ∈ N a.s.-pθ

(ii) The population of MR agents never vanishes, a.s.:

lim inf
n→∞

n∏
i=1

λc
MR
xi

λc
IID
xi

> 0 a.s-pθ.

15An interpretation is that each agent has to choose between spending their full day in the safe or the risky hunting
ground, and they randomize by flipping a coin with bias kA

xi
and they go to the risky hunting ground if there is a

heads. If all agents do this, then fraction kA
xi

goes to the risky hunting ground.
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The first part of the result states that along any realized path x, almost surely, MR agents will
eventually be more confident in the true parameter than the IID agents. The reason is that by
LLN the sample mean will eventually be within ε∗ of the true parameter θ, and the MR agents will
take this as a stronger indication that the true parameter is θ than not, relative to the IID agents.
This leads a larger proportion of the MR population, relative to the IID population, to hunt in the
“correct” hunting ground (the correct hunting ground is the risky one iff the true parameter is θ = θ̂),
and therefore to grow faster than the IID population. Accordingly, the second part of the result
states that the MR population is never pushed out of the evolutionary race by the IID population.

Since we have already seen (in Theorem 6) that in general MR agents may not become sure
about the truth in the limit, it is possible to construct settings where MR agents may not survive
relative to IID agents with positive probability. The above result, however, shows us that MR agents
do not possess an inherent evolutionary disadvantage that they carry into all possible settings. As
long as they can learn, the fact that their beliefs are misspecified relative to IID agents and cause
misinferences does not threaten their survival. In fact it can benefit their survival. For instance:

Proposition 4 If θ̂ ≥ 3
4 and ε∗ = θ̂ − 1

2 , then PMR(lim infn→∞
∏n
i=1

λ
cLSN
xi

λ
cIID
xi

=∞) > 1
2 .

That is, when θ̂ is high enough, then with probability strictly greater than 1
2 , IID agents lose the

evolutionary race against MR agents.

8 Related Literature
The literature on intuitive likelihood judgements investigates both static beliefs (properties of priors)
and dynamic beliefs (properties of updating). The evidence on beliefs about randomness is both
static (e.g. it asks about the likelihood of HHT vs HHH) and dynamic (e.g. it asks about the
likelihood of tails given that HH has already happened). While a misspecified prior is necessary
to explain the static evidence, it is also sufficient to explain the dynamic evidence using Bayesian
updating: if an agent believes ex-ante that HHT is more likely than HHH, then Bayesian updating
leads them to believe that T is more likely than H conditional on HH. Consequently, this paper
lies outside the literature on non-Bayesian updating (see for instance Epstein, Noor and Sandroni
(2008, 2010)). It intersects with the literature on learning with misspecified beliefs (spawned by
Berk (1966)) in that (i) the prior is degenerate on the wrong model and (ii) we have an application
to learning (Section 6).

There has been little theoretical work in economics since the seminal work of Rabin (2002).16
In order to study further how inference with Gambler’s Fallacy can lead to the Hot Hand Fallacy,
Rabin and Vayanos (2010) study an alternative model where the agent receives a sequence of noisy
real-valued signals sn = θ + εn about a state θ but mistakenly believes that the errors εn are not
i.i.d. and instead exhibit reversals as per the Gambler’s Fallacy. Formally, the process εn is modeled
as

εn = ωn − α
n∑
i=1

δiεn−1−i

where ωn is i.i.d. normal. Intuitively, a greater number of recent positive realizations of the error
make it more likely that the next realization will be negative. This has some flavor of Local Mean
Reversion because the highest weights are on recent outcomes. In our model, beliefs are a deter-
ministic function of past outcomes, whereas in Rabin and Vayanos (2010) the stochasticity of ωn
introduces an addition layer of uncertainty.

Motivated by Sample Size Neglect, Benjamin, Rabin and Raymond (2016) hypothesize that peo-
ple’s beliefs may not respect the Law of Large Numbers and in particular may believe in a sampling

16See He (2022) for a recent application of the Gambler’s Fallacy.
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distribution for large samples that has more spread than it should. They write an exchangeable
model where the agent believes that the outcome of a coin toss is generated by an i.i.d. stochastic
bias θ that has the true bias θ∗ as its mean.17 Their model produces Sample Size Neglect for large
samples, which corresponds to what they refer to as a Non-Belief in the Law of Large Numbers.

Benjamin, Rabin and Raymond (2016) speak to Sample Size Neglect, while Rabin (2002) and
Rabin and Vayanos (2010) speak to the Gambler’s Fallacy and Excessive Alternation. A paper that
connects this evidence is Noor (2022), which models the formation of intuitive beliefs by representing
the agent’s beliefs as a neural network of associations that is trained by her “experience”. Noor
(2022) shows that if the agent’s experience is defined by the sampling distribution generated by
the environment, then properties of large-sample sampling distributions are reflected in the agent’s
beliefs regarding small samples. As a result the model exhibits the Gambler’s Fallacy and Sample
Size Neglect.

Part of the psychology literature interprets the Gambler’s Fallacy in terms of a belief in a switch-
ing rate that is higher than 50% (Rapoport and Budescu (1997), Bar Hillel and Wagenaar (1991)).
Rapoport and Budescu (1997) informally describe a model, the essence of which we can express as
follows: presuming that the bias of the coin is perceived to be θ∗ = 1

2 ,

Pn(x) =
1

2
×

n∏
i=1

θ|xi−xi−1|(1− θ)1−|xi−xi−1|,

where the probability of a switch on the ith toss is θ > 1
2 .

18 The ith outcome is “rewarded” (in the
sense of being attributed a higher belief) if |xi − xi−1| > 0, that is, if it differs from the outcome in
the previous toss. This model violates Mean Reversion since Mean Reversion predicts that

P (HHHHHHTH) < P (HHHHHHTT ),

while the model requires the reverse ranking because the former sequence contains more switches
than the latter. Given that the model is defined for θ∗ = 1

2 , it satisfies Local Mean Reversion where
the relevant segment at each n ≥ 2 has a fixed length of 2.

A Appendix: Proof of Theorem 1
Lemma 1 A family of full support beliefs {Pn} satisfies Independence iff

Pn(xn) =

n∏
i=1

(θi)
xi(γi)

1−xi .

In addition, Marginal Consistency holds iff θn + γn = 1 for all n. Furthermore, given Marginal
Consistency, Time-Invariant Bias holds iff θn = θ1 for all n. Finally, given Marginal Consistency
and Time-Invariant Bias, Knowledge of Bias holds iff θn = θ∗ for all n.

Proof. Let θ1 = P 1(1). By Independence, P 2(1,1)
P 2(0,1) = P 1(1)

P 1(0) = θ1

1−θ1 and P 2(1,0)
P 2(0,0) = P 1(1)

P 1(0) = θ1

1−θ1

Define θ2 := P 2(1,1)
θ1 = P 2(0,1)

1−θ1 and γ2 := P 2(1,0)
θ1 = P 2(0,0)

1−θ1 . Then we have

P 2(x1x2) = (θ1)x1(1− θ1)1−x1 × (θ2)x2(γ2)1−x2 .

Moreover by Marginal Consistency, P 2(1, 1) + P 2(1, 0) = P 1(1) and so θ1θ2 + θ1γ2 = θ1 and in
particular θ2 + γ2 = 1 given that θ1 > 0 by the full support assumption. Proceed inductively.

17The counterexample constructed in our Theorem 5 also takes this form.
18Similar to Rabin (2002), Rapoport and Budescu (1997)’s model switching probability may depend on whether n

is even or odd and is characterized by a parameter m that governs the length of throws in which the agent behaves
in the standard way. The model we are describing corresponds to their model when m = 1.
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Assume that the representation holds for n. Invoking Independence as above, θn+1 := Pn+1(xn,1)
Pn(xn)

and γn+1 := Pn+1(xn,0)
Pn(xn) are independent of xn, and the same argument establishes that Pn+1 has

the desired representation. Moreover, θn+1 + γn+1 = 1 holds iff Marginal Consistency holds.
By the representation above and by repeated application of Time-Invariant Bias, for any xn−1 ∈

Ωn−1,
θn

1− θn
=
Pn(xn−11)

Pn(xn−10)
=
P 1(1)

P 1(0)
=

θ1

1− θ1
.

It follows that θn = θ1 for all n ≥ 1.
Finally under Knowledge of Bias, θ1 = θ∗.

B Appendix: Proof of Theorem 4 and Proposition 1
For each n suppose there is some set Wn ⊂ {1, .., n} of contiguous indices that include n. Say
that a family of segments {Wn}n≥1 is regular if Wn+1\{n + 1} ⊆ Wn for all n. While the axioms
for the general model are defined with respect to relevant segments, our first lemma considers the
counterparts of these axioms for any regular family of segments.

Lemma 2 A family of full support beliefs {Pn}∞n=1 satisfies Local Mean Reversion, Local MR Inde-
pendence and Segment Regularity wrt some regular family of segments {Wn}n≥1 iff for each n ≥ 1
there exists a continuous gn : [0, 1]2 → (0, 1] that is weakly decreasing in its first argument such that
for any N and xN ∈ ΩN ,

PN (xN ) =

N∏
n=1

gn(dWn(xn), xn−1(Wn−1)).

Proof. Consider a family of full support beliefs. For each n and r, fix some yn,r ∈ Ωn with∑
i∈Wn

yn,ri = r. By the full support assumption, Pn(yn,r > 0).
Step 1: For any r and xnxn+1 ∈ Ωnwith xn(Wn) = r

|Wn| ,

Pn+1(xnxn+1)

Pn(xn)
=
Pn+1(yn,rxn+1)

Pn(yn,r)
.

This just relates the conclusion of Local MR Independence.
Step 2: Show that there exists a function gn+1 on [0, 1]2that is weakly decreasing in its first

argument and for any xn+1,

gn+1(dWn+1
(xn+1), xn−1(Wn−1)) =

Pn+1(xnxn+1)

Pn(xn)
.

By Local Mean Reversion, there exists fns.t.

Pn(xn) = fn(dW1(x1), ..., dWn(xn)|xn−1(Wn−1)),

where fn is weakly decreasing in its first n arguments.19 Take any n, r and any xn+1 ∈ Ω. Take the
corresponding yn,rbut suppress superscript r in the notation for exposition as needed. Then by the
representation,

Pn+1(yn,rxn+1)

Pn(yn,r)
=
fn+1(dW1

(y1), ..., dWn
(yn+1), dWn+1

(yn,rxn+1)|yn,r(Wn))

fn(dW1
(y1), ..., dWn

(yn)|yn,r−1(Wn−1))
.

19See Lemma 4 for some of the missing details.
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Since n, r and thus yn,r are given, we can write the RHS ratio as a function gn+1 so that

Pn+1(yn,rxn+1)

Pn(yn,r)
= gn+1(dWn+1

(yn,rxn+1), yn,r(Wn)) > 0.

By definition of dW and by Local Mean Reversion, for any realizations xn+1, x
′
n+1 ∈ Ω,

dWn+1
(yn,rxn+1) ≥ dWn+1

(yn,rx′n+1) =⇒ Pn+1(yn,rxn+1) ≤ Pn+1(yn,rx′n+1)

=⇒ gn+1(dWn+1
(yn,rxn+1), dWn

(yn,r)) ≤ gn+1(dWn+1
(yn,rx′n+1), yn,r(Wn)).

Therefore, gn+1 is weakly decreasing in its first argument.
To complete the step, take any xnxn+1 ∈ Ωn+1 with xn(Wn) = r . Then, by Segment Regularity,

xn+1(Wn+1) = yn,rxn+1(Wn+1). Step 1 yields

gn+1(dWn+1(xnxn+1), xn,(Wn)) = gn+1(dWn+1(yn,rxn+1), yn,r(Wn)) =
Pn+1(yn,rxn+1)

Pn(yn,r)
=
Pn+1(xnxn+1)

Pn(xn)
.

Step 3. Complete the proof of sufficiency.
By Segment Regularity,Wn+1\n+ 1 ⊆Wn. Define g1(d(x1)) := P 1(x1). Apply Step 2 iteratively

to obtain that for any N and xN ∈ ΩN ,

PN (xN ) =

N∏
n=1

gn(dWn
(xn), xn−1(Wn−1)),

yielding the desired functional form.
Finally, observe that gn is defined over a finite subset of [0, 1]2 for each n > 1 but is weakly

decreasing in its first argument for each given value of the second argument. Moreover, by the
full support assumption, it takes on strictly positive values. For each possible value of the second
argument, the function can clearly be extended to a continuous weakly decreasing function in the
first argument. Moreover, it can be continuously extended in its second argument by exploiting the
fact that the mixture of decreasing functions is decreasing.

Step 4: Proof of Necessity.
The necessity of Local Mean Reversion is obvious, and Segment Regularity is asserted in the

representation. To show that Local MR Independence holds, take any N and xN , yN ∈ ΩN s.t.
xN (WN ) = yN (WN ). Then dWN+1

(xNxN+1) = dWN+1
(yNxN+1) by the Segment Regularity condi-

tion. By the representation,

PN+1(xNxN+1) =

[
N∏
n=1

gn(dWn
(xn), xn−1(Wn−1))

]
× gN+1(dWN+1

(xNxN+1), xN (WN ))

and similarly

PN+1(yNxN+1) =

[
N∏
n=1

gn(dWn
(yn), yn−1(Wn−1))

]
× gN+1(dWN+1

(yNxN+1), yN (WN ))

=

[
N∏
n=1

gn(dWn(yn), yn−1(Wn−1))

]
× gN+1(dWN+1

(xNxN+1), xN (WN ))

where the last equality uses dWN+1
(yNxN+1) = dWN+1

(xNxN+1) and xn(WN ) = yn(WN ). There-
fore, since Pn(yn) > 0 and Pn+1(ynxn+1) > 0 by the full support assumption,

PN+1(xNxN+1)

PN+1(yNxN+1)
=

∏N
n=1 g

n(dWn(xn), xn−1(Wn−1))∏N
n=1 g

n(dWn
(yn), yn−1(Wn−1))

=
PN (xN )

PN (yN )
,

as desired.
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Lemma 3 Suppose that a family of full support beliefs {Pn}∞n=1 admits the representation in Lemma
2. Then beliefs satisfy Marginal Consistency iff∑

xn

gn(dWn(xn−1xn), xn−1(Wn−1)) = 1.

Proof. Given the representation, compute that for any xN ,∑
xN+1

PN+1(xNxN+1)

PN (xN )

=

∏N
n=1 g

n(dWn
(xn), xn−1(Wn−1))×

∑
xN+1

gN+1(dWN+1
(xNxN+1), xN (WN ))∏N

n=1 g
n(dWn

(xn), xn−1(Wn−1))

=
∑
xN+1

gN+1(dWN+1
(xNxN+1), xN (WN )).

It follows that Marginal Consistency holds iff
∑
xN+1

PN+1(xNxN+1)

PN (xN )
= 1 iff

∑
xN+1

gN+1(dWN+1
(xNxN+1), xN (WN )),

as was to be shown.

To complete the proof of Theorem 4, define

θn,xn−1(Wn−1) := gn(dWn
(xn−11), xn−1(Wn−1))

1− θn,xn−1(Wn−1) := gn(dWn(xn−10), xn−1(Wn−1))

to obtain the desired functional form.
To prove Proposition 1, suppose not. Then there is n s.t. Wn 6= Ŵn. Since W1 = {1} in the

model, it must be that n ≥ 2. In this case it is easy to see that we can always find xn, yn s.t.
dŴn

(xn) = dŴn
(yn) but dWn

(xn) 6= dWn
(yn). But then, given the condition in the proposition, the

model fails Local MR Independence wrt {Ŵn}∞n=1 since dŴn
(xn) = dŴn

(yn) but Pn+1(xnxn+1)
Pn(xn) 6=

Pn+1(ynxn+1)
Pn(yn) .

C Appendix: Proof of Theorems 2 and 3
Lemma 4 Pn satisfies Weak Mean Reversion iff for each r ∈ [0, 1] there exists a weakly decreasing
function fn(·|r) on [0, 1]n such that for any xn ∈ Ωn,

Pn(xn) = fn(d(x1), ..., d(xn)|xn−1).

Pn satisfies Mean Reversion iff the dependence of fn on xn−1 is replaced with dependence on d(xn−1).
Pn satisfies Strong Mean Reversion iff for each fn is constant in its last argument.

Proof. For any x, y ∈ Ωn s.t. d(xn−1) = d(yn−1) and d(xi) ≤ d(yi) for all i ≤ n, Mean Reversion
implies Pn(xn) ≥ Pn(xn), with d(xi) < d(yi) for some i ≤ n implying Pn(xn) ≥ Pn(xn). Therefore
there exists a function fn : [0, 1]n+1 → [0, 1] s.t.

Pn(xn) = fn(d(x1), ..., d(xn)|d(xn−1)),

and fn is weakly decreasing in all arguments d(xi) for i 6= n − 1. Wlog fn(·|d(xn−1)) can be
presumed weakly decreasing in all arguments. Conversely, if Pn admits such a representation, then
Mean Reversion is implied. A similar argument establishes the desired characterization of Weak
Mean Reversion and Strong Mean Reversion.

The proof of the general representation result in Theorem 3 obtains from the following Lemma.
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Lemma 5 A family of full support beliefs {Pn}∞n=1 satisfies Weak Mean Reversion and MR Inde-
pendence iff for each n ≥ 1 there exists a continuous gn : [0, 1]2 → [0, 1] that is weakly decreasing in
its first argument such that for any n and xn ∈ Ωn,

Pn(xn) =

n∏
i=1

gi(d(xi), xi−1).

If Mean Reversion is replaced with Mean Reversion (resp. Strong Mean Reversion) then gn can be
written gn(d(xn), d(xn−1)) (respectively, gi(d(xi)).

Proof. In the case of Weak Mean Reversion, this is a special case of Lemma 2. If Mean Reversion
holds then there exists fn s.t.

Pn(xn) = fn(d(x1), ..., d(xn)|d(xn−1)),

and if Strong Mean holds then fn is constant in the last argument. In either case, the steps of
Lemma 2 go through to yield the desired result.

Theorem 2 is a corollary of the following Lemma.

Lemma 6 A family of full support beliefs {Pn}∞n=1 satisfies Weak Mean Reversion and MR Inde-
pendence iff it admits a self-correcting bias representation:

Pn(xn) =

n∏
i=1

(θi,xi−1)xi(γi,xi−1)1−xi ,

where θi,xi−1 , γi,xi−1 ∈ (0, 1) are such that for any xi−1, yi−1 ∈ Ωi−1 s.t. xi−1 = yi−1,

d(xi−11) ≤ d(yi−10) =⇒ θi,xi−1 ≥ γi,yi−1 .

Moreover, {Pn} also satisfies Strong Mean Reversion (resp. Mean Reversion) iff the representation
satisfies: for any xi−1, yi−1 ∈ Ωi−1 (resp. for any xi−1, yi−1 ∈ Ωi−1 s.t. d(xi−1) = d(yi−1)),

d(xi−11) ≤ d(yi−10) =⇒ θi,xi−1 ≥ γi,yi−1

d(xi−11) ≤ d(yi−11) =⇒ θi,xi−1 ≥ θi,yi−1

d(xi−10) ≤ d(yi−10) =⇒ γi,xi−1 ≥ γi,yi−1 .

Finally, γi,xi−1 = 1− θi,xi−1 iff {Pn} satisfy Marginal Consistency.

Proof. Begin with the representation in Lemma 5 for Weak Mean Reversion and MR Independence.
Denote the bias towards heads on the ith throw given a sample mean xi−1 by

θi,xi−1 := gi(d(xi−11), xi−1) ∈ [0, 1]

and similarly for the bias towards tails:

γi,xi−1 := gi(d(xi−10), xi−1) ∈ [0, 1].

The representation can then be written

Pn(xn) =

n∏
i=1

(θi,xi−1)xi(γi,xi−1)1−xi ,
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Since gi is weakly decreasing in its first argument, the functions θ, γ must have the desired mono-
tonicity property that for any xi−1, yi−1 ∈ Ωi−1 s.t. xi−1 = yi−1,

d(xi−11) ≤ d(yi−10) =⇒ θi,xi−1 ≥ γi,yi−1 .

Conversely, if we have such a representation, then for any sequences xi−11, yi−11 ∈ Ωi−1 ending
in a heads we have

xi−1 = yi−1 and d(xi−11) ≤ d(yi−11) =⇒ θi,xi−1 ≥ θi,yi−1 ,

and for any sequences xi−10, yi−10 ∈ Ωi−1 ending in tails we have

xi−1 = yi−1 and d(xi−10) ≤ d(yi−10) =⇒ γi,xi−1 ≥ γi,yi−1 .

So we can define functions f i(d(xi−11), xi−1) := θi,xi−1 and hi(d(yi−10), yi−1) := γi,yi−1 that are
both weakly decreasing in their first argument. These functions are connected by the condition that

xi−1 = yi−1 and d(xi−11) = d(yi−10) =⇒ θi,xi−1 = γi,yi−1 ,

in which case f i(d(yi−10), yi−1) = f i(d(xi−11), xi−1) = θi,xi−1 = γi,yi−1 = hi(d(yi−10), yi−1). There-
fore f(·, xi−1) and h(·, xi−1) coincide on the intersection of their domains. Consequently, together
the functions define a weakly decreasing function g(·, xi−1) on the union of the domains, and we can
write

Pn(xn) =

n∏
i=1

(θi,xi−1)xi(γi,xi−1)1−xi =

n∏
i=1

gi(d(xi), xi−1).

By Lemma 5, beliefs satisfy Weak Mean Reversion and MR Independence.
The corresponding arguments for Mean Reversion and Strong Mean Reversion are analogous.
Finally, the argument for Marginal Consistency is the same as in Lemma 3. We reproduce it

here for the convenience of the reader. Compute that for any xN ,∑
xN+1

PN+1(xNxN+1)

PN (xN )

=

∏N
n=1 g

n(d(xn), d(xn−1))×
∑
xN+1

[
gN+1(d(xNxN+1), d(xN ))

]∏N
n=1 g

n(d(xn), d(xn−1))

=
∑
xN+1

[
gN+1(d(xNxN+1), d(xN ))

]
= θi,d(xi−11),d(xi−1) + γi,d(xi−10),d(xi−1).

It follows that Marginal Consistency holds iff
∑
xN+1

PN+1(xNxN+1)

PN (xN )
= 1 iff γi,d(xi−10),d(xi−1) = 1 −

θi,d(xi−11),d(xi−1), as was to be shown.

The proof of part (ii) of Theorem 3 follows readily by applying the representation to see that

Pn+1(xn1) = gn+1(d(xn1), d(xn))×
n∏
i=1

gi(d(xi), d(xi−1))

= gn+1(d(xn1), d(xn))Pn(xn),

and noting that the marginal belief is given by Pn+1(Ωn1) =
∑
xn∈Ωn P

n+1(xn1) =
∑
xn∈Ωn g

n+1(d(xn1), d(xn))Pn(xn).
Finally, for the proof of part (iii) of Theorem 3 assume Strong Mean Reversion and Marginal

Consistency. Fix n > 3. For Marginal Consistency to hold, it has to be the case that gn(d(xn−11))+
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gn(d(xn−10)) = 1 for each xn−1. Take xn−1 for which min{d(xn−11), d(xn−10)} is closest to 0 and
take yn−1 for which max{d(yn−11), d(yn−10)} is closest to 1. Since n > 3, max{d(xn−11), d(xn−10)} ≤
min{d(yn−11), d(yn−10)}. Since gn is weakly decreasing, we therefore cannot have gn(d(xn−11)) +
gn(d(xn−10)) = 1 = gn(d(yn−11))+gn(d(yn−10)) unless gn(d(xn−11)) = gn(d(xn−10)) = gn(d(yn−11)) =
gn(d(yn−10)) = 1

2 .

D Proof of Theorem 5
Proof. Assume Weak Mean Reversion, Marginal Consistency and Exchangeability. Given Marginal
Consistency, de Finetti’s theorem (see for instance Diaconis and Freedman (1980)) ensures that
Exchangeability implies the representation

P (xn) =

∫
[0,1]

θ
∑
xi(1− θ)n−

∑
xidµ(θ),

for some prior over the bias, µ ∈ ∆[0, 1]. We derive the condition on the prior that characterizes
Weak Mean Reversion. Due to Exchangeability, Weak Mean Reversion is equivalent to the condition
that for any n and x, y ∈ Ωn s.t. xn−1 = yn−1,

d(xn) ≤ d(yn) =⇒ Pn(x) ≥ Pn(y).

Suppose xn, yn are such that that there are k heads in the first n − 1 tosses (so that xn−1 =
yn−1 = k

(n−1) ) and moreover xn = 1 and yn = 0. Compute that

P (xn) =

∫
[0,1]

θk+1(1− θ)n−1−kdµ(θ) =

∫
[0,1]

θ

(1− θ)
θk(1− θ)n−kdµ(θ)

and P (yn) =

∫
[0,1]

θk(1− θ)n−kdµ(θ).

Then
P (xn) ≥ P (yn)

⇐⇒
∫

[0,1]

θ

(1− θ)
θk(1− θ)n−kdµ(θ) ≥

∫
[0,1]

θk(1− θ)n−kdµ(θ)

⇐⇒
∫

[0,1]

2θ − 1

1− θ
θk(1− θ)n−kdµ(θ) ≥ 0.

Therefore Weak Mean Reversion holds iff it is the case that

d(xn) ≤ d(yn) =⇒
∫

[0,1]

2θ − 1

1− θ
θk(1− θ)n−kdµ(θ) ≥ 0.

and
d(xn) ≥ d(yn) =⇒

∫
[0,1]

2θ − 1

1− θ
θk(1− θ)n−kdµ(θ) ≤ 0.

To give an example of such a model suppose that µ has support { 1
4 ,

1
2 ,

3
4} with 0 < µ( 1

4 ) =
µ( 3

4 ) < µ( 1
2 ). Then ∫

[0,1]

2θ − 1

1− θ
θk(1− θ)n−kdµ(θ) ≥ 0

⇐⇒

[
−2

3

(
1

4

)k (
3

4

)n−k
+ 2

(
3

4

)k (
1

4

)n−k]
µ(

1

4
) ≥ 0
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⇐⇒ 2

(
3

4

)k (
1

4

)n−k
≥ 2

3

(
1

4

)k (
3

4

)n−k
⇐⇒ 3k+1 ≥ 3n−k

⇐⇒ 2k ≥ n− 1

⇐⇒ k

(n− 1)
≥ 1

2

⇐⇒ xn−1 ≥ 1

2
.

To complete the proof. Recall that xn, yn are such that xn = 1 and yn = 0. Then d(xn) ≤ d(yn)
(resp. d(xn) ≥ d(yn)) then it must be that xn−1 ≥ 1

2 (resp. xn−1 ≤ 1
2 ), and thus we obtain∫

[0,1]
2θ−1
1−θ θ

k(1− θ)n−kdµ(θ) ≥ 0 (resp.
∫

[0,1]
2θ−1
1−θ θ

k(1− θ)n−kdµ(θ) ≤ 0).

E Appendix: Proof of Theorems 6 and 7
Lemma 7 Assume µ ∈ ∆(Θ) and each Pn ∈ ∆(Ωn) have full support. Then,

lim inf
n
Pn(θ∗|xn) > 0 a.s-pθ

∗
.

Proof. Fix any sequence such that limn x
n = θ∗ and let xnk denote a subsequence that converges

to lim inf of Pn(θ∗|xn):
limk→∞P

nk
θ∗ (xnk) = lim inf

n
Pn(θ∗|xn).

For any θ 6= θ∗, this subsequence generates a sequence {Pnkθ (xnk)} in [0, 1], and a further subsequence
must lead to convergence of Pnkθ (xnk). Since there are finitely many θ, we can wlog suppose that
Pnkθ (xnk) are convergent for all θ ∈ Θ. Due to the full support assumptions, it must be that∑
θ∈Θ P

nk
θ (xnk)µ(θ) > 0 and in particular the posteriors Pnk(θ|xnk) are well-defined.

Suppose by way of contradiction that lim infn P
n(θ∗|xn) = 0. Thus Pnkθ∗ (xnk)→ 0. It cannot be

that Pnkθ (xnk)→ 0 for all θ ∈ Θ, otherwise we obtain the contradiction that 1 =
∑
θ∈Θ P

n(θ|xn)→
0. Let θ ∈ Θ be such that limk→∞P

nk
θ (xnk) > 0 and consider the likelihood ratio of θ and θ∗,

Pnθ (xn)

Pnθ∗(x
n)

=

∏n
i=1 g

i(|xi − θ|, xi)∏n
i=1 g

i(|xi − θ∗|, xi)
=

n∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

.

By the Law of Large Numbers, pθ
∗
(x∞| limn→∞ xn = θ∗) = 1. Hence, it is enough to consider

such sequences. Fix ε = minθ 6=θ′ |θ − θ′| and x ∈ Ω∞ such that limn→∞ xn = θ∗. Let N be such
that for all n > N , |xn − θ∗| < ε

4 . Then, |x
n − θ| > ε

2 . Further,

n∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

=

N−1∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

×
n∏

i=N

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

.

Because g is weakly decreasing in its first argument, and since |xn − θ∗| < ε
4 and |xn − θ| > ε

2 , then

gi(|xi − θ∗|, xi) ≥ gi(|xi − θ|, xi)

for all i > N . Hence,

lim
nk→∞

Pnkθ (xnk)

Pnkθ∗ (xnk)
≤
N−1∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

which contradicts the hypothesis that Pnkθ∗ (xnk)→ 0 and in particular contradicts lim infn P
n(θ∗|xn) =

0.
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Lemma 8 Suppose µ ∈ ∆(Θ) and each Pn ∈ ∆(Ωn) have full support. Assume Mean Reversion and
MR Independence, and consider a representation where gi is strictly decreasing in its first argument
for each i.

1. If gi = g for all i > and g is strictly decreasing in its first argument and continuous in its
second, then pθ

∗
(limn→∞ Pn(θ∗|xn)→ 1) = 1, that is,

lim
n→∞

Pn(θ∗|xn)→ 1 a.s.- pθ
∗
.

2. If gi → c uniformly faster than 1
n2 → 0 for all θ, where gi is strictly decreasing in its first

argument and continuous in its second argument for all i and c > 0 is a constant function, then

0 < lim
n→∞

Pn(θ∗|xn) 6= 1 a.s.- pθ
∗
.

Proof. Because we are only considering finitely many θ’s, it is enough to show that Pnθ (xn)
Pn
θ∗ (xn) →

0 a.s.- pθ
∗
for all j 6= i.

By an identical argument to the one in Lemma 7, for ε = minθ∈Θ\{θ∗} |θ − θ∗|, there exists N
such that for all i > N, |xi − θ∗| < ε

4 , and

Pnθ (xn)

Pnθ∗(x
n)

=

N−1∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

×
n∏

i=N

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

.

Further, because g is strictly decreasing in its first argument, and since |xn−θ∗| < ε
4 and |xn−θ| > ε

2 ,

N−1∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

×
n∏

i=N

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

<

N−1∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

×
n∏

i=N

gi( ε2 , x
i)

gi( ε4 , x
i)
.

Notice that gi( ε2 ,x
i)

gi( ε4 ,x
i)
< 1 for all i and the term

∏N−1
i=1

gi(|xi−θ|,xi)
gi(|xi−θ∗|,xi) does not depend on n.

Therefore, to prove the result, it suffices to show that
∏n
i=N

g( ε2 ,x
i)

g( ε4 ,x
i)
→ 0.

Step 1: Establish the result under the first assumption in the lemma.
A sufficient condition for the result limn→∞ Pn(θ∗|xn) → 1 a.s.-pθ

∗
is that

∏n
i=N

gi( ε2 ,x
i)

gi( ε4 ,x
i)
→ 0.

To see this observe that, given the preceding,
∏n
i=N

gi( ε2 ,x
i)

gi( ε4 ,x
i)
→ 0 implies

Pnθ (xn)

Pnθ∗(x
n)

<

N−1∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

×
n∏

i=N

gi( ε2 , x
i)

gi( ε4 , x
i)
→ 0

and so Pnθ (xn)
Pn
θ∗ (xn) → 0, and in particular limn→∞ Pn(θ∗|xn)→ 1 a.s.-pθ

∗
.

So consider the first assumption in the lemma. Since the assumption restricts gi = g for i > 1,
we take N > 1. We show that

∏n
i=N

g( ε2 ,x
i)

g( ε4 ,x
i)
→ 0. Since g is continuous in its second argument

and since xi → θ∗, we have g( ε2 ,x
i)

g( ε4 ,x
i)
→ g( ε2 ,θ

∗)

g( ε4 ,θ
∗) < 1. In particular there exists M and ε > 0 s.t.

g( ε2 ,x
i)

g( ε4 ,x
i)
< 1− ε for all i > M . But then

n∏
i=N

g( ε2 , x
i)

g( ε4 , x
i)

=

max{M,N}∏
i=N

g( ε2 , x
i)

g( ε4 , x
i)
×

n∏
i=max{M,N}+1

g( ε2 , x
i)

g( ε4 , x
i)

<

max{M,N}∏
i=N

g( ε2 , x
i)

g( ε4 , x
i)
×

n∏
i=max{M,N}+1

(1− ε)→ 0,
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as desired.
Step 2: Establish the result under the second assumption in the lemma.
Assume that gn → c > 0 uniformly faster than 1

n2 → 0. Then there exists K such that
infn>K g

n > 0 for all n > K. Moreover, for any a, b ∈ [0, 1] and sample mean θ such that a > b > 0,
it must be that for all n > K, and

|g
n(a, θ)

gn(b, θ)
− 1| = |g

n(a, θ)− gn(b, θ)

gn(b, θ)
| < |g

n(a, θ)− c
gn(b, θ)

|+ |g
n(b, θ)− c
gn(b, θ)

|

<
1

n2

2

gn(b, θ)
<

k

n2

for some constant k = 2
infn>K gn . In fact k > 1 since g ≤ 1. Hence, for all n > K,

gn(a, θ)

gn(b, θ)
< 1 +

k

n2
.

Fix any x ∈ Ω∞ and consider

lim
n→∞

P θ
∗
(xn)

P θ(xn)
= lim
n→∞

n∏
i=1

gi(|xi − θ∗|, xi)
gi(|xi − θ|, xi)

=

∞∏
i=1

gi(|xi − θ∗|, xi)
gi(|xi − θ|, xi)

.

This product exists if and only if there exists N such that for all m > N ,
∞∑
n=m

ln(
gn(|xn − θ∗|, xn)

gn(|xn − θ|, xn)
) <∞,

which we shall proof happens a.s-pθ
∗
. Since the law of large numbers implies xn → θ∗, there is

M s.t. |xn − θ∗| < |xn − θ| and thus gn(|xn−θ∗|,xn)
gn(|xn−θ|,xn) > 1 (since gn is strictly decreasing in its first

argument) for all n ≥M . Also, as we saw earlier, there is K such that gn(a,θ)
gn(b,θ) < 1+ k

n2 for all n > K

and any a, b, θ. It follows that for all n > N := max{M,K},20

∞∑
n=N+1

ln(
gn(|xn − θ∗|, xn)

gn(|xn − θ|, xn)
) <

∞∑
n=N+1

ln(1 +
k

n2
) <∞.

Therefore, we establish limn→∞
P θ
∗

(xn)
P θ(xn)

< ∞, and in particular P (θ∗|xn) 6→ 1 a.s.-pθ
∗
. More-

over, since P θ
∗

(xn)
P θ(xn)

> 0 for any n by the full support assumption, and since we have shown that
gn(|xn−θ∗|,xn))
gn(|xn−θ|,xn) > 1 for all n > N , it must be that limn→∞

P θ
∗

(xn)
P θ(xn)

=
∏∞
i=1

gi(u(|
∑
j≤i

xi
i −θ

∗|))
gi(u(|

∑
j≤i

xi
i −θ))

> 0 .

Thus, P (θ∗|xn) > 0 a.s.-pθ
∗
.

F Appendix: Evolution
F.0.1 Proof of Proposition 3

We start with a convenient observation about the normalizing constants Ziθ and Zi1−θ in the repre-
sentation.

20To see why the inequality
∑∞
n=1 ln(1 + k

n2 ) <∞ in the expression holds, let f(x) = ln(1 + k
x2

) and note that it
is decreasing on (0,∞). Then

∞∑
n=1

ln(1 +
k

n2
) < f(1) +

∫ ∞
1

f(x) = f(1) + (2
√
k)tan−1(

√
k)− ln(k + 1) <∞.
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Lemma 9 Let Ziθ be the constant associated with the representation 1 for parameter θ. Then,
Ziθ = Zi1−θ for all i > 1 and all θ ∈ [0, 1].

Proof. WLOG fix θ ≥ 1
2 . For each sequence xn ∈ Ωn,let y(xn) be the sequence obtained by replacing

the ones in xnwith zeros and the zeros with ones. It is easy to see that |xn − θ| = |y(xn)− (1− θ)|.
Hence, |xn − θ| ≤ ε∗ ⇐⇒ |y(xn) − (1 − θ)| ≤ ε∗ which implies Pnθ (xn) = Pn1−θ(y(xn)) by the
representation (1). In particular, Pnθ (1n) = Pn1−θ(0

n). We show that for any n ≥ 2,

n∏
i=2

1

Ziθ
=

n∏
i=2

1

Zi1−θ
.

Consider two cases:
(i) |1− θ| > ε∗.
Then θ(1 − α)n−1

∏n
i=2

1
Ziθ

= Pnθ (1n) = Pn1−θ(0
n) = (1 − (1 − θ))(1 − α)n−1

∏n
i=2

1
Zi1−θ

=⇒∏n
i=2

1
Ziθ

=
∏n
i=2

1
Zi1−θ

.

(ii) |1− θ| ≤ ε∗.
Then θαn−1

∏n
i=2

1
Ziθ

= Pnθ (1n) = Pn1−θ(0
n) = (1 − (1 − θ))αn−1

∏n
i=2

1
Zi1−θ

=⇒
∏n
i=2

1
Ziθ

=∏n
i=2

1
Zi1−θ

.

Using the equalities
∏n
i=2

1
Ziθ

=
∏n
i=2

1
Zi1−θ

for all n ≥ 2, a proof by induction yields Ziθ = Zi1−θ
for all i > 1.

Next, observe that by Bayesian updating, if there is N s.t. xn > 1
2 and |xn − θ| < ε∗ for all

n > N , then

PnMR(θ|xn) =
PnMR(θ|xN )αn−N

PnMR(θ|xN )αn−N + PnMR(1− θ|xN )(1− α)n−N

and as usual,

PnIID(θ|xn) =
PnIID(θ|xN )(θ)kn−N (1− θ)n−N−kn−N

PnIID(θ|xN )(θ)kn−N (1− θ)n−N−kn−N + PnIID(1− θ|xN )(1− θ)kn−N (θ)n−N−kn−N
,

where kn−N is the number of heads that occur after the N th throw (which satisfies 2kn−N > n−N
since that xn > 1

2 for all n > N). Now we are ready to prove the proposition.

Proof of (i): We only establish the case in which θ = θ̂ > 1
2 since the proof θ = 1− θ̂ is analogous.

Let PnMR(θ|xn) and PnIID(θ|xn) be the posterior beliefs after observing signals xn of the MR and
IID agents respectively.

By LLN, there exists N such that xn > 1
2 and |xn−θ| < ε∗ for all n > N . Moreover, by Bayesian

updating,

PnMR(θ|xn)

PnMR(1− θ|xn)
=

PnMR(θ|xN )

PnMR(1− θ|xN )

αn−N

(1− α)n−N
and PnIID(θ|xn)

PnIID(1−θ|xn)=
PnIID(θ|xN )

PnIID(1− θ|xN )

(θ)kn−N (1− θ)n−N−kn−N
(1− θ)kn−N (θ)n−N−kn−N

,

where kn−N is the number of heads that occur after the N th throw. Then

PnMR(θ|xn)

PnMR(1− θ|xn)
/

PnIID(θ|xn)

PnIID(1− θ|xn)
=

PnMR(θ|xN )

PnMR(1− θ|xN )

αn−N

(1− α)n−N
/

PnIID(θ|xN )

PnIID(1− θ|xN )

(θ)kn−N (1− θ)n−N−kn−N
(1− θ)kn−N (θ)n−N−kn−N

=

[
PnMR(θ|xN )

PnMR(1− θ|xN )
/

PnIID(θ|xN )

PnIID(1− θ|xN )

] [
α

1− α

]n−N [
θ

1− θ

]n−N−2kn−N

→∞,

since α
1−α ,

θ
1−θ > 1.
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Hence, there exists N ′ such that for all n > N ′,

PnMR(θ|xn)

PnMR(1− θ|xn)
>

PnIID(θ|xn)

PnIID(1− θ|xn)
,

which implies PnMR(θ|xn) > PnIID(θ|xn) for all n > N ′, as desired.

Proof of (ii): Let PnMR(θ|xn) and PnIID(θ|xn) be the posterior beliefs after observing signals xn
of MR and IID agents respectively.

Step 1: Show that
PnMR(θ|xn) ≥ PnIID(θ|xn) ⇐⇒ kMR

xn ≥ kIIDxn .

The optimal choice of agent A solves

Uxi(k) = [θPn(θ|xn)+(1−θ)Pn(1−θ|xn)]u(k2+(1−k))+[(1−θ)Pn(θ|xn)+θPn(1−θ|xn)]u(1−k).

The FOC is therefore

2[θPn(θ|xn) + (1− θ)Pn(1− θ|xn)]u′(k + 1) = [(1− θ)Pn(θ|xn) + θPn(1− θ|xn)]u′(1− k),

which rearranges to

2
u′(k + 1)

u′(1− k)
=

1− θ + 1
2P

n(1− θ|xn)

1− θ + 1
2P

n(θ|xn)
.

Since u is strictly concave, the LHS is strictly decreasing in k. Therefore PnMR(θ|xn) ≥ PnIID(θ|xn) ⇐⇒
kMR
xn ≥ kIIDxn .
Step 2: Prove the result.
By step 1 and part (i) of the proposition, the MR agent will eventually spend more time on the

risky ground than the safe ground a.s. Furthermore, when the true parameter is θ = θ̂ > 1
2 (the

argument for θ = 1 − θ̂ is analogous), there will eventually be more heads than tails a.s. by LLN.
Hence, a.s., the MR agent will eventually have a higher return than the IID agent.

F.0.2 Proof of Proposition 4

The proof relies on the following statistical fact: in an infinite sequence of coin tosses, the probability
of observing more heads than tails at every toss is equal to 2θ − 1 whenever θ > 1

2 .

Lemma 10 Assume θ > 1
2 and let E = {x∞|xn > 1

2 for all n}. Then pθ(E) = 2θ − 1 .

Proof. From the Gambler’s Ruin Problem, we know that conditional on the first throw being heads,
the probability of always having more heads than tails is equal to 1− 1−θ

θ .21 Hence, the probability
of always having more heads than tails is equal to θ(1− 1−θ

θ ) = 2θ − 1.

Suppose that θ = θ̂ (the argument is analogous for θ = 1− θ̂). Consider

E = {x∞|xn > 1

2
for all n∈ N},

the event where the sample mean exceeds 1
2 at every i. Under our assumptions on θ̂ and ε∗, for any

sequence x ∈ E, we will have that |xn− θ| < ε∗ for all n. Hence from the proof of Proposition 3, we
see that for each x ∈ E, the MR population grow at a faster rate than the IID population in every

period, that is λ
cMR
xi

λ
cIID
xi

> 1 for each i. Therefore limn→∞
∏n
i=1

λ
cMR
xi

λ
cIID
xi

> 1.

21In the Gambler’s Ruin Problem literature, this probability is referred to as the probability of “never going broke”
and 1− 1−θ

θ
is the value for the case in which the gambler starts with one dollar.
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By lemma 10, pθ(E) = 2θ − 1. Consider also the event F = {1} × {0} × E, where the first
toss yields a head, the second a tails and the subsequent stream belongs to E. This event has
probability (1 − θ)θpθ(E) > 0. Note that after the heads on the first toss, PMR(θ|1) = P IID(θ|1),
after the tails on the second toss, PMR(θ|1, 0) = θα

θα+θ(1−α) = θ > 1
2 = P IID(θ|1, 0), and then for

all subsequent tosses we have PMR(θ|xi) > P IID(θ|xi) since xn > 1
2 for all n > 2. That is, the

MR agents are weakly more confident about the true parameter than the IID agents for i = 1 and

strictly so for all i > 1. Consequently, by step 1, limn→∞
∏n
i=1

λ
cLSN
xi

λ
cIID
xi

> 1 for each x ∈ F . Conclude

that pθ(limn→∞
∏n
i=1

λ
cLSN
xi

λ
cIID
xi

> 1) ≥ pθ(E ∪ F ) > 1
2 .
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