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Abstract

This supplementary appendix to Noor and Takeoka [1] provides a necessity of
axioms for the CCE* representation, derivation of the reduced forms of the CCE*
and the homogeneous CCE models, and proofs for the applications.

1 Necessity and Reduced Form of the CCE* Model

Theorem 1 in Noor and Takeoka [1] identifies a set of necessary and sufficient axioms for
the CCE* representation. This section provides the necessity. First, we derive the reduced
form of the CCE* representation, whereby the necessity is proved.

1.1 Reduced Form Representation

In this subsection, a proof of Proposition 5 (derivation of the reduced-form representation)
is provided. As a preliminary, we first verify that for any x ∈ X \∆0, there exists a unique
λx > 0 such that ∑

t>0

λu(xt)(ϕ
′
t)
−1(λu(xt)) = v,

which is associated with the definition of CCE* model. Recall the regularity* condition,
ϕ′t(D(t))D(t) = v. Since ϕ′t is defined on [0, 1], it is evident that D(t) ≤ 1. Denote

∗Noor (the corresponding author) is at the Dept of Economics, Boston University, 270 Bay State Road,
Boston MA 02215. Email: jnoor@bu.edu. Takeoka is at the Dept of Economics, Hitotsubashi University,
2-1 Naka, Kunitachi, Tokyo 186-8601, Japan. Email: norio.takeoka@r.hit-u.ac.jp. Takeoka gratefully
acknowledges financial support from JSPS KAKENHI Grant Number JP19KK0308. Part of this research
was conducted while Norio Takeoka was visiting the Department of Economics, Boston University, whose
hospitality is gratefully acknowledged. We thank Jiaqi Yang for expert research assistance. The usual
disclaimer applies.

1



rt = ϕ′t(D(t)). Since ϕ′t is increasing, its inverse function (ϕ′t)
−1 is well-defined on [0, rt].

The function
V (r) =

∑
t>0

rt(ϕ
′
t)
−1(rt)

is well-defined on
∏

t>0[0, rt]. In particular, at r = (r1, · · · , rT ), we have∑
t>0

rt(ϕ
′
t)
−1(rt) > rt(ϕ

′
t)
−1(rt) = v.

For any steam x, there exists some λ > 0 such that λu(xt) ≤ rt for all t > 0. Since (ϕ′t)
−1(rt)

is well-defined and increasing on this region, there exists a unique λx > 0 satisfying the
above equation.

Lemma 1 For all x and µ > 0, λx = µλµ◦x.

Proof. By definition, λµ◦x is a unique solution to∑
t>0

λu(µ ◦ xt)(ϕ′t)−1(λu(µ ◦ xt)) = v.

By rearrangment, we have∑
t>0

λµ◦xu(µ ◦ xt)(ϕ′t)−1(λµ◦xu(µ ◦ xt)) =
∑
t>0

µλµ◦xu(xt)(ϕ
′
t)
−1(µλµ◦xu(xt)) = v.

Since the solution is unique also for x, we must have λx = µλµ◦x.

Lemma 2 For all x and µ > 0, Kx = Kµ◦x.

Proof. By definition of Kx and Lemma 1,

Kx =
∑
t>0

ϕt((ϕ
′
t)
−1(λxu(xt))) =

∑
t>0

ϕt((ϕ
′
t)
−1(µλµ◦xu(xt))) =

∑
t>0

ϕt((ϕ
′
t)
−1(λµ◦xu(µ◦xt))) = Kµ◦x.

Now we solve the cognitive optimization problem and derive the reduced form of the
representation. We first solve the cognitive optimization only under the capacity constaint
with ignoring the boundary consraint Dx(t) ≤ 1. Then, we verify that the discount function
derived in the first step, called a quasi-optimal discount function, also satisfies the boundary
constraint, and hence, it is acutally an optimal discount function.

Take any x and consider the following two cases.
Case 1:

∑
t>0 u(xt)(ϕ

′
t)
−1(u(xt)) ≤ v. In this case, we have λx ≥ 1. Hence,∑

t>0

ϕt((ϕ
′
t)
−1(u(xt))) ≤

∑
t>0

ϕt((ϕ
′
t)
−1(λxu(xt))) = Kx.
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This means the unconstrained optimal discount function Dun
x (t) = (ϕ′t)

−1(u(xt)) is feasible
in the capacity constraint. Therefore, a quasi-optimal disount function is given by Dx =
Dun
x , whereby, the corresponding representation is written as

U(x) = u(x0) +
∑
t>0

(ϕ′t)
−1(u(xt))u(xt).

Note that U(x) is additive separable across time and a quasi-optimal discount function
Du(xt)(t) is strictly increasing in u(xt).

Case 2:
∑

t>0 u(xt)(ϕ
′
t)
−1(u(xt)) > v. In this case, we have λx < 1, and∑

t>0

ϕt((ϕ
′
t)
−1(λxu(xt))) = Kx.

This means that D∗(t) = (ϕ′t)
−1(λxu(xt)) is feasible in the capacity constraint. Moreover,

since λxu(xt) = ϕ′t(D
∗(t)) for all t > 0, it follows that D∗ solves the Lagrangian with the

multiplier 1/λx. Hence, D∗ is a quasi-optimal discount function for x, that is, Dx = D∗.
The corresponding representation is written as

U(x) = u(x0) +
∑
t>0

(ϕ′t)
−1(λxu(xt))u(xt).

Now compare two streams x and µ◦x that satisfy case (2). Since λx = µλµ◦x by Lemma
1,

Dx(t) = (ϕ′t)
−1(λxu(xt)) = (ϕ′t)

−1(µλµ◦xu(xt)) = (ϕ′t)
−1(λµ◦xu(µ ◦ xt)) = Dµ◦x(t),

that is, a quasi-optimal discount function is constant on the ray.
Finally, we verify that the boundary constraint Dx(t) ≤ 1 is satisfied at the quasi-

optimal discont function, and hence, it is indeed optimal. As derived above, a quasi-optimal
discount function Dx is given by

Dx(t) =

{
(ϕ′t)

−1(u(xt)) if λx ≥ 1,
(ϕ′t)

−1(λxu(xt)) if λx < 1.

Recall that we define rt = ϕ′t(D(t)). Since we must have λxu(xt) ≤ rt, it follows that
(ϕ′t)

−1(λxu(xt)) ≤ (ϕ′t)
−1(rt) = D(t). This is, Dx(t) ≤ D(t) ≤ 1, as desired.

1.2 Necessity

We first establish necessity of some conditions defining Regularity. Order, C-Monotonicity
and Risk Preference are obvious. Given that the cognitive objective function is strictly
concave and thus yields a unique solution Dx, the Maximum Theorem ensures that Dx is
a continuous function of x. Therefore the representation U(x) = u(x0) +

∑
t≥1Dx(t)u(xt)

is continuous, thereby establishing Continuity. Present Equivalent is satisfied due to the
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assumption that u(C) = R+. The necessity of Monotonicity and Impatience is established
below, along with the necessity of the remaining conditions.

Let Dun
x denote an optimal discount function for the unconstrained optimization prob-

lem, which is characterized by the FOC, u(xt) = ϕ′t(D
un
x (t)) for all t ≥ 1 with u(xt) > 0,

or equivalently,
Dun
x (t) := (ϕ′t)

−1(u(xt))

if u(xt) > 0, and Dun
x (t) = 0 if u(xt) = 0. Since ϕ′t is strictly increasing, Dun

x (t) is strictly
increasing in u(xt).

Define
Λx = {D ∈ RT

+ :
∑
t>0

ϕt(D(t)) ≤ Kx}.

Lemma 3 For all x ∈ X \∆0,

ϕ(Dun
x ) ≤ Kx ⇐⇒

∑
t>0

u(xt)(ϕ
′
t)
−1(u(xt)) ≤ v.

Proof. To prove ’⇐= ’, suppose x satisfies
∑

t>0 u(xt)(ϕ
′
t)
−1(u(xt)) ≤ v. Then, the unique

solution λx to the equation ∑
t>0

λu(xt)(ϕ
′
t)
−1(λu(xt)) = v

must satisfy λx ≥ 1. Consider the discount function Dun
x = (Dun

u(xt)
(t))t>0 defined by the

FOC, Dun
u(xt)

(t) = (ϕ′t)
−1(u(xt)) for all t. From the representation,

Kx =
∑
t>0

ϕt

(
(ϕ′t)

−1(λxu(xt))

)
≥
∑
t>0

ϕt

(
(ϕ′t)

−1(u(xt))

)
=
∑
t>0

ϕt(D
un
u(xt)(t)) = ϕ(Dun

x ).

To prove ’ =⇒ ’, suppose ϕ(Dun
x ) ≤ Kx, where Dun

x (t) = (ϕ′t)
−1(u(xt)). By the repre-

sentation, ∑
t>0

ϕt

(
(ϕ′t)

−1(λxu(xt))

)
= Kx ≥ ϕ(Dun

x ),

where λx solves
∑

t>0 λu(xt)(ϕ
′
t)
−1(λu(xt)) = v. Since ϕ(Dun

λx◦x) ≥ ϕ(Dun
x ), we must have

λx ≥ 1. Thus, ∑
t>0

u(xt)(ϕ
′
t)
−1(u(xt)) ≤

∑
t>0

λxu(xt)(ϕ
′
t)
−1(λxu(xt)) = v,

as desired.

Lemma 4 For all x ∈ X \∆0,

x ∈ Xms ⇐⇒
∑
t>0

u(xt)(ϕ
′
t)
−1(u(xt)) ≤ v.

4



Proof. To show that Xms is a subset of the right-hand side, take any x ∈ Xms. By the
representation,

u(cx) = U(x) = u(x0) +
∑
t>0

Dx(t)u(xt),

where Dx = arg maxD∈Λx{
∑

t≥1D(t)u(xt) − ϕt(D(t))}. Since x is magnitude sensitive,
u(α ◦ cx) > U(α ◦ x) for all α ∈ (0, 1). Together with linearity of u, this implies∑

t>0

Dx(t)u(xt) >
∑
t>0

Dα◦x(t)u(xt).

Since u(xt) ≥ 0 and Dx ≥ Dα◦x as shown in Section 1.1, we have Dx(t) > Dα◦x(t) for some
t. By definition of Dx, together with Lemma 2,

ϕ(Dα◦x) < ϕ(Dx) ≤ Kx = Kα◦x.

Hence, Dα◦x = Dun
α◦x. As α → 1, we have ϕ(Dun

x ) ≤ Kx. By Lemma 3, x belongs to the
right-hand side.

Conversely, take any x in the right hand side. By Lemma 3, ϕ(Dun
x ) ≤ Kx. Since Dun

x is
an optimal discount function, U(x) = u(x0) +

∑
t>0(ϕ′t)

−1(u(xt))u(xt). Since (ϕ′t)
−1(u(xt))

is increasing in u(xt), it is obvious that both (xt, 0−t) and (0t, x−t) belong to the right-hand
side. Thus, by the same reason as above, U(0t, x−t) = u(x0) +

∑
s 6=t(ϕ

′
s)
−1(u(xs))u(xs) and

U(xt, 0−t) = (ϕ′t)
−1(u(xt))u(xt). This implies that

U(x) = U(xt, 0−t) + U(0t, x−t)

⇐⇒ u(cx) = u(c(xt,0−t)) + u(c(0t,x−t))

⇐⇒ 1

2
u(cx) +

1

2
u(0) =

1

2
u(c(xt,0−t)) +

1

2
u(c(0t,x−t))

⇐⇒ u(
1

2
◦ cx +

1

2
◦ 0) = u(

1

2
◦ c(xt,0−t) +

1

2
◦ c(0t,x−t)),

which means x is separable.
Next, we show that x is magnitude sensitive. For α ∈ (0, 1), by the FOC,

ϕ(Dun
α◦x) < ϕ(Dun

x ) ≤ Kx = Kα◦x.

Therefore,

Dun
α◦x = Dα◦x = arg max

Λα◦x
{
∑
t>0

D(t)u(α ◦ xt)− ϕt(D(t))}.

Since Dx = Dun
x > Dun

αx = Dαx and u is linear,

u(α ◦ cx) = αu(cx) = αU(x) = u(α ◦ x0) +
∑
t>0

Dx(t)u(α ◦ xt)

> u(α ◦ x0) +
∑
t>0

Dαx(t)u(α ◦ xt) = U(α ◦ x),

or, α ◦ cx � α ◦ x. That is, x is magnitude sensitive. Therefore, x ∈ Xms.
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Lemma 5 Xms = {x ∈ X \∆0 : U(0, x−0) ≤ v}.

Proof. Take any x ∈ Xms. By Lemma 4, x satisfies
∑

t≥1 u(xt)(ϕ
′
t)
−1(u(xt)) ≤ v, and

then, the unique λx satisfying
∑T

t=1 λu(xt)(ϕ
′
t)
−1(λu(xt)) = v must satisfy λx ≥ 1. Thus,

λx = min[λx, 1] = 1, and hence,

U(0, x−0) =
∑
t>0

(ϕ′t)
−1(λxu(xt))u(xt) =

∑
t>0

(ϕ′t)
−1(u(xt))u(xt) ≤ v.

Conversely, assume x satisfies U(0, x−0) ≤ v. Seeking a contradiction, suppose x /∈ Xms.
By Lemma 4,

∑
t>0 u(xt)(ϕ

′
t)
−1(u(xt)) > v. Thus, the unique solution λx to the equation

must satifiy λx < 1. Notice that
∑

t>0 λxu(xt)(ϕ
′
t)
−1(λxu(xt)) = v implies that the stream

λx ◦ x satisfies the same equation when λλx◦x = 1. By Lemma 3, this measn that Dun(t) =
(ϕ′t)

−1(u(λx ◦ xt)) is feasible for all t > 0. Therefore, by the representation,

U(0, λx ◦ x−0) =
∑
t>0

(ϕ′t)
−1(u(λx ◦ xt))u(λx ◦ xt) = v.

On the other hand, since λx < 1, Monotonicity implies U(0, λx ◦ x−0) < U(0, x−0) ≤ v,
which contradicts the above equation.

Lemma 6 % satisfies Weak Homotheticity.

Proof. Take any stream x ∈ X. As shown in Section 1.1, Dλ◦x(t) is increasing in λ > 0 if
U(0, λ ◦ x0) ≤ v and constant otherwise. Thus, for any x and α ∈ (0, 1), Dx(t) ≥ Dαx(t),
which implies, with linearity of u, αU(x) ≥ U(αx), or α ◦ cx % α ◦ x, as desired.

Lemma 7 % satisfies Magnitude-Sensitive Separability.

Proof. Take any magnitude sensitive stream x. If x ∈ Xms, from Lemmas 3 and 4,
Dx = Dun

x on Xms. Thus, Dx(t) depends only on u(xt), and hence, x is separable. Next,
consider x 6∈ Xmx. We will claim that then x is not magnitude sensitive. By Lemma 4,∑

t>0 u(xt)(ϕ
′
t)
−1(u(xt)) > v. Thus, the unique solution λx to the equation must satifiy

λx < 1. Notice that
∑

t>0 λxu(xt)(ϕ
′
t)
−1(λxu(xt)) = v implies that the stream λx◦x satisfies

the same equation when λλx◦x = 1. This means that x and λx ◦ x have the same optimal
discount function Dx(t) = Dλx◦x(t) = (ϕ′t)

−1(u(λx ◦ xt)) for all t > 0. Therefore, we have

u(λx ◦ cx) = λxu(cx) = λxU(x) = λx(u(x0) +
∑
t>0

Dx(t)u(x))

= λx(u(x0) +
∑
t>0

Dλx◦x(t)u(x)) = u(λx ◦ x0) +
∑
t>0

Dλx◦x(t)u(λx ◦ x) = U(λx ◦ x),

which means λx ◦ cx ∼ λx ◦ x for some λx ∈ (0, 1). That is, x is magnitude insensitive.

Lemma 8 % satisfies PBT.
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Proof. If x /∈ Xms, by Lemma 5, U(0, x−0) > v. Then since limλ→0 U(0, λx−0) = 0, it
follows there exists λx < 1 s.t. U(0, λx ◦ x−0) ≤ v or λxx ∈ Xms by Lemma 5, as required
by PBT (i). To confirm PBT (ii), note that if x ∈ Xms then U(0, x−0) ≤ v and it follows
that for any y satisfying U(0, y−0) ≤ U(0, x−0) it must be that y ∈ Xms.

Lemma 9 % satisfies Monotonicity.

Proof. Since the representation is additively separable in x0 it suffices to establish Mono-
tonicity on the set of all streams of the form (0, x−0). We saw in Lemma 5 that Xms =
{x ∈ X \∆0 : U(0, x−0) ≤ v}. Take two streams (0, x−0) ≥ (0, y−0). If we are in the case
U(0, y−0) ≤ v ≤ U(0, x−0), then we are done. Consider the two remaining cases:

(1) U(0, y−0), U(0, x−0) ≤ v.
Since U(0, y−0), U(0, x−0) ≤ v implies (0, y−0), (0, x−0) ∈ Xms , it follows that U(0, y−0) ≤

U(0, x−0), because U is additively separable on Xms, u is strictly increasing and Dr(t) is
strictly increasing in r.

(2) v ≤ U(0, y−0)
Suppose by way of contradiction that U(0, x−0) < U(0, y−0). Consider scaling down

(0, y−0) by λ∗ < 1 s.t. U(0, λ∗ ◦ y−0) = v. We claim that in fact U(0, λ∗ ◦ x−0) < U(0, λ∗ ◦
y−0) = v. This is obvious in the case where (0, x−0) ∈ Xms since U satisfies Monotonicity
on Xms (as noted in the proof of (1) above). In the case where (0, x−0) /∈ Xms, this is true
because, as shown in Section 1.1, U(0, λ ◦ x−0) initially decreases linearly if we decrease λ
(becauseD(0,λ◦x−0) is constant as long as (0, λ◦x−0) /∈ Xms) and eventually faster than linear
(because D(0,λ◦x−0) decreases as λ decreases when (0, λ ◦ x−0) ∈ Xms), while U(0, λ ◦ y−0)
reduces only linearly over λ ∈ [λ∗, 1]. Thus, we have U(0, λ∗ ◦ x−0) < U(0, λ∗ ◦ y−0) = v.
But this contradicts (1) since (0, λ∗ ◦ x−0) ≥ (0, λ∗ ◦ y−0) and both streams are in Xms.

Lemma 10 % satisfies Impatence.

Proof. Since the cognitive optimization problem requires the boundary constraint Dx(t) ≤
1, in particular for dated rewards pt, we have Du(p)(t) ≤ 1. Hence, u(p) ≥ Du(p)(t)u(p),
which implies p % pt for all t.

Next, take any p ∈ ∆ and 0 < t < s. Suppose first that pt, ps ∈ Xms. Note that by the
FOC

ϕ′t(Du(p)(t)) = u(p) = ϕ′s(Du(p)(s)).

By the property ϕ′t ≤ ϕ′s of the representation, we must have Du(p)(t) ≥ Du(p)(s) and thus
pt % ps as desired.

Next suppose ps /∈ Xms and suppose by way of contradiction that pt ≺ ps. Arguing as
in case (2) in Lemma 9, there exists λ∗ < 1 s.t. U(λ∗ ◦ pt) < U(λ∗ ◦ ps) = v. But then
(λ∗ ◦ pt), (λ∗ ◦ ps) ∈ Xms and (λ∗ ◦ pt) ≺ (λ∗ ◦ ps) contradicts what we just established in
the preceding paragraph.
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2 Appendix: Proof of Proposition 6

We solve the cognitive optimization problem for each x. Let ϕt(d) = atd
m on d ∈ [0, 1]. As

explained in Section 1.1, the boundary constraint D(t) ≤ 1 is effectively ignored. For each
x, an optimal discount function {Dx(t)}t>0 is determined by

max
D≥0

∑
t>0

D(t)u(xt)−
∑
t>0

ϕt(D(t)), subject to
∑
t>0

ϕt(D(t)) ≤ K.

The FOC of the above maximization problem is obtained as the FOC of the following
Lagrangian:

L =
∑
t>0

D(t)u(xt)−
∑
t>0

atD(t)m + ξ(K −
∑
t>0

atD(t)m),

where ξ ≥ 0 is a Lagrange multiplier for the capacity constraint. By differentiating L with
respect to D(t), we have

Dx(t) =

(
u(xt)

(1 + ξ)mat

) 1
m−1

, (1)

for all t = 1, · · · , T .
Suppose x is small. Since the capacity constraint is not binding, we have ξ = 0. Thus,

Dx(t) =

(
u(xt)

mat

) 1
m−1

and
U(x) = u(x0) +

∑
t>0

Dx(t)u(xt) = u(x0) +
∑
t>0

γ(t)u(xt)
m
m−1 , (2)

where γ(t) = (mat)
− 1
m−1 .

Next, suppose x is large. Then, the capacity constraint is binding. By substituting (1)
into the capacity constraint, ∑

t>0

at

(
u(xt)

(1 + ξ)mat

) m
m−1

= K.

By rearrangement,
1

(1 + ξ)
1

m−1

=
K

1
m{∑

t≥1 at

(
u(xt)
mat

) m
m−1

} 1
m

.

By substituting it into (1),

Dx(t) =
K

1
m

(
u(xt)
mat

) 1
m−1

{∑
t≥1 at

(
u(xt)
mat

) m
m−1

} 1
m

=
(mK)

1
mγ(t)u(xt)

1
m−1{∑

t≥1 γ(t)u(xt)
m
m−1

} 1
m

.
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Therefore,

U(x) = u(x0) +
∑
t>0

Dx(t)u(xt)

= u(x0) + (mK)
1
m

{∑
t>0

γ(t)u(xt)
m
m−1

}m−1
m

. (3)

Finally, we derive a threshold where small and large streams are distinguished. At this
boundary of consumption streams,∑

t>0

ϕt(Dx(t)) =
∑
t>0

at

(
u(xt)

mat

) m
m−1

= K.

Equivalently, ∑
t>0

γ(t)u(xt)
m
m−1 = mK.

Therefore, at the boundary,

U(x) = u(x0) +
∑
t>0

γ(t)u(xt)
m
m−1 = u(x0) +mK.

3 Proof of Proposition 7

Lemma 11 (Sophisticated CCE Saving Rule) Assume 0 < σ m
m−1

< 1 and suppose that
both self 0 and self 1 are cognitively constrained at their respective optimal consumption
path. The optimal saving rules for the sophisticated CCE model are given by

s∗1 = A1(I1 +Rs0) where A1 :=
1

1 + [
(
K1

a1

) 1
m
Rσ]

1
σ−1

,

and

s∗0 =
I0 − (

(
K0

a1

) 1
m
A0R)

1
σ−1 I1

1 + (
(
K0

a1

) 1
m
A0R)

1
σ−1R

where A0 := Rσ

((
a1
a2

) 1
m−1

+

((
K1

a1

) 1
m
R

) σθ
σ−1

) 1
θ

(
1 +

(
K1

a1

) 1
m

1
σ−1

R
σ
σ−1

)σ .

Proof. Write 0 < σθ < 1, where θ = m
m−1

. Let γt = (atm)−
1

m−1 . By Proposition 6 of Noor
and Takeoka[1], the homogeneous CCE representation takes the form:

U(c0, c1, c2) =


cσ0 + γ1c

σθ
1 + γ2c

σθ
2 if γ1c

σθ
1 + γ2c

σθ
2 ≤ mK0,

cσ0 + (mK0)
1
m [γ1c

σθ
1 + γ2c

σθ
2 ]

1
θ if γ1c

σθ
1 + γ2c

σθ
2 > mK0,

9



or equivalently,

U(c0, c1, c2) =


cσ0 + γ1c

σθ
1 + γ2c

σθ
2 if δ1c

σθ
1 + δ2c

σθ
2 ≤ mθK0,

cσ0 + (K0)
1
m [(δ1c

σθ
1 + δ2c

σθ
2 ]

1
θ if δ1c

σθ
1 + δ2c

σθ
2 > mθK0,

where δt = (a−1
t )

1
m−1 . Note that δ2 ≤ δ1 ≤ 1. The utility function for self 1 is analogous.

We proceed by backward induction.
Solve for the optimal consumption of self 1 assuming that she will be constrained at the

solution, that is, δ2c
σθ
2 > mθK1. Her problem is

max
s1

(I1 +Rs0 − s1)σ +

(
K1

a1

) 1
m

(Rs1)σ.

The FOC (I1 +Rs0 − s1)σ−1 =
(
K1

a1

) 1
m
Rσsσ−1

1 yields the saving rule

s∗1 = A1(I1 +Rs0), where A1 =
1

1 + [
(
K1

a1

) 1
m
Rσ]

1
σ−1

. (4)

Now turn to self 0 and assume that she is sophisticated. We solve for her optimal
consumption assuming that she is constrained at the solution, that is, δ1c

σθ
1 +δ2c

σθ
2 > mθK0.

Her maximization problem is

max
s0,s1

(I0 − s0)σ +K
1
m
0 [δ1(I1 +Rs0 − s1)σθ + δ2(Rs1)σθ]

1
θ .

Being sophisticated, she take s∗1 = A1(I1 +Rs0), and so the problem becomes

max
s0

(I0 − s0)σ +K
1
m
0 [δ1(I1 +Rs0 − s∗1)σθ + δ2(Rs∗1)σθ]

1
θ

⇐⇒ max
s0

(I0 − s0)σ +K
1
m
0 [δ1(I1 +Rs0 − A1(I1 +Rs0))σθ + δ2(RA1(I1 +Rs0))σθ]

1
θ

⇐⇒ max
s0

(I0 − s0)σ +K
1
m
0 [δ1(1− A1)σθ(I1 +Rs0)σθ + δ2(RA1)σθ(I1 +Rs0)σθ]

1
θ

⇐⇒ max
s0

(I0 − s0)σ +K
1
m
0

[
δ1(1− A1)σθ + δ2(RA1)σθ

] 1
θ (I1 +Rs0)σ

⇐⇒ max
s0,s1

(I0 − s0)σ +

(
K0

a1

) 1
m

A2(I1 +Rs0)σ,

where A0 :=

[
(1− A1)σθ +

(
a1
a2

) 1
m−1

(RA1)σθ
]

1
θ and we use the fact that δ2/δ1 =

(
a1
a2

) 1
m−1

.

The FOC is

σ(I0 − s0)σ−1 = σ

(
K0

a1

) 1
m

A0R(I1 +Rs0)σ−1

10



which yields the time 0 saving rule

s∗0 =
I0 − (

(
K0

a1

) 1
m
A0R)

1
σ−1 I1

1 + (
(
K0

a1

) 1
m
A0R)

1
σ−1R

.

Finally we verify that

A0 =

[
(1− A1)σθ +

(
a1

a2

) 1
m−1

(RA1)σθ

]
1
θ

=

(
[
(
K1

a1

) 1
m
Rσ]

1
σ−1

1 + [
(
K1

a1

) 1
m
Rσ]

1
σ−1

)σθ +

(
a1

a2

) 1
m−1

(R
1

1 + [
(
K1

a1

) 1
m
Rσ]

1
σ−1

)σθ

 1
θ

= Rσ


(
a1
a2

) 1
m−1

+

((
K1

a1

) 1
m
R

) σθ
σ−1

(
1 +

(
K1

a1

) 1
m

1
σ−1

R
σ
σ−1

)σθ


1
θ

= Rσ

((
a1
a2

) 1
m−1

+

((
K1

a1

) 1
m
R

) σθ
σ−1

) 1
θ

(
1 +

(
K1

a1

) 1
m

1
σ−1

R
σ
σ−1

)σ .

Lemma 12 Assume 0 < σ m
m−1

< 1 and suppose that both self 0 and self 1 are cognitively
constrained at their respective optimal consumption path. Then the following hold for the
sophisticated CCE model:

(i) Given any wealth I1 +Rs0, s∗1 is increasing in K1.
(ii) s∗0 is increasing in K0.

(iii) s∗0 is increasing in K1 if and only if a1/a2 > (R−σ(K1/a1)1−σ− 1
m )

1
1−σ .

(iv) Let K0 = K1 = K. s∗0 is increasing in K if a1/a2 > (R−σ(K/a1)1−σ− 1
m )

1
1−σ .

Proof. Parts (i) and (ii) follow from the expression of the saving rules.
Proof of (iii): Write self 0’s saving rule as

s∗0 =
I0 − (

(
K0

a1

) 1
m
A0R)

1
σ−1 I1

1 + (
(
K0

a1

) 1
m
A0R)

1
σ−1R

=
(Rσ+1

(
K0

a1

) 1
m
f(K1))

1
1−σ I0 − I1

(Rσ+1
(
K0

a1

) 1
m
f(K1))

1
1−σ +R

,

where

f(K1) :=
(1 +

(
a1
a2

) 1
m−1

R
σθ
1−σ

(
K1

a1

) σθ
m(1−σ)

)
1
θ

(1 +R
σ

1−σ

(
K1

a1

) 1
m(1−σ)

)σ
.

11



For notational simplicity, denote ζ =
(
a1
a2

) 1
m−1

and k =
(
K1

a1

) 1
m

. Then, the sign of f ′(K1)

is the same as the sign of the derivative of

h(k) :=
(1 + ζR

σθ
1−σ k

σθ
1−σ )

1
θ

(1 +R
σ

1−σ k
1

1−σ )σ
. (5)

The sign of h′(k) is the same as the sign of its numerator, that is,

1

θ
(1 + ζR

σθ
1−σ k

σθ
1−σ )

1
θ
−1 σθζ

1− σ
R

σθ
1−σ k

σθ
1−σ−1(1 +R

σ
1−σ k

1
1−σ )σ

− σ(1 +R
σ

1−σ k
1

1−σ )σ−1 1

1− σ
R

σ
1−σ k

1
1−σ−1(1 + ζR

σθ
1−σ k

σθ
1−σ )

1
θ .

Equivalently

σ

1− σ
(1 + ζR

σθ
1−σ k

σθ
1−σ )

1
θ (1 +R

σ
1−σ k

1
1−σ )σ

×
(

(1 + ζR
σθ
1−σ k

σθ
1−σ )−1ζR

σθ
1−σ k

σθ
1−σ−1 − (1 +R

σ
1−σ k

1
1−σ )−1R

σ
1−σ k

1
1−σ−1

)
⇐⇒ σ

1− σ
(1 + ζR

σθ
1−σ k

σθ
1−σ )

1
θ (1 +R

σ
1−σ k

1
1−σ )σ

× R
σθ
1−σ k

σθ
1−σ−1ζ(1 +R

σ
1−σ k

1
1−σ )−R

σ
1−σ k

1
1−σ−1(1 + ζR

σθ
1−σ k

σθ
1−σ )

(1 + ζR
σθ
1−σ k

σθ
1−σ )(1 +R

σ
1−σ k

1
1−σ )

⇐⇒ σ

1− σ
(1 + ζR

σθ
1−σ k

σθ
1−σ )

1
θ (1 +R

σ
1−σ k

1
1−σ )σ

× ζR
σθ
1−σ k

σθ
1−σ−1 −R

σ
1−σ k

1
1−σ−1

(1 + ζR
σθ
1−σ k

σθ
1−σ )(1 +R

σ
1−σ k

1
1−σ )

⇐⇒ σ

1− σ
(1 + ζR

σθ
1−σ k

σθ
1−σ )

1
θ
−1(1 +R

σ
1−σ k

1
1−σ )σ−1

(
R

σ
1−σ (ζR

σ(θ−1)
1−σ k

σθ
1−σ−1 − k

1
1−σ−1

)
. (6)

Therefore, the sign of the above expression is equivalent to the sign of

ζR
σ(θ−1)
1−σ k

σθ
1−σ−1 − k

1
1−σ−1.

This expression is positive if and only if

ζR
σ(θ−1)
1−σ k

σθ
1−σ−1 > k

1
1−σ−1

⇐⇒ ζ > R−
σ(θ−1)
1−σ k

1−σθ
1−σ

⇐⇒
(
a1

a2

) 1
m−1

> R−
σ

1−σ
1

m−1

(
K1

a1

) (1−σ)m−1
m(m−1)(1−σ)

=

(
R−σ

(
K1

a1

) (1−σ)m−1
m

) 1
(m−1)(1−σ)

⇐⇒ a1

a2

>

(
R−σ

(
K1

a1

)1−σ− 1
m

) 1
1−σ

. (7)

12



Note that 1− σ − 1
m
> 0 because this condition is equivalent to σθ < 1. Since a1 ≤ a2, we

have a1/a2 ≤ 1. Moreover, sinceR ≥ 1 andK1/a1 ≤ 1, we have
(
R−σ(K1/a1)

(1−σ)m−1
m

) 1
1−σ ≤

1.
Proof of (iv): The sign of the derivative of (K/a1)

1
mf(K) is the same as the sign of the

derivative of kh(k), defined as in (5). Since the numerator of the derivative h′(k) is derived
as in (6),

[kh(k)]′ = h(k) + kh′(k) = h(k)

(
1 + k

h′(k)

h(k)

)
=h(k)

(
1 + k

σ

1− σ
R

σ
1−σ (1 + ζR

σθ
1−σ k

σθ
1−σ )−1(1 +R

σ
1−σ k

1
1−σ )−1

(
ζR

σ(θ−1)
1−σ k

σθ
1−σ−1 − k

1
1−σ−1

))
=h(k)

(
1 +

σ

1− σ
R

σ
1−σ (1 + ζR

σθ
1−σ k

σθ
1−σ )−1(1 +R

σ
1−σ k

1
1−σ )−1

(
ζR

σ(θ−1)
1−σ k

σθ
1−σ − k

1
1−σ

))
.

(8)

Therefore, s∗0 is increasing in K if and only if the sign of the parenthesis is positive. Note
also that

ζR
σ(θ−1)
1−σ k

σθ
1−σ > k

1
1−σ ⇐⇒ ζ > R−

σ(θ−1)
1−σ K

1−σθ
m(1−σ) .

This expression is the same as (7). If this inequality holds, (8) is positive.

4 Proof of Proposition 8

Lemma 13 (Beta-Delta Saving Rule) The optimal saving rules for the β-δ model are given
by

sbd1 = B1(I1 +Rs0) where B1 :
1

1 + (βδRσ)
1

σ−1

and

sbd0 =
I0 − (βδRB1)

1
σ−1 I1

1 + (βδRB1)
1

σ−1R
, where B0 := Rσ

(
(βδ)

1
σ−1R

1
σ−1

)σ
+ δ(

1 + (βδ)
1

σ−1R
σ
σ−1

)σ .
Proof. Self 1 solves

max
s1

(I1 +Rs0 − s1)σ + βδ(Rs1)σ.

The FOC is
σ(I1 +Rs0 − s1)σ−1 = βδσRσs1

σ−1

yielding the saving rule

sbd1 =
I1 +Rs0

1 + (βδ)
1

σ−1R
σ
σ−1

.
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Self 0 solves

max
s0

(I0 − s0)σ + β[δ(I1 +Rs0 − sbd1 )σ + δ2(Rsbd1 )σ]

⇐⇒ max
s0

(I0 − s0)σ + β[δ(I1 +Rs0 −
I1 +Rs0

1 + (βδ)
1

σ−1R
σ
σ−1

)σ + δ2(R
I1 +Rs0

1 + (βδ)
1

σ−1R
σ
σ−1

)σ]

⇐⇒ max
s0

(I0 − s0)σ + β[δ

(
(I1 +Rs0)

(βδ)
1

σ−1R
σ
σ−1

1 + (βδ)
1

σ−1R
σ
σ−1

)σ

+ δ2

(
R

I1 +Rs0

1 + (βδ)
1

σ−1R
σ
σ−1

)σ

]

⇐⇒ max
s0

(I0 − s0)σ + βδ

(
I1 +Rs0

1 + (βδ)
1

σ−1R
σ
σ−1

)σ [(
(βδ)

1
σ−1R

σ
σ−1

)σ
+ δRσ

]
⇐⇒ max

s0
(I0 − s0)σ + βδ(I1 +Rs0)σB0,

where

B0 :=

(
(βδ)

1
σ−1R

σ
σ−1

)σ
+ δRσ(

1 + (βδ)
1

σ−1R
σ
σ−1

)σ = Rσ

(
(βδ)

1
σ−1R

1
σ−1

)σ
+ δ(

1 + (βδ)
1

σ−1R
σ
σ−1

)σ .
The FOC is

σ(I0 − s0)σ−1 = βδRσ(I1 +Rs0)σ−1B1

yielding

sbd0 =
I0 − (βδRB1)

1
σ−1 I1

1 + (βδRB1)
1

σ−1R
.

Lemma 14 The Sophisticated CCE and Sophisticated β-δ models are not observationally
equivalent.

Proof. Comparing saving rules it must be that At = Bt for t = 0, 1. The condition
A1 = B1 is equivalent to

βδ =

(
K

a1

) 1
m

.

Given this, A0 = B0 is equivalent to

δ + (βδR)
σ
σ−1 =

((
a1

a2

) 1
m−1

+ (βδR)
σθ
σ−1

) 1
θ

.

Therefore, we have a closed-form solution which must be nonconstant in R:

δ(R) =

((
a1

a2

) 1
m−1

+

(
K

a1

) σθ
m(σ−1)

R
σθ
σ−1

) 1
θ

−
(
K

a1

) σ
m(σ−1)

R
σ
σ−1 ,
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β(R) =

(
K

a1

) 1
m 1

δ(R)
.

Since x
1
θ is strictly increasing, δ(R) > 0 and so the solution is well-defined.

5 Proof of Proposition 9

Lemma 15 (Naive CCE Saving Rule) Assume 0 < σ m
m−1

< 1 and suppose that both self
0 and self 1 are cognitively constrained at their respective optimal consumption path. The
optimal saving rules for the sophisticated CCE model are given by

s∗1 = A1(I1 +Rs0) where A1 :=
1

1 + [
(
K
a1

) 1
m
Rσ]

1
σ−1

,

and

s∗0 =
I0 − (

(
K
a1

) 1
m
Ã0R)

1
σ−1 I1

1 + (
(
K
a1

) 1
m
Ã0R)

1
σ−1R

where Ã0 := Rσ

(((
a1
a2

) 1
m−1

R

) σθ
σθ−1

+
(
a1
a2

) 1
m−1

) 1
θ

(
1 +

((
a1
a2

) 1
m−1

Rσθ

) 1
σθ−1

)σ .

Proof. The calculations follow those in Lemma 11. The solution for s∗1 is as in Lemma 11.
Solve for self 0’s optimal consumption assuming that the solution satisfies δ1c

σθ
1 + δ2c

σθ
2 >

mθK.

max
s0,s1

(I0 − s0)σ + (K)
1
m [δ1(I1 +Rs0 − s1)σθ + δ2(Rs1)σθ]

1
θ .

The FOC for s1 is
σθδ1(I1 +Rs0 − s1)σθ−1 = δ2σθR

σθs1
σθ−1

yielding s1 = Ã1(I1+Rs0) where Ã1 =

(
1 +

((
a1
a2

) 1
m−1

Rσθ

) 1
σθ−1

)−1

. Self 0’s optimization

problem is reduced to

max
s0

(I0 − s0)σ +K
1
m [δ1(1− Ã1)σθ(I1 +Rs0)σθ + δ2(RÃ1)σθ(I1 +Rs0)σθ]

1
θ

⇐⇒ max
s0

(I0 − s0)σ + (Ka−1
1 )

1
m [(1− Ã1)σθ +

(
a1

a2

) 1
m−1

(RÃ1)σθ]
1
θ (I1 +Rs0)σ

⇐⇒ max
s0

(I0 − s0)σ + (Ka−1
1 )

1
m Ã0(I1 +Rs0)σ,
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where

Ã0 =[(1− Ã1)σθ +

(
a1

a2

) 1
m−1

(RÃ1)σθ]
1
θ

=




((
a1
a2

) 1
m−1

Rσθ

) 1
σθ−1

1 +

((
a1
a2

) 1
m−1

Rσθ

) 1
σθ−1


σθ

+

(
a1

a2

) 1
m−1

 R

1 +

((
a1
a2

) 1
m−1

Rσθ

) 1
σθ−1


σθ


1
θ

=Rσ

(((
a1
a2

) 1
m−1

R

) σθ
σθ−1

+
(
a1
a2

) 1
m−1

) 1
θ

(
1 +

((
a1
a2

) 1
m−1

Rσθ

) 1
σθ−1

)σ ,

which yields the time 0 saving rule

s∗0 =
I0 − (

(
K
a1

) 1
m
Ã0R)

1
σ−1 I1

1 + (
(
K
a1

) 1
m
Ã0R)

1
σ−1R

.

The marginal propensity to save in period 1 is given by

ds∗1
d(I1 +Rs0)

=
1

1 +
(
K
a1

) 1
m

1
σ−1

R
σ
σ−1

.

Marginal propensity to saving in period 0 is given by

ds∗0
dI0

=
1

1 + (
(
K
a1

) 1
m
RÃ0)

1
σ−1R

.

We need to show that

Lemma 16
ds∗1

d(I1+Rs0)
>

ds∗0
dI0

for any I0, I1 > 0.

Proof. Since
ds∗1

d(I1+Rs0)
>

ds∗0
dI0
⇐⇒ Ã0 > 1, it suffices to show that Ã0 > 1. Compute that

Ã0 = Rσ

((
a1
a2

) 1
m−1

+

((
a1
a2

) 1
m−1

R

) σθ
σθ−1

) 1
θ

(
1 +

((
a1
a2

) 1
m−1

Rσθ

) 1
σθ−1

)σ = Rσ

(
a1

a2

) 1
m

1 +

((
a1

a2

) 1
m−1

Rσθ

) 1
σθ−1


1−σθ
θ
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= Rσ

(
a1

a2

) 1
m

(
1 +

((
a1
a2

) 1
m
Rσ

) θ
1−σθ

) 1−σθ
θ

(
a1
a2

) 1
m
Rσ

=

1 +

((
a1

a2

) 1
m

Rσ

) θ
1−σθ


1−σθ
θ

> 1.

6 Proof of Proposition 10

Consider an arbitrary stream z ∈ X. The first order conditions of the optimization problem
yields that for any stream z the optimal Dz must satisfy

u(zt)

u(zt′)
=

ϕ′t(Dz(t))

ϕ′t′(Dz(t′))
∀t, t′ > 0 s.t. u(zt), u(zt′) > 0,

and the capacity constraint
∑

t>0 ϕt(Dz(t)) ≤ K. Since, Dz(t) = 0 for any t > 0 s.t.
u(zt) = 0, to establish our result we can wlog focus on z for which u(zt) > 0 for all t > 0.
Consider the following truncated optimization problem where we treat Dz(τ) as fixed:

max
(D(t))0<t6=τ

{

[ ∑
0<t 6=τ

D(t)u(zt)−
∑

0<t6=τ

ϕt(D(t))

]
+ [Dz(τ)u(zτ )− ϕτ (Dz(τ))]}

s.t.
∑

0<t6=τ

ϕt(D(t)) ≤ Ktrunc
z := K − ϕτ (Dz(τ)).

Define Ktrunc
z := K −ϕτ (Dz(τ)). Since the terms with Dz(τ) are constants, the problem is

equivalent to

max
(D(t))0<t6=τ

{
∑

0<t 6=τ

D(t)u(zt)−
∑

0<t6=τ

ϕt(D(t))} s.t.
∑

0<t6=τ

ϕt(D(t)) ≤ Ktrunc
z .

It is clear that the solution (Dtrunc
z (t))0<t 6=τ to this problem coincides with the solution Dz

(restricted to 0 < t 6= τ) to the original problem with z. We use these observations to prove
the proposition.

Take any x and ετ and wlog suppose u(xt) > 0 for all t and ε > 0. Denote y = x + ετ .
By the preceding, when restricted to 0 < t 6= τ , Dx and Dy solve a truncated optimization
problem with different the same objective function but different constraints. We show that
x has a more relaxed problem, that is, Ktrunc

y ≤ Ktrunc
x .

Suppose by way of contradiction that Ktrunc
y > Ktrunc

x . This implies that ϕτ (Dy(τ)) <
ϕτ (Dx(τ)) which implies Dy(τ) < Dx(τ). By the FOC ratios, we also have that for any
0 < t 6= τ

ϕ′t(Dy(t))

ϕ′t(Dy(τ))
=

u(xt)

u(xτ + ε)
<
u(xt)

u(xτ )
=

ϕ′t(Dx(t))

ϕ′τ (Dx(τ))
.
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But then Dy(τ) < Dx(τ) implies Dy(t) < Dx(t) for all 0 < t 6= τ . This contradicts the
optimality of Dy in the original problem for y, since Dx is feasible,

∑
t>0 ϕt(Dx(t)) ≤ K,

and improves the value of the objective function,[ ∑
0<t 6=τ

Dx(t)u(xt)−
∑

0<t6=τ

ϕt(Dx(t))

]
+ [Dx(τ)u(xτ + ε)− ϕτ (Dx(τ))]

>

[ ∑
0<t 6=τ

Dy(t)u(xt)−
∑

0<t 6=τ

ϕt(Dy(t))

]
+ [Dy(τ)u(xτ + ε)− ϕτ (Dy(τ))] .

Having established that Ktrunc
y ≤ Ktrunc

x we can now prove the result. The inequality
directly implies Dx+ετ (τ) ≥ Dx(τ). Because x has a more relaxed truncated problem, it
must be that Dx+ετ (t) ≤ Dx(t) for all 0 < t 6= τ .

7 Proof of Proposition 11

Consider the CE agent. If there is one task, then by assumption the agent completes the
task. Assume the induction hypothesis that the agent would complete n − 1 tasks with
deadline Tn−1 = 2(n − 1) − 2 = 2n − 4. Suppose that there are n tasks to be completed
with deadline Tn = 2n−2. If the agent does not do a task at time 0 then her problem from
the next period on is that of n− 1 tasks to be completed in Tn−1 periods, all of which she
will complete given the induction hypothesis. Her time 0 problem compares the discounted
utility of doing vs not doing a task:

U(n tasks) =

[
u(0) +

∑
t=2,4,··· ,2n

Du(0)(t)u(0)

]
+Du(R)(1)u(R) +

∑
t=3,··· ,2n+1

Du(R)(t)u(R),

U(n− 1 tasks) =

[
u(r) +

∑
t=2,4,··· ,2n

Du(0)(t)u(0)

]
+

∑
t=1,3,··· ,2n+1

Du(R)(t)u(R).

However,
U(n tasks)− U(n− 1 tasks) = −u(r) +Du(R)(1)u(R).

But −u(r) +Du(r)(1)u(R) is the net utility of doing one task where there is one to be done
at T = 0, which is positive by hypothesis. Therefore U(n tasks) ≥ U(n− 1 tasks), and the
CE agent would complete n tasks with deadline T = 2n− 2.

We show how the above proof breaks down for the CCE agent. Since she may be
cognitively constrained we write the discount functions in their more general form:

U(n tasks) =

[
u(0) +

∑
t=2,4,··· ,2n

Dn(t)u(0)

]
+Dn(1)u(R) +

∑
t=3,··· ,2n+1

Dn(t)u(R),
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U(n− 1 tasks) =

[
u(r) +

∑
t=2,4,··· ,2n

Dn−1(t)u(0)

]
+

∑
t=1,3,··· ,2n+1

Dn−1(t)u(R).

Note that the n stream has a positive reward at t = 1 while the n − 1 stream does not.
If the agent is not cognitively constrained at n then she is not cognitively constrained at
n − 1 and by the argument in the CE case we see that she will complete n tasks. On the
other hand, if the agent is cognitively constrained at n, then regardless of whether she is
constrained at n − 1, the model implies Dn(t) ≤ Dn−1(t) for all t (BY PROP) since the
cognitive resources have to be spread over more periods in case n. Consequently,

U(n tasks)− U(n− 1 tasks)

=− u(r) +Du(r)(1)u(R) +

[ ∑
t=2,4,··· ,2n

[Dn(t)−Dn−1(t)]u(0) +
∑

t=1,3,··· ,2n+1

[Dn(t)−Dn−1(t)]u(R)]

]
,

where the term in the square brackets is negative (since Dn(t) ≤ Dn−1(t) and u(r) >
0 = u(0)). With an appropriate choice of parameters we can obtain U(n tasks) − U(n −
1 tasks) < 0.

To demonstrate this, and to also show the possibility of cycles, we construct an example
with a Homogeneous CCE agent. Suppose there are n = 3 tasks to be done by period T = 4.
It will be convenient to define

At(β) :=

(
1

mat

) 1
m−1

u(β)
m
m−1 ,

and
f(α) = (mK)

1
m {α}

m−1
m .

At T = 4, suppose the agent is constrained when considering the task. By the reduced
form of the model, we therefore require that

A1(R) = (ma1)−
1

m−1u(R)
m
m−1 > mK.

Then the utility from doing the task is f(A1(R)) = (mK)
1
m

{(
1

ma1

) 1
m−1

u(R)
m
m−1

}m−1
m

.

Thus at T = 4 constrained and agent does the task iff

f(A1(R)) ≥ u(r).

At T = 2 suppose that the agent is constrained when considering not doing the task,
that is,

A1(r) + A3(R) = (ma1)−
1

m−1u(r)
m
m−1 + (ma3)−

1
m−1u(R)

m
m−1 > mK.
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This implies that she is also constrained when considering the task, that is,

A1(R) + A3(R) = (ma1)−
1

m−1u(R)
m
m−1 + (ma3)−

1
m−1u(R)

m
m−1 > mK.

Then at T = 2 she does not do the task iff

(mK)
1
m

{(
1

ma1

) 1
m−1

u(R)
m
m−1 +

(
1

ma3

) 1
m−1

u(R)
m
m−1

}m−1
m

< u(r) + (mK)
1
m

{(
1

ma3

) 1
m−1

u(R)
m
m−1

}m−1
m

⇐⇒ f (A1(R) + A3(R))− f (A3(R)) < u(r).

At T = 0 suppose she is constrained when considering not doing the task:

A2(r) + A5(R) = (ma2)−
1

m−1u(r)
m
m−1 + (ma5)−

1
m−1u(R)

m
m−1 > mK.

This implies that she is constrained when considering the task:

A1(R)+A2(r)+A5(R) = (ma1)−
1

m−1u(R)
m
m−1 +(ma2)−

1
m−1u(r)

m
m−1 +(ma5)−

1
m−1u(R)

m
m−1 > mK.

Then at T = 0 she does the task iff

(mK)
1
m

{(
1

ma1

) 1
m−1

u(R)
m
m−1 +

(
1

ma2

) 1
m−1

u(r)
m
m−1 +

(
1

ma5

) 1
m−1

u(R)
m
m−1

}m−1
m

≥ u(r) + (mK)
1
m

{(
1

ma2

) 1
m−1

u(r)
m
m−1 +

(
1

ma5

) 1
m−1

u(R)
m
m−1

}m−1
m

⇐⇒ f (A1(R) + A2(r) + A5(R))− f (A2(r) + A5(R)) ≥ u(r).

Therefore we need the following inequalities to hold: those that involve being con-
strained,

A1(R) > mK,

A1(r) + A3(R) > mK,

A2(r) + A5(R) > mK,

and those that involve choice:

f(A1(R))− f(0) ≥ u(r),

f (A1(R) + A3(R))− f (A3(R)) < u(r),

f (A1(R) + A2(r) + A5(R))− f (A2(r) + A5(R)) ≥ u(r).
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Assume that A5 ≈ 0 (by taking a5 arbitrarily large). Then a sufficient condition for the
“constraint inequalities” to be satisfied is that A2(r) > mK, that is,(

1

ma2

) 1
m−1

u(r)
m
m−1 > mK.

Among the “choice inequalities”, since f is concave, the third implies the first, so the latter
can be dropped. We therefore need to show that the following inequalities can be satisfied
numerically: (

1

ma2

) 1
m−1

u(r)
m
m−1 > mK,

(mK)
1
m {A1(R) + A3(R)}

m−1
m − (mK)

1
m {A3(R)}

m−1
m < u(r),

(mK)
1
m {A1(R) + A2(r)}

m−1
m − (mK)

1
m {A2(r)}

m−1
m > u(r).

Assume m = 2 and insert the definition of A in these inequalities, in which case they
take the form: (

1

2a2

)
u(r)2 > 2K,{(

1

a1

)
+

(
1

a3

)} 1
2

−
{(

1

a3

)} 1
2

<
u(r)

u(R)K
1
2

,

{(
1

a1

)
+

(
1

a2

)
u(r)2

u(R)2

} 1
2

−
{(

1

a2

)
u(r)2

u(R)2

} 1
2

>
u(r)

u(R)K
1
2

.

We have taken a5 →∞. Arbitrarily fix a1 < .. < a4. Take any γ that lies strictly between{(
1

a1

)
+

(
1

a3

)} 1
2

−
{(

1

a3

)} 1
2

<

{(
1

a1

)
+ 0

} 1
2

− {0}
1
2 ,

and take a sufficiently small θ > 0 s.t.{(
1

a1

)
+

(
1

a2

)
θ2

} 1
2

−
{(

1

a2

)
θ2

} 1
2

> γ.

Let K =
(
θ
γ

)2

. Pick u(r) > 0 satisfying the first inequality,
(

1
2a2

)
u(r)2 > 2K. Choose

u(R) so that θ = u(r)
u(R)

< 1. Then we have{(
1

a1

)
+

(
1

a3

)} 1
2

−
{(

1

a3

)} 1
2

< γ <

{(
1

a1

)
+

(
1

a2

)
θ2

} 1
2

−
{(

1

a2

)
θ2

} 1
2

and in particular, all the desired inequalities are satisfied.
This establishes the claim that the agent may complete all tasks but not consecutively.

To show that cycling is possible, assume that at →∞ for all t ≥ 5. Therefore the agent’s
“horizon” is effectively 4 periods. Repeating the above example with arbitrary n and
T = 2n− 2 therefore establishes that cycling is possible and completes the proof.
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8 Proof of Proposition 12

It is important to first note that under the given assumption (that is, the agent would
complete 1 task today when the deadline is T = 2), it must be that the agent would
complete the task at T = 2. If not, then the utilities for the t = 0 self are

U(complete 1 task at time 0) = 0 +Du(R)(1)u(R) +Du(r)(2)u(r) + 0

U(complete 1 task at time 2) = u(r) + 0 +Du(r)(2)u(r) + 0,

and the agent compares Du(R)(1)u(R) with u(r), just as the t = 0 self does, and therefore
will not do the task, contradicting the given assumption. Therefore self T = 2 will complete
the task if there is 1 to be done.

Consider the CE agent, and suppose there is 1 task to be completed by time T = 2.
Then the agent compares

U(complete 1 task at time 0) = u(0) +Du(R)(1)u(R) +Du(r)(2)u(r) + 0

U(do not complete 1 task at time 0) = u(r) + 0 + 0 +Du(R)(3)u(R),

where our opening observation is used to note that if the agent does not do the task at
time 0 then the time 2 self will wish to complete the task in the deadline period 2. By
assumption, the agent would prefer to do the task at time 0.

Then the Separability property of the CE model and an induction argument yields that
the agent will do 1 task immediately regardless of the deadline. To see this, consider the
case where the deadline is T = 4. The problem of the t = 2 self is identical to the above
problem and so she will prefer to do the task, and the utility calculations for the t = 0 self
are the same as above except that there is a common term Du(r)(4)u(r) + 0 (since self 4
does not have any task to do) appended to both utilities. Following this line of reasoning,
an induction argument yields that 1 task will be completed immediately regardless of the
deadline.

Turn to the CCE agent. Suppose by way of contradiction that the agent would do
the task immediately for any T ≥ 2. Then for all such T , the t = 0 self finds that
U(1 task at time 0) > U(1 task at time 2) where

U(complete 1 task at time 0) = 0 +D0,T (1)u(R) +D0,T (2)u(r) + 0 +
∑

t=4,··· ,T

D0,T (t)u(r),

U(complete 1 task at time 2) = u(r) + 0 + 0 +D2,T (3)u(R) +
∑

t=4,··· ,T

Dt,T (t)u(r),

where Dτ,T denotes the optimal discount function for the stream where the task is done at τ
and the deadline is T . The hypothesis that the agent would always do the task immediately
implies

D0,T (1)u(R) +D0,T (2)u(r) ≥ u(r) +D2,T (3)u(R)
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for all T . However, if we consider a model with time-independent cost function ϕt(d) = dm,
then for τ = 0, 2, the discount function satisfies Dτ,T (t) = Dτ,T (t′) for all t, t′ > 0 that have
the same reward. Denote Dτ,T (t) = dr,τ,T for periods 4, 6, ... where the reward is r. Then
the capacity constraint implies:

T − 4

2
ϕ(dr,τ,T ) =

∑
t=4,6,··· ,T

ϕ(Dτ,T (t)) ≤
T+1∑
t=1

ϕt(Dτ,T (t)) ≤ K.

As T → ∞ it must therefore be that D0,T , D2,T → 0 and therefore the above inequality
cannot hold for all T , a contradiction.
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