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Abstract

Noor and Takeoka [19] model an agent whose impatience is determined by an
(unconstrained) cognitive optimization problem. This paper presumes instead a lim-
ited stock of cognitive resources. The key behavioral implications are the absence
of magnitude effects and violations of Separability for large rewards. The model en-
dogenously produces lower impatience with age, providing a cognitive account for
anomalous life-cycle saving behavior. The consumption-savings profile cannot be
replicated by beta-delta discounting. In a task-completion setting, the model can
exhibit cycles of activity and inactivity in completing tasks where standard models
would predict the completion of all tasks in consecutive periods.

1 Introduction

Macroeconomic studies have documented a variety of anomalies for the Life-Cycle Con-
sumption model. One such anomaly is that saving rates are “too low” among young cohorts
and “too high” among older cohorts (Browning and Crossley [4]). A plausible explanation
is that discount factors are age-dependent, and in particular increasing with age (Kureishi
et al [13]). It may be natural to understand such age-dependence in terms of an exogenous
evolution of preference stemming from maturity. However, it is possible to provide a more
nuanced account that generates age-dependence endogenously. If agents require cognitive
resources to generate patience (by generating empathy for future selves, or enhancing at-
tention towards future consumption), and if they have limited cognitive resources, then
they will tend to be impatient in their youth because they have to spread these resources
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over a long horizon. As they age, the same amount of cognitive resources are expended
across a shorter horizon, and therefore they are able to achieve greater patience with age.

More direct evidence of a relationship between cognitive abilities and time preference is
provided by Dohmen et al [6], who show that people with higher cognitive abilities are less
impatient. There is, however, a dearth of research seeking to understand the precise mech-
anism by which the two are related. Noor and Takeoka [19] (henceforth NT) hypothesize
that time preferences are determined by a cognitive optimization problem which involves,
for any given consumption stream, optimally spending cognitive resources on enhancing
patience in order to better appreciate the stream – by engaging in the cognitively costly
activity of developing empathy for future selves, she enhances the discount factor D(t)
used for different t. This can be viewed as a subjective version of Becker and Mulligan [3]’s
model where the agent spends physical resources to enhance patience (such as by obtaining
education). NT’s conceptual contribution is to show that the main behavioral content of
such a theory is a magnitude effect : the agent should be less impatient when dealing with
larger rewards. The fact that the magnitude effect is a robust finding in the experimental
literature (Fredrick et al [9]) gives credibility to NT’s cognitive optimization hypothesis.
In this paper, we continue the exploration of NT and study the behavioral meaning of
constrained cognitive optimization. Cognitive costs capture one aspect of cognitive ability,
and the size of cognitive resource capacity captures another, and we seek to understand
how the latter manifests in behavior. NT show how their model unifies a range of Life Cycle
anomalies, and our extension extends the range to include age-dependent impatience. In
our concluding section, we discuss how this paper potentially speaks to a range of choice
contexts outside intertemporal choice.

NT’s primitive is a (static) preference % over the set X of finite horizon consumption
streams, and they provide behavioral foundations for the Costly Empathy (CE) represen-
tation, which is described by an instantaneous consumption utility u and an increasing
and convex cognitive cost function ϕt for each t such that % is represented by the function
U : X→ R+ defined by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt), x ∈ X, (1)

where Dx = arg max
D∈[0,1]T

{
∑
t≥1

D(t)u(xt)−
∑
t≥1

ϕt(D(t))}. (2)

Thus, the period 0 self evaluates a consumption stream x = (x0, · · · , xT ) via the discounted
utility formula (1) where the discount function Dx is the result of a cognitive optimization
problem (2). Intuitively, the discount function D is the distribution of empathy across
future selves, and it is chosen so as to balance discounted future utility

∑
t≥1D(t)u(xt)

against the cognitive cost
∑

t≥1 ϕt(D(t)) of generating empathy D. In the present paper,
we are interested in the behavioral content of the Constrained Costly Empathy (CCE)
representation which extends the CE model to allow for limited cognitive capacity, in
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which case the cognitive optimization problem (2) is subject to the capacity constraint:∑
t≥1

ϕt(D(t)) ≤ K,

for some K ≤ ∞. That is, the agent cannot produce empathy D that costs more than K.
The main theoretical contribution of the paper lies in the study of the behavioral mean-

ing of constrained cognitive optimization. We make two key observations:
1. The first relates to the magnitude effects. In NT, the magnitude effect arises because

a larger reward incentivizes higher cognitive investment into reducing impatience. Since
there is no constraint on cognitive capacity in their model, scaling up rewards should always
give rise to a reduction in impatience, that is, a magnitude effect. However, if the agent
has limited cognitive capacity, then at some point the capacity constraint will bind, and
any further scaling up rewards would not lead to any magnitude effect.

2. The second relates to the violation of Separability. 1To illustrate, imagine that an
agent exhibits the patient preference (0, 0, 300) � (100, 0, 0). Separability requires that she
should continue to exhibit the same preference when, say, $200 at time 1 is added to both
streams: (0, 200, 300) � (100, 200, 0). This is satisfied in NT’s model because the unlimited
stock of empathy allows D(t) to be optimized separately across all t, that is, the $200 reward
does not affect how she allocates cognitive resources to any of the other rewards offered by
the streams. However, when there are cognitive constraints, then the agent may become
more impatient and exhibit (0, 200, 300) ≺ (100, 200, 0), thereby violating Separability:
when evaluating the stream (0, 200, 300), some of the limited cognitive resources may be
taken away from $300 and spent on $200, making the highest reward look less attractive
than it did before, while no such tradeoff occurs when evaluating (100, 200, 0).

Putting these observations together, we identify two key behavioral predictions of con-
strained cognitive optimization: (a) “small” streams should exhibit a magnitude effect
as well as satisfy Separability (as both arise when the cognitive constraint is slack), and
(b) “large” streams should exhibit no magnitude effect, and should typically violate Sep-
arability. These predictions are the content of our “Preference-Based Threshold” and
“Magnitude-Sensitive Separability” axioms and constitute our assessment of the main em-
pirical content of constrained cognitive optimization.

The CCE model additionally places stringent requirements across streams that lie on
the threshold where the cognitive capacity begins to bind. These restrictions are very
technical and devoid of economic meaning, implying that a meaningful axiomatization of
the CCE model may in fact be elusive. Against this backdrop, we nevertheless provide two
results. The first is to provide a transparent axiomatization of a special case of the model
where the cost function is of the homogeneous form ϕt(d) = atd

m. An interesting behavioral
property of this special case is that the threshold where the capacity constraint binds has a
very simple characterization: it can be described using a particular indifference curve. This

1The Separability axiom states that if two streams contain a common outcome xt at time t, then the
ranking of the streams do not change if this common outcome is replaced with any other yt. Separability
of preference is necessary for the existence of an additively separable representation for preference.
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also makes the model analytically tractable since a single parameter determines whether
the agent’s cognitive capacity is binding at a given stream. Our second result drops the
homogeneity property of the cost function, yielding a version of the CCE model where the
cognitive constraint Kx can vary across streams in a limited way.

We provide several simple applications of the CCE model. In a dynamic consumption-
savings context, one might expect that higher cognitive capacity would lead to higher saving
by all selves. Interestingly, this intuition is not precise: it relies crucially on the assumption
of naivete. We demonstrate in a 3-period context that a sophisticated period 0 self may
in fact begin to save less, since a higher cognitive capacity for all selves may exacerbate
dynamic inconsistency. In another application, we show that the consumption-savings
profile (as a function of the interest rate) of the (sophisticated) agent cannot be replicated
by standard exponential discounting or by the beta-delta model. We also formalize the
sense in which the dynamic model gives rise to decreasing impatience with respect to age,
as in the opening paragraph above. Another set of applications study the task completion
problem, uncovering patterns of behavior that are inconsistent with models that satisfy
Separability.

There are several models in the literature that incorporate subjective optimization, such
as those of optimal expectations (Brunnermeier and Parker [5]), optimal contemplation
(Ergin and Sarver [8]) and optimal attention (Ellis [7], Gabaix [10]). To our knowledge,
constrained subjective optimization is considered only in the literature on willpower, where
the decision maker is assumed to resist to temptation within the constraint of limited
willpower. Specifically, Ozdenoren, Salant, and Silverman [24] consider the cake-eating
problem with a fixed initial stock of willpower, which is depleted over time with exercising
self-control. In a discrete setting, Masatlioglu, Nakajima, and Ozdenoren [18] axiomatize
a limited willpower model by using the pair of ex ante preference over menus and ex post
choice from menus. These papers presume that self-control is not costly. Liang, Grant
and Hsieh [15] consider a menus of lotteries setting and incorporate the cost of self-control.
They show that the content of limited will-power in that setting lies in the violation of the
vNM Independence axiom for menus of lotteries. The main take-away of the present paper
is that, in any context, binding cognitive constraints express themselves behaviorally in the
absence of a magnitude effect for large rewards. Moreover, in contexts where separability
may hold (such as intertemporal choice), there may be violations of separability for large
rewards. Of the two, the former is fundamental – it is an extension of NT’s strategy
to identify cognitive optimization by viewing how behavior changes with the size of the
rewards.

The remainder of the paper proceeds as follows. Section 2 describes our basic framework
and derives some key properties of the CCE representation. Section 3 formulates behavioral
counterparts of these properties and show that together they characterize a version of the
CCE representation (which we refer to as the CCE* representation). Section 4 shows that
adding a homogeneity restriction on preferences characterizes the CCE representation with
homogeneous cost functions. Section 5 provides applications of the model. All proofs are
relegated to the appendices and the supplementary appendix (Noor and Takeoka [21]).
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2 CCE Framework

2.1 Primitives

There are T + 1 <∞ periods, starting with period 0. The space C of outcomes is assumed
to be C = R+. Let ∆ denote the set of simple lotteries over C, with generic elements
p, q, · · · . We will refer to p as consumption. Consider the space of consumption streams
X = ∆T+1, endowed with the product topology. A typical element in X is denoted by
x = (x0, x1, · · · , xT ). The primitive of our model is a preference % over X.

Let ∆0 ⊂ X denote the set of streams x = (p, 0, · · · , 0) that offer consumption p
immediately and 0 in every subsequent period. Abusing notation, we often use p to denote
both a lottery p ∈ ∆ and a stream (p, 0, · · · , 0) ∈ ∆0. Thus, 0 also denotes the stream
(0, · · · , 0). An element of ∆ that is a mixture between two consumption alternatives
p, q ∈ ∆ is denoted α ◦ p + (1 − α) ◦ q for any α ∈ [0, 1]. Streams are mixed pointwise:
α ◦ x+ (1− α) ◦ y = (α0 ◦ x+ (1− α) ◦ y0, · · · , α ◦ xT + (1− α) ◦ yT ).

As a benchmark, we define the Discounted Utility (DU) representation for a preference
over X by

U(x) = u(x0) +
∑
t>0

D(t)u(xt), x ∈ X,

where D(t) is weakly decreasing in t, and u is a utility index. A defining feature of the DU
model is that the discount function evaluates time independently of the stream of rewards
being evaluated. The CE and CCE models relax such magnitude-independent discounting.

2.2 Representation

Say that a tuple (u, {ϕt}t≥1) is regular if

(i) u : ∆ → R+ is continuous and mixture linear with (a) u(0) = 0, (b) u is strictly
increasing on C and (c) u(∆) = R+,

(ii) ϕt : [0, 1] → R+ is an increasing convex function that is strictly increasing, strictly
convex and continuously differentiable on {d : ϕt(d) > 0}, and satisfies ϕt(0) = 0,
ϕ′t(0) = 0 and ϕ′t(1) <∞,

(iii) For all t < T , the cost functions satisfy ϕ′t ≤ ϕ′t+1 .

Condition (i) imposes familiar properties on the utility from consumption. Condition (i)(a),
while natural, is more than a mere normalization of u since the sign of u matters for
the cognitive optimization problem defined below. The unboundedness of u imposed by
condition (i)(c) ensures the existence of a present equivalent of each stream x ∈ X (see
Section 3.1). Condition (ii) requires {ϕt} to be a family of convex functions. Interpreting
the period t discount factor d ∈ [0, 1] as the degree of appreciation of consumption at time
t, we interpret ϕt(d) as the cognitive cost of achieving d. Each ϕt can take a value of 0 on
some interval [0, d] but must have standard properties of a cost function on [d, 1], and a
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bounded slope. Condition (iii) requires that the marginal cost ϕ′t(d) of producing discount
factor d is increasing in t. Integrating and applying the restriction ϕt(0) = 0 implies that
the cost functions are increasing: ϕt ≤ ϕt+1 for all t < T .

Definition 1 (CCE Representation) A Constrained Costly Empathy (CCE) represen-
tation is a tuple (u, {ϕt}, K), where (u, {ϕt}) is regular and 0 < K ≤ ϕ1(1), and % is
represented by the function U : X→ R+ defined by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt), x ∈ X,

where Dx solves
Dx = arg max

D∈[0,1]T
{
∑
t≥1

D(t)u(xt)−
∑
t≥1

ϕt(D(t))} (3)

subject to ∑
t≥1

ϕt(D(t)) ≤ K. (4)

The unconstrained version of the model defined by setting K = ∞ and dropping the
restriction 0 < K ≤ ϕ1(1) corresponds to NT’s Costly Empathy (CE) representation. The
CCE representation was interpreted in the Introduction, except that we need to intepret
the condition 0 < K ≤ ϕ1(1). Since the cost functions are increasing in t it follows that in
fact we must have

0 < K ≤ ϕt(1), for all t > 0.

This states that achieving the maximal possible discount factor D(t) = 1 for any period
t > 0 costs at least K. That is, K is exhausted by the time that perfect patience is
achieved. Other than being intuitive, the condition also makes the model more tractable,
for the following reason. Note that the maximization problem (3) is in fact subject to two
distinct constraints. The first is the obvious one where D is feasible only if it costs at most
K, which we will refer to as the capacity constraint :

∑
t≥1 ϕt(D(t)) ≤ K. The second is

that D satisfies the boundary constraint : D(t) ≤ 1 for each t > 0. The requirement that
ϕt(1) ≥ K for all t guarantees the substantive computational simplication that solving
the maximization problem subject to the capacity constraint alone is sufficient, in that it
satisfies the boundary constraint automatically.

Regarding the interpretation of the capacity constraint K, the CCE model should be
viewed as in NT where there exists a cap K on the cognitive resources that can be used
for each stream. One could also envision a model where K is used for a menu of streams,
and can give rise to menu-dependent impatience. Such a model could violate the Weak
Axiom of Revealed Preference. We opt to focus on stream-dependent impatience since it is
closer to the standard model and more tractable. We leave it to future research to analyze
a menu-dependent version of the model.
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2.3 Analyzing the CCE Optimization Problem

We make some observations about the utility representation and in particular to the solution
Dx to the cognitive optimization problem (3)-(4) in the CCE model. These observations
will guide our subsequent behavioral analysis. Consider the set of streams {x ∈ X :∑

t≥1 ϕt(Dx(t)) < K} where the capacity constraint (4) is slack. For such streams, at the
solution Dx, the following first order condition holds for each t > 0:

u(xt) = ϕ′t(Dx(t)).

By the continuity properties of the representation, this first order condition must hold also
for the closure of the noted set. The set of streams where the first order condition holds
for all t is therefore defined by:

Xs = cl{x ∈ X :
∑
t≥1

ϕt(Dx(t)) < K}.

Observe that for any stream x ∈ X, current consumption x0 does not play any role in
determining whether x is in Xs or not, since the first order condition depends only on
future consumption xt, t > 0. Say that a stream x ∈ X is nontrivial if u(xt) > 0 for some
t.

We explore some properties of the representation in relation to Xs and its complement.
The first proposition notes a distinguishing feature between streams in Xs and those outside
of it: it states that any stream x ∈ Xs must exhibit a strict magnitude effect when scaled
down to αx for any α < 1, whereas those not in Xs must exhibit no magnitude effect upto
some scaling down of the stream.

Proposition 1 (Magnitude Sensitivity) In the CCE model, if x ∈ Xs is nontrivial,
then impatience is magnitude-sensitive:,

Dαx � Dx for all α ∈ (0, 1).

If x /∈ Xs then impatience is not magnitude-sensitive:

Dαx = Dx for all α sufficiently close to 1.

Intuitively, if the capacity constraint is not binding, then discounting will be sensitive
to incentives provided by the consumption in the stream, whereas such sensitivity will not
exist when the capacity constraint binds. We will exploit this in the sequel to behaviorally
identify whether the (unobserved) capacity constraint is binding at a stream.2

2It is worth noting that the property that Dx may not change if x is scaled up can arise in the CE
model as well although there is no capacity constraint in it. In NT, ϕt is not necessarily real-valued. Let
the supremum discount factor be given by dt := sup{d : ϕt(d) < ∞}. In NT, once x is large enough that
the supremum discount function t 7→ D(t) = dt is achieved, scaling up will not incentivize higher patience
since the cost of doing so is infinite.
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Next we present two conditions that will be used in the sequel to formulate behavioral
postulates. The first is that the utility preferences is additively separable only on Xs. For
any streams x = (x1, · · · , xT ) and y = (y1, · · · , yT ) denote by (xt, y−t) the stream that pays
xt at time t and pays yt′ at all other t′ 6= t. So, for instance, if we take x = (10, 10, 10) and
y = (0, 0, 0) then (y2, x−2) = (10, 10, 0) and (x2, y−2) = (0, 0, 10).

Proposition 2 (Separability) In the CCE model,

x ∈ Xs =⇒ U(x) = U(0t, x−t) + U(xt, 0−t) for all t > 0.

x /∈ Xs =⇒ U(x) ≤ U(0t, x−t) + U(xt, 0−t) for all t > 0.

The first claim is that when the cognitive constraint does not bind, then the utility of,
say, stream (10, 10, 10) is the same as the total utility of say, streams (10, 10, 0) and (0, 0, 10)
which sum to the original stream. Intuitively, when the capacity constraint is not binding,
the cognitive process can optimally tailor the discount factor Dx(t) for each t separately,
and so the discounted utility of a stream is the same as the sum of the discounted utility
of sections of the stream. Outside of Xs, such separability will generically be violated due
to the cognitive constraint. To see this, consider stream x = (10, 10, 10) with correspond-
ing discount function Dx that is determined with a binding cognitive constraint. Since no
cognitive resources are allocated to periods with 0 consumption, and since there are more
zero’s in the streams (10, 10, 0) and (0, 0, 10), there are more resources available to appre-
ciate the periods with nonzero 0 consumption in these streams compared to (10, 10, 10).
Consequently, the discount factors D(10,10,0)(1) and D(0,0,10)(2) must respectively be higher
than Dx(1) and Dx(2). The discounted utility form of U then implies the noted inequality.

Finally we observe that in the CCE model, starting with a nontrivial x /∈ Xs it is always
possible to decreasing the future consumption offered by it until one produces a stream y
in Xs. Doing so for any x ∈ Xs will always just produce another y ∈ Xs. For any x, let
x−0 = (0, x1, · · · , xT ).

Proposition 3 (Threshold) The following hold for the CCE model:
(a) If x /∈ Xs is nontrivial, then there exists y−0 � x−0 such that y ∈ Xs.
(b) If x ∈ Xs is nontrivial and y is such that y−0 � x−0 then y ∈ Xs.

The intuition is that reducing future consumption reduces the discount function that
would optimally arise without cognitive constraints. Thus if the cognitive constraint is
slack at x then it must be slack at y as well if y−0 � x−0. If it is not slack at x, then it can
be made slack by taking some sufficiently small y with y−0 � x−0.

Finally, we argue that the model must have a specific restriction on the boundary of Xs.
This corresponds to the set of streams where the FOC holds but the capacity constraint
binds:

bd(Xs) = {x :
∑
t≥1

ϕt(Dx(t)) = K and u(xt) = ϕ′t(Dx(t)) for each t > 0}.
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For any x ∈ bd(Xs), the FOC implies that the optimal Dx must be given by Dx(t) =
(ϕ′t)

−1(u(xt)) for each t > 0, and it must cost K. Therefore the boundary can be charac-
terized as follows:

bd(Xs) = {x :
∑
t≥1

ϕt((ϕ
′
t)
−1u(xt)) = K}.

Observe that
∑

t≥1 ϕt((ϕ
′
t)
−1u(xt)) =

∑
t≥1 ϕt((ϕ

′
t)
−1u(yt)) must hold for all x, y ∈ bd(Xms),

and therefore the CCE model implies some relationship across bd(Xs). Identifying this
relationship is necessary to axiomatize the CCE model. From Proposition 3(b), we can
infer that bd(Xs) has a “negative slope” in that it is never possible to have nontrivial
x, y ∈ bd(Xs) such that y � x. But it is unclear whether there are any other behaviorally
meaningful properties possessed by bd(Xs). In fact our analysis suggests that a meaningful
behavioral characterization of the model may be elusive or even infeasible (see Section 4.2
for the unappealingly technical, albeit exhaustive, restriction on bd(Xms) required by the
CCE model).

It is natural to relax the problem by searching for a meaningful behavioral character-
ization within a wider class than the CCE class. Define a “General CCE” representa-
tion by requiring that, instead of being a constant, the cognitive capacity is a function
x 7→ Kx ∈ (0,∞].3 The difficulty that arises in following this direction is that the GCCE
class generically violates the standard Monotonicity property which requires that, across
deterministic streams, x ≥ y =⇒ x % y (larger streams are better).4

These issues not withstanding, in the sequel we will identify a GCCE subclass that
satisfies both Monotonicity and the main behaviors associated with the CCE model. Our
solution to the above hurdles will be to effectively assume that the boundary bd(Xs) is
related to an indifference curve: streams in bd(Xs) must be such that they are indifferent
in terms of future consumption (if x, y ∈ bd(Xs) then (0, x−0) ∼ (0, y−0)). Then, the
cognitive constraint must be slack for streams that are “sufficiently small” in the sense of
their future utility. To the extent that Propositions 1-3 capture the essential content of the
CCE model, our main theoretical contribution is to obtain a class of models that have this
same essential content (and preserve Monotonicity), while differing from the CCE model
only on technical details regarding the structure of bd(Xs). Moreover, the class has the
benefit of added tractability: in the model, a single parameter v > 0 determines whether
or not the capacity constraint binds at a given stream x.

3Future research might explore how a stream-dependent capacity Kx could be used to capture salience:
it may be that some streams grab the agent’s attention more than others, which result in an expanded
capacity to appreciate the stream. For instance, one might hypothesize that moving consumption to earlier
rewards may increase the salience of the future consumption offered by the stream.

4To see this, define Xs by cl{x ∈ X :
∑
t≥1 ϕt(Dx(t)) < Kx} and consider any two deterministic streams

x, y ∈ bd(Xs) that offer strictly positive consumption in every period. There always exists some scaling up
of y by some λ∗ > 0 such that λ∗y � x. Note that λ∗ is defined by the consumption levels offered by x
and y, and the only way the preference plays a role is through the fact that both x, y are in bd(Xs). In
order for Monotonicity to hold, it must be that bd(Xs) possesses some property that ensures λ∗y � x. It
is hardly clear what this property must be.
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3 Behavioral Postulates

For any stream x, we refer to cx ∈ C as its present equivalent if it satisfies:

cx ∼ x.

Denote by pt ∈ X the stream that pays p ∈ ∆ at time t and 0 in all other periods. Such a
stream is called a dated reward.

3.1 Basic Axioms

The following axiom is the same as in NT.

Axiom 1 (Regularity) (a) (Order) % is complete and transitive.
(b) (Continuity) For all x ∈ X, {y ∈ X : y % x} and {y ∈ X : x % y} are closed.
(c) (Impatience) For any p ∈ ∆ and t < t′,

pt % pt
′
.

(d) (C-Monotonicity) for all c, c′ ∈ C,

c ≥ c′ ⇐⇒ c % c′.

(e) (Monotonicity) For any x, y ∈ X,

(xt, 0, · · · , 0) % (yt, 0, · · · , 0) for all t =⇒ x % y.

Moreover, if (xt, 0, · · · , 0) � (yt, 0, · · · , 0) for some t, then x � y.

(f) (Risk Preference) For any p, p′, p′′ ∈ ∆ and α ∈ (0, 1],

p � p′ =⇒ α ◦ p+ (1− α) ◦ p′′ � α ◦ p′ + (1− α) ◦ p′′.

(g) (Present Equivalents) For any stream x there exists cx ∈ C s.t.

cx % x.

Order and Continuity are standard. Impatience states that consumption is better when
received sooner. C-Monotonicity states that more consumption is better than less. While
C-Monotonicity applies only to immediate consumption, Monotonicity is a property on
arbitrary streams: it requires that point-wise preferred streams are preferred. Present
Equivalents states that for any stream, there are immediate consumption levels that are
better than x. Given Order and Continuity, this ensures that each stream x has a present
equivalent cx ∈ C. Notably, each x has a unique present equivalent cx (by C-Monotonicity,
x ∼ cx > cy ∼ y implies cx � cy and therefore x � y). Risk Preference imposes vNM
Independence only on immediate consumption.
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3.2 Magnitude-Sensitivity

To identify whether an agent exhibits a magnitude effect (that is, greater patience towards
larger rewards), we follow the “lottery approach” considered by NT, which we describe
now.5 For any p ∈ ∆ and α ∈ [0, 1] define the mixture α◦p := α◦p+(1−α)◦0. In particular,
for c ∈ C, we write this lottery as α◦c in order to distinguish α◦c ∈ ∆ with a deterministic
consumption αc ∈ C. For any stream x = (x0, · · · , xT ) define α ◦ x := (α ◦ x0, · · · , α ◦ xT ).
We will say that “α ◦ x scales down stream x by α” to mean that it scales down the
probability of receiving x by α. Abusing notation, write α◦p for the stream (α◦p, 0, · · · , 0).
Consider a stream x and its present equivalent cx ∼ x. Note that the agent’s evaluation of
immediate consumption cx does not rely on impatience whereas that of a stream x does.
If impatience does not change in response to scaling down x by α, then it must be that:

α ◦ cx ∼ α ◦ x,

since the scaling down affects the evaluation of consumption equally for the immediate
reward and the stream. On the other hand, if scaling down x by α increases the agent’s
impatience, then α ◦ x must lose its desirability faster than the immediate reward α ◦ cx
(for which impatience is irrelevant):

α ◦ cx % α ◦ x.

Accordingly, NT behaviorally define an agent who’s impatience is decreasing in the mag-
nitude of rewards as one who exhibits:

Axiom 2 (Weak Homotheticity) For any x ∈ X and any α ∈ (0, 1),

cx ∼ x =⇒ α ◦ cx % α ◦ x.

The special case where α ◦ cx ∼ α ◦ x always holds is termed Homotheticity and is
used, along with Regularity and Separability (defined below) to characterize the DU rep-
resentation. Since we saw in Proposition 1 that cognitive optimization implies magnitude-
decreasing impatience, we maintain Weak Homotheticity. For later reference, we say that
a stream x ∈ X is magnitude-sensitive if the agent’s impatience strictly reduces whenever
the stream is made less desirable:

Definition 2 (Magnitude-Sensitivity) A stream x ∈ X is magnitude sensitive if

cx ∼ x =⇒ α ◦ cx � α ◦ x for all α ∈ (0, 1).

By vNM Independence, it is clear that immediate rewards are not magnitude sensitive.
Thus any magnitude-sensitive stream must have xt � 0 for some t > 0 (which corresponds
to “nontriviality” as defined in Section 2.3).

5Ideally, a temporal property like impatience should be behaviorally defined without reference to risk
preferences. NT also study an alternative approach based on the marginal rate of intertemporal substitution
(MRS). We take the lottery approach here since it communicates the main ideas more easily. We expect
that the ideas are straightforward to translate into the MRS approach.
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3.3 Non-Separability

Proposition 2 suggests that a non-binding cognitive constraint will give rise to both magnitude-
sensitivity and a separability property, whereas both properties are violated if the cogni-
tive constraint binds. We formulate Separability as in NT, and accordingly define Non-
Separability.

Suppose we measure the desirability of a stream (10, 10, 10) by its certainty equivalent
c(10,10,10). Pick any period, say period 2, and consider “breaking” the stream into two
streams like so: (10, 10, 0) and (0, 0, 10). Measure the desirability of these by the certainty
equivalents c(10,10,0) and c(0,0,10). Intuitively, Separability should require that the “total
desirability” of the streams (10, 10, 0) and (0, 0, 10) must in some sense be the same as that
of (10, 10, 10) Formally, NT’s Separability axiom requires the the 1

2
- mixtures of present

equivalents of (10, 10, 0) and (0, 0, 10) must be indifferent to that of (10, 10, 10) and (0, 0, 0):6

For all x ∈ X and all t > 0,

1

2
◦ cx +

1

2
◦ c0 ∼

1

2
◦ c(xt,0−t) +

1

2
◦ c(0t,x−t).

As suggested in Section 5, cognitive constraints give rise to violations of Separability.
Intuitively, if the agent is cognitively constrained then she has a limited amount of cognitive
resources at her disposal to generate patience. Since, compared to (10, 10, 10), there are
fewer periods to spend cognitive resources on in the streams (10, 10, 0) and (0, 0, 10), the
agent should exhibit more patience at these streams compared to (10, 10, 10). Consequently,
these streams should jointly be more attractive than (10, 10, 10). The direction of the
violation of Separability must therefore be as follows:

Axiom 3 (Weak Separability) For all x ∈ X and all t > 0,

1

2
◦ cx +

1

2
◦ c0 -

1

2
◦ c(xt,0−t) +

1

2
◦ c(0t,x−t).

For later reference, we define separability of a stream x ∈ X:

Definition 3 (Separable Streams) A stream x ∈ X is separable if for all t > 0,

1

2
◦ cx +

1

2
◦ c0 ∼

1

2
◦ c(xt,0−t) +

1

2
◦ c(0t,x−t).

6In a deterministic setting, the Separability condition in Koopmans [12] is strong enough to guarantee
additive separability of a representation only when it is defined on product domains, a feature that is not
satisfied in our model, where Separability must hold only on the set of magnitude-sensitive streams. If we
enrich the domain to include lotteries, then additive separability can be imposed via an vNM Independence
condition. In our context, we could simply use such an Independence condition if we had the richer domain
of lotteries over streams. However, in order to avoid adding a second layer of lotteries to their domain, NT
formulate a Separability condition by exploiting mixtures of certainty equivalence.
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Observe that dated rewards are trivially separable. Therefore non-separability can be
exhibited only by streams that have at least two non-zero future rewards.

We have seen in Section 2.3 (Propositions 1 and 2) that streams where the cognitive
constraint binds must not be magnitude-sensitive and may fail separability, while streams
where the cognitive constraint does not bind must be separable. These motivate the fol-
lowing key behavioral condition: For any x ∈ X,

x is not separable =⇒ x is not magnitude-sensitive.

In order to avoid stating negatives, we write this key condition in its contrapositive form:

Axiom 4 (Magnitude-Sensitive (MS) Separability) For any x ∈ X, if x is magnitude-
sensitive then it is separable.

Denote by Xms the set of all streams that are magnitude-sensitive and separable:

Xms = {x ∈ X : x is magnitude-sensitive and separable}.

Since immediate rewards cannot be magnitude-sensitive, ∆0 lies outside of Xms. The
streams outside of Xms ∪∆0 consists only of magnitude-insensitive dated rewards (which
are trivially separable) and non-separable magnitude-insensitive streams. It is natural to
intepret streams in Xms as those at which the agent’s cognitive constraint is not binding,
and streams outside of Xms ∪∆0 as those at which the constraint is binding.7

3.4 Threshold Condition

Proposition 3 suggests that when there exist cognitive capacity constraints, a “sufficient
reduction” in any stream will relax the cognitive constraint. Moreover, if the cognitive
constrain is already slack at a stream, then it will be slack for any reduction of the stream.
Given our behavioral definition of Xms, this feature can be readily formulated in an axiom
that mirrors Proposition 3 in that it replaces Xs with Xms. However the subsequent
discussion in Section 2.3 argued that some structure needs to be imposed on the threshold
between constrained and unconstrained streams, that is, on the boundary of Xms. Based on
that discussion, we will effectively presume that the boundary of Xms is determined by an
indifference condition. Our next axiom mirrors the claims in Proposition 3 but replaces the
≥-dominance requirement with a %-dominance requirement. In light of our Monotonicity
axiom, this amounts to a strengthening of the claims in that proposition.

For any x ∈ X, recall that x−0 denotes the stream that pays 0 in period 0 and pays
according to x from period 1 onward. That is, x−0 = (0, x1, · · · , xT ). We impose

7Cognitive constraints are not relevant for immediate streams since we are interested in cognitive re-
sources that are used to appreciate future rewards only. For the sake of comparison with Section 2.3 we
note that for a given CCE model, Xms is a strict subset of the set Xs, since Xms excludes ∆0 while Xs

does not. The relevance of magnitude-sensitivity is suggested by the first claim in Proposition 1. Accord-
ingly, we interpret the magnitude-sensitivity of the streams in Xms as revealing that the agent’s cognitive
constraint is not binding. The behavioral counterpart of the second claim in Proposition 1 will be implied
by our axioms.
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Axiom 5 (Preference-Based Threshold ) For all x ∈ X, the following hold.
(i) if x /∈ Xms ∪∆0, then there exists y ∈ Xms such that x−0 % y−0.
(ii) if x ∈ Xms and y satisfy x−0 % y−0 , then y ∈ Xms.

This axiom requires that the magnitude sensitivity of a stream x should be associated
with the “future utility” of the steam. Lower (resp. higher) future utility arises simulta-
neously with lower (resp. higher) consumption levels and therefore slack (resp. binding)
cognitive constraints. This property is reminiscent of Becker and Mulligan [3], where there
exists complementarity between time preference and future utilities. In their model, higher
physical wealth leads the agent to invest more resources in both increasing future consump-
tion as well as the future oriented capital. This leads to decreasing impatience for large
future utilities.

4 Representation Result: CCE* Model

Say that a tuple (u, {ϕt}, v) is regular* if (u, {ϕt}) is regular and 0 < v ≤ ϕ′1(1). We will
point out the relevance of the last condition after interpreting the following definition.

It will be useful to introduce some notation, specifically, the discount function Dun
x

obtained by solving the unconstrained optimization problem. If a discount function Dun
x

solves the unconstrained cognitive optimization problem, then it satisfies the first order
condition u(xt) = ϕ′t(D

un
x (t)) for each t > 0, and consequently it must satisfy

Dun
x (t) := (ϕ′t)

−1(u(xt)).

This equality defines Dun
x for all streams, including those streams at which the cognitive

constraint binds when solving the constrained optimization problem.

Definition 4 (CCE* Representation) A CCE* representation is a regular* tuple (u, {ϕt}, v)
such that % is represented by the function U : X→ R+ defined as follows:

U(x) = u(x0) +
∑
t>0

Dx(t)u(xt), x ∈ X,

where Dx solves
Dx = arg max

D∈[0,1]T
{
∑
t>0

D(t)u(xt)−
∑
t>0

ϕt(D(t))} (5)

subject to ∑
t>0

ϕt(D(t)) ≤ Kx (6)

where Kx :=
∑T

t=1 ϕt(D
un
λx◦x(t)) is defined using the unique solution λx to∑

t>0

Dun
λ◦x(t)u(λ ◦ xt) = v. (7)
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The difference from the CCE model is that the cognitive capacity Kx may vary with
the stream x. The functional form requires that Kx for stream x equals the cost of the
unconstrained discount function Dun

λx◦x for a scaled stream λx ◦ x. The scaling λx is deter-
mined by solving (7), requiring that the unconstrained discounted utility for λx ◦ x must
equal v. Note that Dun

λ◦x and the left-hand side of (7) are increasing in λ. Therefore if
λx ≥ 1, that means that Kx is high enough that the agent’s cognitive capacity does not
bind at x. If λx < 1, then the cognitive capacity must be binding. Thus the model offers
a simple tool for analysis: to determine whether the cognitive constraint binds or not at x,
compute the unconstrained discounted utility of x and check if it is higher or lower than v.
The existence of a solution to (7) is guaranteed by the assumption that 0 < v ≤ ϕ′1(1).8

4.1 Representation Theorem

If all x ∈ X are separable, then we are in the context of the CE model. So our interest lies
in preferences that are nonseparable in that there exists x ∈ X that is not separable. Our
general representation result is that:

Theorem 1 A nonseparable preference % on X satisfies Regularity, Weak Homotheticity,
MS Separability and Preference-Based Threshold if and only if it admits a CCE* represen-
tation.

NT prove that a preference on X satisfies Regularity, Weak Homotheticity and Sep-
arability if and only if it admits an (unconstrained) CE representation. MS Separability
relaxes Separability, while Preference-Based Threshold adds structure to the homotheticity
violations permitted by Weak Homotheticity.

The CCE* model has strong uniqueness properties. For any CCE* representation
(u, {ϕt}, v), define the maximal discount factor D(t) by the equation D(t)ϕ′t(D(t)) = v.
Denote by ϕt|[0,D(t)] the restriction of ϕt to the subdomain [0, D(t)].

Theorem 2 If there are two CCE* representations (ui, {ϕit}, vi), i = 1, 2 of the same

preference %, then (1) D
1
(t) = D

2
(t) = D(t) for all t > 0, and (2) there exists α > 0 such

that (i) u2 = αu1, (ii) ϕ2
t |[0,D(t)] = αϕ1

t |[0,D(t)] for all t > 0, and (iii) v2 = αv1.

Thus the tuple (u, {ϕt}, v) is unique upto a common scalar multiple. The sharp unique-
ness is obtained from the separability of the representation on the subdomain Xms and the
fact that u(0) = 0 is presumed in the representation

Although we did not impose Weak Separability in the main theorem, we verify that it
is in fact implied by the other axioms:

8Since ϕ′t is increasing in t (by definition of regularity of (u, {ϕt})), this assumption implies 0 < v ≤ ϕ′t(1)

for all t > 0. Note that the function L(λ) := Dun
λx (t)u(λxt) =

∑T
t=1(ϕ′t)

−1(u(λxt))u(λxt) is increasing and
continuous. Moreover, since ϕ′t(1) < ∞ (given in the definition of regularity of (u, {ϕt})), there exists λ
such that u(λx) ≥ ϕ′t(1) ≥ v for all t > 0, and thus in particular (ϕ′t)

−1(u(λxt)) ≥ 1 and u(λx) ≥ v.
It follows that L(λ) ≥ Tv ≥ v. At the same time L(0) = 0. Therefore the intermediate value theorem
guarantees the existence of a solution to (7).
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Proposition 4 If % admits a CCE* representation then it must satisfy Weak Separability.

We close this subsection with a reduced form of the model (with nontrivial constraints)
that may be useful for applications. The proof for this result is in the supplementary
appendix (Noor and Takeoka [21]).

Proposition 5 A preference % on X admits a CCE* representation (u, {ϕt}, v) if and
only if it admits the following representation defined by the tuple (u, {ϕt}, v):

U(x) = u(x0) +
∑
t>0

(ϕ′t)
−1(u(αxxt))u(xt),

where

αx = max

{
α ≤ 1

∣∣∣∣∣ ∑
t>0

αu(xt)(ϕ
′
t)
−1(αu(xt)) ≤ v

}
.

It is evident that when αx = 1 the model is additively separable, whereas when αx <
1 then it can violate Separability by virtue of the fact that αx depends on the stream
(specifically on future consumption x1, · · · , xT ).

An equivalent way to write the reduced form representation is:

U(x) =

{
u(x0) +

∑
t>0(ϕ′t)

−1(u(xt))u(xt) if
∑

t>0(ϕ′t)
−1(u(xt))u(xt) ≤ v,

u(x0) + maxD∈Dx
∑

t>0D(t)u(xt) otherwise,

where
Dx := {D ∈ [0, 1]T : ϕ(D) = Kx}.

Moreover, the maximizer over Dx satisfies

Dx(t) = (ϕ′t)
−1(αxu(xt)), ∀t > 0.

An interesting observation is that when restricted to streams that are “large” (in the
sense that the future utility

∑
t>0(ϕ′t)

−1(u(xt))u(xt) of the stream strictly exceeds v), the
CCE* representation is a maxmin-type (more precisely, maxmax-type) representation à
la Gilboa and Schmeidler [11]. The max operator implies that the CCE* representation
satisfies convexity (x ∼ y =⇒ α ◦ x+ (1− α) ◦ y % y for all α ∈ [0, 1]) for large streams.
Since the model is Separable for small streams, it satisfies convexity on that subdomain
as well. It may violate convexity when mixing a large and a small stream, however. The
CCE* model satisfies Weak Homotheticity, which is a property weaker than convexity and
corresponds to star-shapedness of the representation (that is, αU(x) ≥ U(α ◦ x) for all
α ∈ [0, 1]). Since our model violates convexity, it goes beyond models of convex preferences
in the literature (such as Maccheroni et al [16]).
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4.2 Proof Outline and Foundations of CCE

A proof sketch of sufficiency of Theorem 1 is as follows. Regularity and the separability
of the streams in Xms, yield an additively separable representation U(x) =

∑
t≥0 U(xt) on

Xms. This representation can be rewritten as a discounted utility with stream-dependent
discount function simply by defining u(p) = U0(p) and Dx(t) = Ut(xt)

u(xt)
. Given u and Dx, we

can derive an additive cost function ϕ =
∑
ϕt for which Dx is optimal – the cost function

is defined by the desired cognitive first order condition u(xt) = ϕ′t(Dx(t)) for each t > 0.
Here, the cost function ϕt is increasing and convex. This establishes that the preference
over Xms has a CCE* representation without any constraint.

The second step is to extend this representation to the whole domain. For any x ∈
X \∆0, consider the ray from the origin passing through x, that is, {α ◦ x |α > 0}. Weak
Homotheticity and Preference-Based Threshold imply that there exists a unique αx such
that α ◦ x ∈ Xms if and only if α ≤ αx. The stream αx ◦ x can be viewed as lying on the
“boundary” of Xms. We show that % satisfies “Homotheticity outside Xms” in the sense
that, for any x /∈ Xms ∪ ∆0, the preference satisfies cx ∼ x =⇒ α ◦ cx ∼ α ◦ x for all
α ∈ [αx, 1]. From this condition, the representation on Xms can be extended by defining
U(x) = u(cx) = U(αx◦x)/αx. Moreover, since αx◦x ∈ Xms, the utility U(αx◦x) admits an
additively separable representation by the first step. Thus, U(x) is more explicitly written
as U(x) = u(x0) +

∑
t≥1Dαx◦x(t)u(xt).

The remaining problem is to infer a capacity constraint Kx and to show that Dαx◦x can
be regarded as an optimal discount function for x under the constraint. As shown above,
along a ray {λ ◦ x |λ > 0}, as λ increases, Dλ◦x should first strictly increase (specifically,
as long as λ ◦ x ∈ Xms) and eventually become constant once λx crosses the boundary of
Xms. The main step in proving the theorem is to find the set of discount functions, Λx, for
which the optimal D computed subject to the constraint D ∈ Λx is precisely Dλx◦x. Define
Kx = ϕ(Dλx◦x) so that Kx is the total empathy cost of the unconstrained optimal discount
function at the boundary of Xms. The proof verifies that the constraint

Λx = {D ∈ [0, 1]T :
∑
t≥1

ϕt(D(t)) ≤ Kx}

does the job. The remaining step is to obtain the characterization for Kx using v. By
Preference-Based Threshold, all points on the boundary of Xms have the same future utility
v > 0. Then the scalar λx used to compute Kx is determined by an equation requiring that
the unconstrained utility of λx ◦ x to be v.

We close by commenting on the characterization of the CCE model. For any stream
x ∈ bd(Xms), integration by parts implies that:
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Kx = ϕ(Dx) =
∑
t≥1

∫ u(xt)

0

ϕ′t(Dr(t))
dDr

dr
(t) dr

=
∑
t≥1

∫ u(xt)

0

r
dDr

dr
(t) dr

=
∑
t≥1

[
u(xt)Du(xt)(t)−

∫ u(xt)

0

Dr(t) dr

]

= U(0, x−0)−
∑
t≥1

∫ u(xt)

0

Dr(t) dr. (8)

The technical condition that is needed to characterize the CCE model is that Kx = Ky for
all x, y ∈ bd(Xms). This requires that for all x, y ∈ bd(Xms),

(U(x)− u(x0))−
∑
t≥1

∫ u(xt)

0

Dr(t) dr = (U(y)− u(y0))−
∑
t≥1

∫ u(yt)

0

Dr(t) dr.

Although this technical restriction can in principle be expressed behaviorally9, it does not
translate into economically interesting behavior. This suggests that the “constant K”
feature of CCE may not be of any particular economic interest. We propose the CCE*
class since it contains all that is of economic interest in the CCE class, still intersects with
it, and has a benefit of added tractability.

5 Representation Result: Homogeneous CCE Model

Most applications of the CCE* model will likely assume that costs have the power form
ϕt(d) = at · dm. As it turns out, this defines a particularly interesting special case of our
model.

The following restriction is taken from NT:

Axiom 6 (Magnitude-Sensitive (MS) Homogeneity) For any magnitude-sensitive dated
rewards pt, qs ∈ Xms, their present equivalents cpt ∼ pt and cqs ∼ qs, and any α, β ∈ (0, 1),

β ◦ cpt ∼ α ◦ pt =⇒ β ◦ cqs ∼ α ◦ qs.
9The expression (8) can be measured behaviorally as follows. The utility index u is an expected utility

over lotteries ∆ = ∆(C), and so can be defined in the usual way: normalize u(0) = 0 and u(c1) = 1 for
some arbitrary c1 ∈ C, and consequently for any c the utility u(c) is given by θ ∈ R+ s.t. 1

θ ◦ c ∼ c1. With
u defined behaviorally, we can take the present equivalent c(0,x−0) ∼ (0, x−0) and behaviorally measure the
term U(0, x−0) by the utility u(c(0,x−0)). For any c and t, the discount factor Du(c)(t) is defined by the

θ ∈ [0, 1] s.t. θ ◦ c ∼ ct. Consequently the term
∑
t≥1
∫ u(xt)

0
Dr(t) dr can be behaviorally measured.
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MS Homogeneity states that if scaling down pt by α is as good as scaling down its
present-equivalent cpt by β, then β depends on α but not the dated reward. When imposed
on the CCE* model, it yields the power form for cost functions, as intended. Surprisingly,
it also forces Kx to be constant, thereby leading to a CCE model.

Theorem 3 A preference % on X satisfies the CCE* axioms and MS Homogeneity if
and only if it admits a Homogenous CCE representation, that is, a CCE representation
(u, {ϕt}, K) where for each t ≥ 1, the cost function ϕt : [0, 1]→ R+ takes the power form

ϕt(d) = at · dm,

and at is increasing in t.

The uniqueness properties are given by:

Theorem 4 If there are two Homogeneous CCE representations (ui, {ϕit}, Ki), where ϕit(d) =
ait · dmi, i = 1, 2, of the same preference %, then there exists α > 0 such that (i) u2 = αu1,
(ii) a2

t = αa1
t and m2 = m1, and (iii) K2 = αK1.

This is a corollary of Theorem 2. Part (i) is the same as the counterpart of that theorem.
By part (ii) of Theorem 2, ϕ2

t |[0,[D(t)] = αϕ1
t |[0,D(t)], which pins down the curvature of the

cost function, that is, m1 = m2, and hence, a2
t = αa1

t follows. Finally, since D
1
(t) =

D
2
(t) = D(t) as shown in Theorem 2, the regularity* condition implies ait(D(t))m = Ki,

i = 1, 2, which boils down to K2 = αK1, as desired.
A proof sketch of sufficiency of Theorem 3 is as follows. Start with the CCE* repre-

sentation. MS Homogeneity implies that ϕt satisfies the multiplicative Cauchy functional
equation and so we conclude that it has the power form. To see why Kx is constant, recall
from Section 4.2 that for any x ∈ bd(Xms) the capacity Kx satisfies the expression (8).
When ϕt has the power form, then a simple calculation (also implied by Euler’s Theorem
for homogeneous functions) yields that

Kx =
∑
t≥1

ϕt(Dx(t)) ∝ U(x)− u(x0). (9)

But Preference-Based Threshold already requires that U(x)− u(x0) = U(y)− u(y0) for all
streams x, y ∈ bd(Xms). Therefore Kx is constant for all streams on the boundary of Xms.
This completes the proof because for any general stream x, the capacity Kx is constant
along the ray, that is, Kx = Kλ◦x for all λ > 0, and thus is completely defined by the
Xms-boundary point λx ◦ x.
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5.1 Reduced Form

It is instructive to explicitly derive the reduced form of the Homogeneous CCE model. For
any stream, the optimal discount function Dx satisfies the FOC of Lagrangian:

L =
∑
t≥1

(D(t)u(xt)− ϕt(D(t))) + ξ(K −
∑
t≥1

ϕt(D(t))),

where ξ ≥ 0 is a Lagrange multiplier. Given the functional form of ϕt and the FOC with
respect to D(t) given by u(xt) = (1 + ξ)ϕ′t(D(t)), we have

Dx(t) =

(
u(xt)

(1 + ξ)mat

) 1
m−1

.

If the capacity constraint is slack, ξ = 0, and hence,

Dx(t) =

(
u(xt)

mat

) 1
m−1

= γ(t)u(xt)
1

m−1 ,

in which case Dx(t) depends only on u(xt). If the capacity constraint is binding, then by
definition, Dx satisfies ∑

t≥1

ϕt

((
u(xt)

(1 + ξ)mat

) 1
m−1

)
= K.

Solving for ξ and substituting it back into Dx(t) yields

Dx(t) =
(mK)

1
mγ(t)u(xt)

1
m−1{∑

τ≥1 γ(τ)u(xτ )
m
m−1

} 1
m

,

which is not time-separable, that is, Dx(t) depends on the entire stream x and not just
payoff at time t. For large α > 1, the capacity constraint binds for α ◦ x, and the optimal
discount function Dα◦x stops growing with α.

By virtue of being a special case of CCE*, this model admits a clean way of distinguish-
ing magnitude sensitive and other streams in terms of the representation. For any stream x,
the discounted “future utility” achieved from x is given by

∑
t≥1Dx(t)u(xt) = U(x)−u(x0).

In the Homogeneous CCE representation, a stream x is magnitude sensitive iff its future
payoff U(x)−u(x0) is less than some threshold.10 This is expressed in the next proposition.

Write γ(t) := (mat)
− 1
m−1 . Since at is increasing, γ(·) is a weakly decreasing function.

10This property is reminiscent of Becker and Mulligan [3], that derive an observation about complemen-
tarity between time preference and future utilities. In our model, up to the threshold, impatience decreases
in future payoffs, it achieves the minimum impatience at the threshold, and becomes invariant beyond that.
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Proposition 6 If % admits a CCE representation (u, {atdm}Tt=1, K), then

U(x) =

 u(x0) +
∑

t>0 γ(t)u(xt)
m
m−1 if

∑
t>0 γ(t)u(xt)

m
m−1 ≤ mK

u(x0) + (mK)
1
m

{∑
t>0 γ(t)u(xt)

m
m−1

}m−1
m

if
∑

t>0 γ(t)u(xt)
m
m−1 > mK

.

The proof is in the supplementary appendix (Noor and Takeoka [21]). According to
the reduced form, when the future utility of a stream is “small”, the utility function is
additively separable (as in Proposition 2), and future utility index is effectively u(xt)

m
m−1 ,

a power transformation of immediate utility u. Since u(p) is an expected utility, risk
preferences are unchanged with t. However, the parameter m will affect intertemporal
substitution. When the future utility of a stream is “large”, the utility function is no
longer additively separable: future utility is evaluated using a concave aggregator.

6 Applications

We study properties of the model in two settings: a consumption-savings problem and a
task-completion problem. Below we use the terms “sophisticated” and “naive” in the sense
of O’Donoghue and Rabin [23]. The proofs for the results in this section can be found in
the supplementary appendix (Noor and Takeoka [21]).

6.1 Consumption-Savings Problem

Suppose that there are only 3 periods, t = 0, 1, 2, and consumption space is given by
C = R+. Suppose that u is a power function u(c) = cσ, and that the cost function is
homogenous, ϕt(d) = atd

m for some m > 1 and 0 < a1 ≤ a2. Self 0 is a CCE agent
(u, {ϕ1, ϕ2}, K0) and Self 1 is a CCE agent (u, {ϕ1}, K1) where K0, K1 ≤ a1, while Self 2
simply maximizes u. It will be natural to assume K0 = K1 but we leave the model more
general for the sake of performing comparative statics.

Suppose that income in periods 0 and 1 are I0 and I1 respectively, and there is no
income in period 2. The rate of interest is r > 0, and define R = 1 + r. The agent faces
the usual intertemporal budget constraints:

c0 + s0 = I0, c1 + s1 = I1 +Rs0, c2 = Rs1,

and we disallow borrowing, st ≥ 0 for t = 0, 1.

6.1.1 Comparative Statics: Cognitive Capacity

Assume that both selves are cognitive constrained at the solution to the consumption-
savings problem. Assume also that 0 < σ m

m−1
< 1, which says that the curvature of ϕt,

parametrized by m > 1, is not too low. This is to ensure that the first order conditions
are sufficient to establish a solution. Denoting the optimal saving rules by s∗t , t = 0, 1, we
consider impact on saving of an infinitesimal change in cognitive capacity.
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Proposition 7 Assume 0 < σ m
m−1

< 1 and suppose that both self 0 and self 1 are cogni-
tively constrained at their respective optimal consumption path. Then the following hold for
the sophisticated CCE model along the optimal consumption path:

(i) s∗1 is increasing in K1.
(ii) s∗0 is increasing in K0.

(iii) s∗0 is increasing in K1 if and only if a1/a2 > (R−σ(K1/a1)1−σ− 1
m )

1
1−σ .

(iv) Let K0 = K1 = K. Then s∗0 is increasing in K if a1/a2 > (R−σ(K/a1)1−σ− 1
m )

1
1−σ .

The first two claims confirm the intuition that if the cognitive capacity of a given self
increases then they become more patient. The third claim reveals a nuance. If self 1’s
cognitive capacity is increased, then self 0’s response depends on parameters. The reason is
that a change in self 1’s preferences may or may not exacerbate the dynamic inconsistency
anticipated by self 0. Because a1, a2 respectively determine the cost functions ϕ1, ϕ2, the
ratio a1/a2 captures self 0’s (magnitude-dependent) weighting of self 1 vs self 2. If a1/a2 is
“low” then the agent does not care much for self 2 relative to self 1. However, ifK1 increases,
then self 1 will increasingly care for self 2, thereby exacerbating dynamic inconsistency. In
this case, self 0 will choose to reduce her savings.

The fourth claim in the proposition applies to the more natural specification of the
model where both self 0 and self 1 have the same capacity K. While initial intuitions may
have suggested that greater capacity would lead all selves to become more patient, the
nuance uncovered in the third claim determines this intuition to be inaccurate. There is an
interesting take-away from this. If field evidence in future research confirms the intuitive
claim that savings are higher among less cognitively constrained agents, then such a finding
would in fact be lending support to the hypothesis of naivete. Instead, if savings are found
to be lower, then evidence for sophistication would be obtained.

6.1.2 Calibrating DU: Observational Non-Equivalence

Can the consumption-savings profile of a Sophisticated CCE agent be explained by a So-
phisticated beta-delta model (Laibson [14])? It is readily shown that:

Proposition 8 Suppose 0 < σ m
m−1

< 1 and consider the consumption profiles of a Sophis-
ticated CCE agent with K0 = K1 that is constrained along the optimal consumption paths
at any two distinct R,R′ > 1. There does not exist a Sophisticated beta-delta model (with
utility index u) that can simultaneously match these consumption profiles.

Since the standard exponential discounting model is a special case of the Sophisticated
beta-delta model, the result establishes observational non-equivalence with the standard
model as well. The reason is that the nonseparability of the CCE model comes into play as
R varies. In the proof we show that any calibrating beta-delta model must strictly change
with R. While the algebra in the proof is greatly simplified by assuming that the beta-delta
model has the same u as the CCE model, we expect the non-equivalence to hold even if we
have freedom to choose the utility index for the calibrating model.
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6.2 Age-Decreasing Impatience

As explained in the Introduction, the dynamic CCE model (where each self has the same
K) should embody a notion of decreasing impatience with respect to age. Intuitive as this
maybe, it is not straightforward to formalize this because it is not clear how to compare two
discount functions that are magnitude-dependent and have different horizons. We establish
two expressions of age-decreasing impatience.

In the consumption-savings context, restrict attention only to Naive CCE – this is so
as to remove the impact on saving of the agent’s dynamic inconsistency. We show that
the marginal propensity to save (the derivative of the saving rule with respect to current
wealth) of each self along the optimal consumption path is consistent with age-decreasing
impatience.

Proposition 9 Consider the Naive CCE model with K0 = K1, assume 0 < σ m
m−1

< 1
and suppose that both self 0 and self 1 are cognitively constrained at their respective optimal
consumption path. Then self 1’s marginal propensity to save is greater than self 0’s marginal
propensity to save along the optimal consumption path.

That is, regardless of how I0 compares with I1, as long as the assumptions are satis-
fied, self 1 always has a higher marginal propensity to save than self 0. Because self 1 is
constrained, and since she has only one future period to consider, she must be spending all
her cognitive resources on that period and thus her optimal Dself 1(1) must be maximal.
Although Self 0 is constrained as well, her Dself 0(1) may not be at this maximum since
she has to spend resources on Dself 1(2) as well. The net result is a greater impatience as
expressed by marginal propensity to save.

For a second expression of age-decreasing impatience, consider two agents born in dif-
ferent periords – in what follows t, T represent delays from their respective period zeros.
Compare the discount functions of an older and younger agent with respective horizons
T − 1 and T . In order to control for differences due to magnitude dependence, it is nec-
essary to assume that both agents face streams that are identical upto period T − 1. In
order to avoid comparing discount functions with different horizons, we will in fact suppose
that the older agent also has a horizon T but her consumption in the last period is fixed at
0. So, take any T -horizon stream x that pays 0 in the terminal period T , and consider a
stream x+ εT that pays the same as x upto period T − 1 but pays ε > 0 in period T . The
proposition below allow us to compare the discount function Dx of the old agent who faces
x and the discount function Dx+εT of the young agent who faces x + εT , and establishes
that

Dx+εT (t) ≤ Dx(t) for all 0 < t ≤ T − 1,

that is, the younger agent’s discount function is dominated by the older agent’s for all
periods upto T − 1. The proposition, however, is proved for more general pairs of streams
– specifically, any x ∈ X and any τ ≤ T .
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Proposition 10 For any static CCE model, stream x ∈ X and ετ with τ > 0,

Dx+ετ (τ) ≥ Dx(τ),

and
Dx+ετ (t) ≤ Dx(t) for all 0 < t 6= τ.

The proposition states that improving a stream in one period τ increases impatience
towards other periods. As shown in the proof, this increase leads to no change in the
discount factor for other periods t 6= τ if the agent is unconstrained at x+ ετ . But if she is
constrained, then the resources used for Dx+ετ (τ) must be generated by diverting cognitive
resources from Dx+ετ (t) for t 6= τ .

6.3 Task Completion Problem

Suppose that the horizon is T + 1 where T + 1 is an odd number. Suppose that decisions
are to be made only in periods t = 0, 2, 4, · · · , T. If the agent performs no task in period
t = 0, 2, · · · , T , then she receives r > 0 in that period and 0 in the following period t + 1.
If she does a task in period t = 0, 2, · · · , T , then she receives 0 in that period and R > r in
the following period t+ 1.

Throughout this section we consider a Sophisticated CCE model with K0 = K1.

6.3.1 Too Many Desirable Tasks

Suppose there are n identical tasks available to the agent to be completed in any order.
There is a single deadline – period T – such that only tasks completed by T yield any
reward. At most one task can be completed at a time – therefore when there are n > 0
tasks, at least 2n − 2 periods are required to complete them. It is possible to complete
(and reap the rewards of) just a subset of them.

Proposition 11 Suppose the agent would complete one task at t = 0 if there was one
available to be done at T = 0. Then for any n > 0 and a deadline of T = 2n− 2, the CE
agent would complete all n tasks. The CCE agent may complete less than n tasks, and in
fact may cycle between activity and inactivity.

The intuition is as follows. The CE agent has separable preferences. If a task is
attractive today, then it remains attractive no matter how many tasks are completed in
the future. Consequently, an induction argument allows us to show that the agent would
do as many desirable tasks as are available. The CCE agent, on the other hand, violates
Separability. In particular the attractiveness of the reward of today’s task is impacted
by how many rewards the agent is anticipating from future tasks - the presence of future
rewards reduce the cognitive resources available to appreciate the reward of the current
task. The more such future rewards the agent is expecting, the less cognitive capacity the
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agent has to allocate to appreciating the reward of today’s task. This is where the induction
argument breaks down.

In the proof we construct an example of a CCE agent with three tasks to be completed
by period T = 4. By assumption, the task is desirable enough that it will be completed in
period T = 4 if there is one to be done. In period t = 2, the agent knows that the period
T = 4 self will complete the task, and as noted above, due to limited cognitive capacity,
she may not be able to appreciate the rewards of doing a task today, and therefore does
not do the task. One might expect the same consideration to arise in period t = 0, but
interestingly, it may not. The reason is that the cost of thinking ϕ5 about the reward R in
period 5 (received due to self T = 4’s effort) are higher than the cost of thinking ϕ3 and
so the t = 0 self does not direct as many resources to period 5. That leaves more cognitive
resources available to appreciate the reward from current effort.

6.3.2 Too Much Flexibility

Suppose now that there is only one task to be done and that the deadline is lax. We show
that if the task is desirable, the CE agent would complete it immediately regardless of the
deadline. However, for constrained agents, there is such a thing as giving them too much
time to complete the task, in that beyond a certain point a longer deadline may prompt
them to procrastinate on doing the task.

Proposition 12 Suppose that there is only one task, and that the agent would complete it
at t = 0 if if the deadline is T = 2. Then the CE agent would complete the task at t = 0
for any longer deadline T ≥ 2. For the CCE agent there may exist T > 2 such that the
agent would not do the task immediately.

The intuition is similar to the case of too many tasks. We have assumed that within the
deadline, not doing the task leads the agent to receive a small immediate benefit. When the
deadline is long then there are more such small benefits to be accrued, and these detract
from the benefit of doing the task.

7 Avenues for Future Research

This paper provides a first step towards understanding constrained cognitive optimization
in time preference, and there is much room for future research to extend the model to
study richer cognitive models of intertemporal choice. For instance, studies show that
poverty is correlated with lower cognitive abilities (Mani et al [17]). This suggests that
current consumption may impact cognitive capacity: tolerating low consumption may use
up some of the resources that would otherwise be used to think about the future. This
can be captured in an extension of the CCE model where Kx0 is increasing in current
consumption. An interesting implication of such a model is that the poor may engage in
myopic consumption (e.g. overspending on alcohol, festivals and underspending on food
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and education – Banerjee and Duflo [2]) because it helps bolster cognitive resources, and
not because low cognitive resources makes them myopic. Other studies (such as Read and
Scholten [25]) suggest that adding a future reward to a stream may reduce impatience
by attracting attention towards the future. Attention can possibly be modelled as the
enhancement of cognitive capacity available for a stream, something that can be captured
by an extension of the CCE model where Kx depends on the stream in some appropriate
manner.

Cognitive models may also be developed to relate impatience and self-awareness. It is
very natural to expect that one’s degree of sophistication about future behavior may be
determined by costly cognitive effort. Thinking about future preferences may yield a belief
over possible future preferences, and higher cognitive effort may sharpen these beliefs (see
Noor and Takeoka [22] for a model of optimal cognitive uncertainty). If the cost of cognitive
effort in improving sophistication is drawn from the same cognitive stock K that generates
empathy for future selves then there may be interesting trade-offs for behavior.

Finally, in this paper we have interpreted the vector x = (x0, · · · , xT ) as a consumption
stream, but it can also be interpreted as a vector of attributes in a deterministic choice
setting, or as an Anscombe-Aumann act in a subjective uncertainty setting with states
s = 1, · · · , T , or a probability vector on fixed outcomes t = 0, · · · , T in a risk setting.
Thus, our focus on time preference not withstanding, this paper may also serve as a starting
point for thinking about the role of cognitive constraints in other choice domains that are
of central economic interest.

A Appendix: Proof of Proposition 1

Given the first order condition u(xt) = ϕ′t(Dx(t)) on Xs, since the model requires ϕ′t(0) = 0,
it must be that if u(xt) = 0 then we have the solution Dx(t) = 0. Since ϕ is strictly convex,
it must be that the solution Dx(t) is strictly increasing in u(xt). Given that u is linear,
the FOC satisfies αu(xt) = u(α ◦ xt) = ϕ′t(Dα◦x(t)) for every t > 0 and so we have
Dα◦x(t) ≤ Dx(t) for any α ∈ (0, 1), with strict inequality for all t > 0 s.t. u(xt) > 0 .

To establish the second claim observe that when the constraint is binding, it must be
that the optimal Dx satisfies

u(xt)

u(xt′)
=
ϕ′t(Dx(t))

ϕ′t(Dx(t′))
∀t, t′ > 0, and

∑
t≥1

ϕt(Dx(t)) = K.

Since u(α ◦ x) = αu(x), it follows that for any α ∈ (0, 1) we have
ϕ′t(Dα◦x(t))

ϕ′t(Dα◦x(t′))
= u(α◦xt)

u(α◦xt′ )
=

u(xt)
u(xt′ )

=
ϕ′t(Dx(t))

ϕ′t(Dx(t′))
. Note that since ϕ′t is strictly increasing, these ratios imply that if

Dα◦x(t) > (resp <)Dx(t) for some t > 0 then Dα◦x(t
′) > (resp <)Dx(t

′) for all t > 0.
It can never be that Dα◦x(t) > Dx(t) for all t since we obtain the contradiction that
ϕt(Dα◦x(t)) >

∑
t≥1 ϕt(Dx(t)) = K. If it is the case that Dαn◦x(t) < Dx(t) for all t for some
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sequence αn ∈ (0, 1) converging to 1, then we have ϕt(Dαn◦x(t)) <
∑

t≥1 ϕt(Dx(t)) = K
and consequently the constraint is slack for all αn ◦ x. But then αn ◦ x ∈ Xs for all n,
implying x ∈ Xs, a contradiction. Conclude that Dα◦x(t) = Dx(t) for all α sufficiently close
to 1.

B Appendix: Proof of Proposition 2

Begin with an observation about any x ∈ Xs. Since the constraint is not binding on
Xs and since the optimization problem (3) is separable in t, the discount factor Dx(t) is
determined separately for each t. Indeed, each Dx(t) can be written as function Du(xt)(t) of
consumption xt alone. Therefore U can be written as some sum U(x) = u(x0)+

∑
t≥1 Ut(xt)

on Xs.
To prove the proposition, take x ∈ Xs. Clearly, a reduction in the magnitude of any

outcome will keep the stream in Xs. Therefore U(xt, 0−t) = Du(xt)(t)u(xt) and U(0t, x−t) =∑
t′ 6=tDu(xt′ )

(t′)u(xt′) and we obtain that U(x) + U(0) = U(x) = U(xt, 0−t) + U(0t, x−t).
Next take x /∈ Xs. Consider the discounted utilities:

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

U(xt, 0−t) = D(xt,0−t)(t)u(xt)

U(0t, x−t) =
∑
t′ 6=t

D(0t,x−t)(t
′)u(xt′).

The first order condition for Dx requires that for all t, t′ where u(xt), u(xt′) > 0,

u(xt)

u(xt′)
=
Dx(t)

Dx(t′)
.

and sinceDx(t) = 0 whenever u(xt) = 0, we can write the binding constraint as
∑

t:u(xt)>0 ϕ(Dx(t)) =

K. The discount functions for the streams (xt, 0−t), (0t, x−t) satisfy the same displayed
equality of ratios but there are fewer periods with u(xt) > 0 and consequently the capac-
ity constraint applies to fewer discount factors. It follows that D(xt,0−t)(t) ≥ Dx(t) and
D(0t,x−t)(t

′) ≥ Dx(t
′) for all t′ 6= t. Consequently U(x) + U(0) = U(x) ≤ U(xt, 0−t) +

U(0t, x−t).

C Appendix: Proof of Proposition 3

(a) For any α ∈ (0, 1), define the discount function Dun
α◦x that satisfies the FOC αu(xt) =

ϕ′t(D
un
α◦x(t)) for each t. Since ϕ′t is continuous and ϕ′t(0) = 0 it follows that Dun

α◦x → 0
as α → 0. Since K > 0 and ϕt is continuous and satisfies

∑
t≥1 ϕt(0) = 0, it follows

that there exists α∗ s.t.
∑

t≥1 ϕt(D
un
α∗◦x(t)) < K. Thus, Dun

α∗◦x satisfies the FOC and the

27



capacity constraint is slack at Dun
α∗◦x. It follows that Dα∗◦x = Dun

α∗◦x is the solution of the
optimization problem for α∗ ◦ x and indeed, α∗ ◦ x ∈ Xs. This completes the proof.

(b) Take any x ∈ Xs where u(xt) > 0 for some t > 0. The solution Dx(t) satisfies
the FOC. Take any y � x and define the discount function Dun

y that satisfies the FOC.
Since ϕ′ is strictly increasing, we must have Dun

y � Dx. Since ϕ is strictly increasing, we
consequently obtain

∑
t≥1 ϕt(D

un
y (t)) <

∑
t≥1 ϕt(Dx(t)) ≤ K. Thus Dun

y satisfies the FOC
and the capacity constraint is slack at Dun

y . It follows that Dy = Dun
y is the solution of the

optimization problem for y and indeed, y ∈ Xs.

D Appendix: Proof of Theorem 1

The necessity of the axioms is relegated to the supplementary appendix (Noor and Takeoka
[21]). Below we show sufficiency. We proceed in steps. Denoted the set of all magnitude
sensitive and separable streams by Xms ⊂ X.

D.1 Additively Separable Utility Representation on Xms

Lemma 1 The preference %|∆0 is represented by a utility function u : ∆ → R+ with
u(0) = 0 which is continuous, mixture linear, homogeneous (that is, u(α ◦ p) = αu(p) for
all α ≥ 0), and the restriction of u on C is strictly increasing. Moreover, the preference %
on X is represented by a continuous utility function U : X → R+ such that U(p) = u(p)
for all p ∈ ∆0.

Proof. By Regularity, %|∆0 satisfies the vNM axioms. There exists a continuous mixture
linear function u : ∆→ R+ which represents %|∆0 and which can be chosen so that u(0) = 0.
Moreover, C-Monotonicity implies that the restriction of u on C is strictly increasing.

Establish homogeneity of u next. If α ∈ [0, 1], by mixture linearity of u, together with
identifying α ◦ p with α ◦ p+ (1− α) ◦ 0,

u(α ◦ p) = u(α ◦ p+ (1− α) ◦ 0) = αu(p) + (1− α)u(0) = αu(p).

If α > 1, we identify α ◦ p with p′ ∈ ∆ satisfying p = 1
α
◦ p′ + α−1

α
◦ 0. Then, mixture

linearity of u implies that u(p) = 1
α
u(p′), that is, u(α ◦ p) = u(p′) = αu(p), as desired.

For any x ∈ X, the Present Equivalents axiom ensures that there exists cx ∈ C such
that cx ∼ x. Define U(x) = u(cx). By construction, U represents %. Moreover, for all
p ∈ ∆, U(p) = u(p). In particular, we have U(0) = u(0) = 0.

To show the continuity of U , take any sequence xn → x̂. There exists a corresponding
present equivalent cxn ∼ xn. Since U(xn) = u(cxn) and u is continuous, we want to show
that cxn → cx̂.

Claim 1 The present equivalent is continuous, that is, if xn → x, then cxn → cx̂.
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Proof. Take any c and c such that c > cx̂ > c. Let W = {x ∈ X | c � x � c}. Since
xn → x̂ ∼ cx̂, by Continuity, we can assume xn ∈ W for all n without loss of generality.

Seeking a contradiction, suppose cxn 6→ cx̂. Then, there exists a neighborhood of cx̂,
denoted by B(cx̂), such that cxm /∈ B(cx̂) for infinitely many m. Let {xm} denote the
corresponding subsequence of {xn}. Since xn → x̂, {xm} also converges to x̂. Without loss
of generality, we can assume xm ∈ W , that is, c � xm ∼ cxm � c. By C-Monotonicity,
c > cxm > c. Thus, {cxm} belongs to a compact interval [c, c], and hence, there exists a
convergent subsequence {cx`} with a limit c̃ 6= cx̂. On the other hand, since x` → x̂ and
x` ∼ cx` , Continuity implies x̂ ∼ c̃. Since cx̂ is unique, cx̂ = c̃, which is a contradiction.

For each t ≥ 1, let
∆t = {p ∈ ∆ | pt ∈ Xms}.

Lemma 2 On the subdomain Xms ∪∆0 ⊂ X, U can be written as an additively separable
utility form, i.e. U : Xms ∪∆0 → R+ s.t. for all x ∈ Xms ∪∆0,

U(x) = u(x0) +
∑
t≥1

Ut(xt),

where u is given as in Lemma 1 and Ut : ∆t → R are continuous with Ut(0) = 0 for each
t. Moreover, u is unbounded from above.

Proof. Take any x ∈ Xms, which is denoted by x = (x0, x1, · · · , xT ). There exists some
t > 0 with xt � 0. We start with the case where there are two xt, xs � 0. By notational
convenience, denote such a stream by (xt, xs, 0−t,−s). Since this stream is separable,

1

2
◦ c(xs,0−s) +

1

2
◦ c(xt,0−t) ∼

1

2
◦ c(xt,xs,0−t,−s) +

1

2
◦ 0.

Since u is mixture linear,

u(c(xs,0−s)) + u(c(xt,0−t)) = u(c(xt,xs,0−t,−s)) + u(0)

⇐⇒ U(xs, 0−s) + U(xt, 0−t) = U(xt, xs, 0−t,−s).

Define Ut(xt) = U(xt, 0−t) and Us(xs) = U(xs, 0−s). Then, we have

U(xt, xs, 0−t,−s) = Ut(xt) + Us(xs). (10)

If a separable stream x has three outcomes xt, xs, xr � 0, denote it by x = (xt, xs, xr, 0−t,−s,−r).
By PBT, (xt, xs, 0−t,−s) ∈ Xms. From the above argument, we have (10). Since x is sepa-
rabile,

1

2
◦ c(xr,0−r) +

1

2
◦ c(xt,xs,0−t,−s) ∼

1

2
◦ c(xt,xs,xr,0−t,−s,−r) +

1

2
◦ 0.

Since u is mixture linear,

u(c(xr,0−r)) + u(c(xt,xs,0−t,−s)) = u(c(xt,xs,xr,0−t,−s,−r)) + u(0)

⇐⇒ U(xr, 0−r) + U(xt, xs, 0−t,−s) = U(xt, xs, xr, 0−t,−s,−r).
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Define Ur(xr) = U(xr, 0−r). Then, we have

U(xt, xs, xr, 0−t,−s,−r) = Ur(xr) + U(xt, xs, 0−t,−s)

= Ut(xt) + Us(xs) + Ur(xr).

By repeating the same argument finitely many times, we have

U(x) =
∑
t≥0

Ut(xt),

where Ut(xt) is defined as Ut(xt) = U(xt, 0−t). By definition, Ut(0) = 0. By PBT, for any
x ∈ Xms, if xt � 0 then (xt)

t ∈ Xms, that is, (xt)
t ∈ ∆t. Hence, Ut is defined on ∆t.

Since U is continuous, Ut is also continuous. Take any p ∈ ∆ and any sequence xn =
(0, xn1 , · · · , xnT ) ∈ Xms, where xnt → 0 for all t ≥ 1. By PBT, (p, xn−0) = (p, xn1 , · · · , xnT ) ∈
Xms. Since (p, xn−0) → p ∈ ∆0, by continuity, U(p, xn−0) → u(p) and U(p, xn−0) = U0(p) +∑

t≥1 Ut(x
n
t )→ U0(p). Thus, U0(p) = u(p).

Finally, we show that u must be unbounded above. First, we show that u is unbounded
above. By seeking a contradiction, suppose otherwise. Then, the range of u is nonempty
and has an upper bound. There exists a supremum v of the range of u. By Monotonicity, Ut
is non-constant, and hence, there exists some p̃ ∈ ∆t with Ut(p̃) > 0. Note that p̃t ∈ Xms.
Take a lottery p ∈ ∆ such that v − u(p) < Ut(p̃). Consider the stream x which pays p in
period 0, p̃ in period t, and zero otherwise. By PBT, x ∈ Xms. By the representation,

U(x) = u(p) + Ut(p̃) > v.

Since v is the supremum of u(∆), the above inequality contradicts the Present Equivalents
axiom.

Lemma 3 The function U : Xms ∪ ∆0 → R+ defined as in Lemma 2 can be written as
follows:

U(x) = u(x0) +
∑
t≥1

Du(xt)(t)u(xt),

where for all t ≥ 1, Du(p)(t) ∈ [0, 1] and Du(p)(t) is continuous and strictly increasing in
u(p).

Proof. Taking the additive representation from Lemma 2, by Monotonicity, we have that
Ut(xt) can be written as an increasing transformation of u(xt). So we can write Ut(xt)

as Ut(u(xt)). Define Dx by Du(xt)(t) = Ut(u(xt))
u(xt)

> 0 for any xt ∈ ∆ with xt � 0. Define

D(t) = inf {Du(p)(t) | 0 ≺ p ∈ ∆t}. Then

U(x) = u(x0) +
∑
t≥1

Du(xt)(t)u(xt), for all x ∈ Xms ∪∆0.
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To see that Du(p)(t) is strictly increasing in u(p), note that for any stream x ∈ Xms and
its present equivalent cx, by definition of Xms, αU(cx) > U(α ◦ x) for all α ∈ (0, 1) and
thus αU(x) > U(α ◦x). Applying this more specifically to a dated reward pt with u(p) > 0
and exploiting mixture linearity of u, we obtain αDu(p)(t)u(p) > Du(α◦p)(t)u(α ◦ p) =
αDαu(p)(t)u(p) and thus

Du(p)(t) > Dαu(p)(t), for all α ∈ (0, 1),

as desired.
Since u and Ut are continuous, so is Du(p)(t) in u(p) on the domain of u(p) > 0. Since

D(t) is defined as inf{Du(p)(t) | 0 ≺ p ∈ ∆t} and Du(p)(t) is strictly increasing in u(p),
Du(p)(t) is indeed continuous for all u(p) ≥ 0.

Take any Du(p)(t). There exists a corresponding dated reward pt ∈ Xms. By Impatience,
u(p) = U(p0) ≥ U(pt) = Du(p)(t)u(p), which implies Du(p)(t) ≤ 1.

Define
St = {d ∈ [0, 1] | d = Du(p)(t) for some pt ∈ Xms}.

By Monotinicity and PBT (ii), if pt ∈ Xms, then α ◦ pt ∈ Xms for all α ∈ (0, 1). Thus, St
is an interval. Note D(t) = inf St. Denote D(t) = supSt.

Lemma 4 The function U : Xms ∪ ∆0 → R+ appeared in Lemma 3 can be written as
follows:

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx = arg max
D
{
∑
t≥1

(
D(t)u(xt)− ϕt(D(t))

)
}

where for each t ≥ 1, ϕt : [0, D(t)] → R+ is an increasing convex function that is strictly
increasing, strictly convex, and continuously differentiable on [D(t), D(t)], and satisfies
ϕt(D(t)) = 0 and ϕ′t(D(t)) = 0.

Proof. By Monotonicity and PBT (ii), if x ∈ Xms, then (xt)
t ∈ Xms for xt � 0. Thus, ϕt

can be derived from the dated rewards at t as follows. The marginal cost function ϕ′t on
St is implicitly defined by the first order condition

u(p) = ϕ′t(Du(p)(t)). (11)

Since Du(p)(t) is strictly increasing and continuous in u(p), (11) implies that ϕ′t is strictly
increasing and continuous. Then, we can monotonically and continuously extend ϕ′t to
St ∪ {D(t), D(t)} by defining ϕ′t(D(t)) = limd→D(t) ϕ

′
t(d) and ϕ′t(D(t)) = limd→D(t) ϕ

′
t(d).

Moreover, the continuity of Du(p)(t) wrt u(p) requires that 0 = ϕ′t(D(t)). We further extend
ϕ′t to [0, D(t)] by setting ϕ′t(d) = 0 for all d ∈ [0, D(t)].

We claim that ϕ′t(D(t)) < ∞. Suppose otherwise. Then, for any r > 0, there exists
some pt ∈ Xmx such that u(p) = r = ϕ′t(Du(p)(t)). Since Dr(t) is increasing on St, Dr(t)r
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diverges to infinity. This means that the set V (t) = {U(pt) ∈ R++ |pt ∈ Xms} is unbounded
above. On the other hand, by assumption, there exists some y /∈ Xms ∪∆0. Since V (t) is
unbounded above, there exists some pt ∈ Xms such that U(pt) > U(0, y−0), then by PBT
(ii), we must have y ∈ Xms, which is a contradiction.

By the fundamental theorem of calculus, ϕt is obtained on [0, D(t)] as the integral of ϕ′t
along with the assumption that ϕt(D(t)) = 0. Then, ϕt is strictly convex on [D(t), D(t)].
The function is by construction continuously differentiable and has a positive slope. By
construction, the set arg maxD{

∑(
D(t)u(xt)−ϕt(D(t))

)
} is nonempty and moreover, it is

a singleton since
∑(

D(t)u(xt)− ϕt(D(t))
)

is a strictly concave function of D. Thus Dx is
a unique solution.

D.2 Extension to X

Recall that Xms is the set of all magnitive sensitive and separable streams. Note that any
x /∈ Xms is magnitude insensitive. Indeed, if otherwise, x is magnitude sensitive, but then
by MS Separability, x is separable. Since x is magnitude sensitive and separable, we have
x ∈ Xms, which is a contradiction.

Lemma 5 For any stream x ∈ X \∆0, there exists a unique αx ∈ (0, 1] such that{
α ≤ αx =⇒ α ◦ x ∈ Xms,
α > αx =⇒ α ◦ x /∈ Xms.

Proof. Let A = {α ∈ (0, 1] |α ◦ x ∈ Xms}. By part (i) of PBT, A 6= ∅. Let αx = supA.
We claim that A is an interval with inf A = 0. Take any α ∈ A and β ∈ (0, α). Since
α ◦x ∈ Xms, by part (ii) of PBT, β ◦x = β

α
◦ (α ◦x) ∈ Xms, that is, β ∈ A as desired. Now,

by definition of αx, if α < αx, then α ∈ A, and hence α ◦ x ∈ Xms. If α > αx, then α /∈ A,
and hence α ◦ x /∈ Xms. Uniqueness of αx is obvious. Moreover, if x ∈ Xms, by part (ii) of
PBT, A = (0, 1), and hence, αx = 1.

Lemma 6 For any x ∈ X \∆0, take αx ∈ (0, 1] which is defined as in Lemma 5. Then,{
α < αx =⇒ α ◦ cx � α ◦ x,
α ≥ αx =⇒ α ◦ cx ∼ α ◦ x.

Proof. Step 1: For all x ∈ X \∆0, α ◦ cx � α ◦ x implies β ◦ cx � β ◦ x for all β ∈ (0, α].
By definition, a present equivalent of α ◦ x, denoted by cα◦x, satisfies α ◦ cx � α ◦ x ∼ cα◦x.
For any γ ∈ (0, 1), let β = γα ∈ (0, α). By Weak Homotheticity and Risk Preference,

β ◦ cx = γα ◦ cx � γ ◦ cα◦x % γα ◦ x = β ◦ x,

as desired.
Step 2: If there exist α, β ∈ (0, 1) such that α ◦ cx ∼ αx and β ◦ cα◦x ∼ β ◦ (α ◦ x),

then αβ ◦ cx ∼ αβ ◦ x. By definition and the assumption, α ◦ cx ∼ α ◦ x ∼ cα◦x. By Risk
Preference, αβ ◦ cx ∼ β ◦ cα◦x. Hence, by assumption, αβ ◦ cx ∼ αβ ◦ x.
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Step 3: There exists a unique α̃x ∈ (0, 1] such that{
α < α̃x =⇒ α ◦ cx � α ◦ x,
α ≥ α̃x =⇒ α ◦ cx ∼ α ◦ x.

If x ∈ Xms, α̃x = 1 satisfies this condition. Thus, assume x /∈ Xms. Let Ã = {α ∈
(0, 1] |α ◦ cx � α ◦ x}. By part (i) of PBT, Ã is non-empty. Moreover, by Step 1, Ã is an

interval with inf Ã = 0. Let α̃x be a supremum of Ã. If Ã = (0, 1), α̃x = 1 and this α̃x
satisfies the desired property. If Ã is a proper subset of (0, 1), α̃x < 1. Then, there exists
a sequence αn → α̃x with αn > α̃x. Since αn ◦ cx ∼ αn ◦ x, by Continuity, α̃x ◦ cx ∼ α̃x ◦ x,
as desired.

Step 4: α̃x ≤ αx. Seeking a contradiction, suppose α̃x > αx. Lemma 5 implies α̃x ◦
x /∈ Xms. Since this stream is magnitude insensitive, there exists β ∈ (0, 1) such that
β ◦ cα̃x◦x ∼ β ◦ (α̃x ◦ x). Since α̃x ◦ cx ∼ α̃x ◦ x, by Step 2, α̃xβ ◦ cx ∼ α̃xβ ◦ x. Since
α̃xβ < α̃x, this contradicts to Step 3.

Step 5: α̃x = αx. By Step 4, seeking a contradiction, suppose α̃x < αx. Take any
α ∈ (α̃x, αx). By Step 3, α ◦ cx ∼ α ◦ x. Moreover, for all γ sufficiently close to one, since
γα ∈ (α̃x, αx), γα◦cx ∼ γα◦x. Now, by definition, cα◦x ∼ α◦x, which implies cα◦x ∼ α◦cx.
Since α ◦ x ∈ Xms by Lemma 5, for all γ ∈ (0, 1), γ ◦ cα◦x � γα ◦ x. Thus, we have

γ ◦ cα◦x � γα ◦ x ∼ γα ◦ cx

for all γ sufficiently close to one. By Risk Preference, cα◦x � α◦cx, which is a contradiction.

Lemma 7 For all x, y ∈ X \∆0, take αx, αy ∈ (0, 1] which are defined as in Lemma 5. If
xt ∼ yt for all t ≥ 1, then αx = αy.

Proof. Since u(xt) = u(yt) for all t ≥ 1, Monotonicity implies (0, x−0) ∼ (0, y−0). By PBT
(ii), (0, x−0) ∈ Xms if and only if (0, y−0) ∈ Xms. Again, by PBT (ii), x ∈ Xms if and only
if (0, x−0) ∈ Xms. Hence, x ∈ Xms if and only if y ∈ Xms. Now, if x, y ∈ Xms , we obtain
αx = αy = 1. Next assume that x 6∈ Xms and y 6∈ Xms. Seeking a contradiction, suppose
αx 6= αy. Without loss of generality, let αx > αy. For any α ∈ (αy, αx), by Lemma 5,
α ◦ x ∈ Xms and α ◦ y /∈ Xms. But, since u(α ◦ xt) = u(α ◦ yt) for all t ≥ 1, by the same
argument as above, we have α◦x ∈ Xms if and only if α◦y ∈ Xms, which is a contradiction.
Thus, we have αx = αy, as desired.

As shown in Lemma 5, for any x ∈ X \∆0,

αx = sup{α ∈ [0, 1] |α ◦ x ∈ Xms}.

Lemma 8 The function U : X → R+ appeared in Section D.1 can be written as

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),
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s.t. Dx =

 arg max
D
{
∑
t≥1

D(t)u(xt)− ϕt(D(t))} if x ∈ Xms ∪∆0,

Dαx◦x if x 6∈ Xms ∪∆0.

Proof. By the result of Section D.1, U has the desired form on Xms ∪∆0. Consider the
case of x 6∈ Xms ∪∆0. Since u(αx ◦ cx) = U(αx ◦ x) by Lemma 6,

U(x) = u(cx) =
1

αx
U(αx ◦ x). (12)

By the representation on Xms,

U(αx ◦ x) = u(αx ◦ x0) +
∑
t≥1

Dαx◦x(t)u(αx ◦ xt). (13)

By combining (12) with (13),

U(x) =
1

αx
U(αx ◦ x) =

1

αx

(
u(αx ◦ x0) +

∑
t≥1

Dαx◦x(t)u(αx ◦ xt)

)
= u(x0) +

∑
t≥1

Dαx◦x(t)u(xt),

as desired.
From now on, we derive a function K : X \ ∆0 → R++ which serves as a capacity

constraint for the CCE* representation. Let

ϕ(D) :=
∑
t≥1

ϕt(D(t)).

Lemma 9 There is a function K : X \∆0 → R++ such that % is represented by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx = arg max
D∈Λx
{
∑

D(t)u(xt)− ϕt(D(t))}

Λx := {D ∈ [0, 1]T |ϕ(D) ≤ Kx}.

Moreover, (1) the function Kx satisfies Kx = Kλ◦x for any x and λ, and (2) for all streams
x, y, if u(xt) = u(yt) for all t ≥ 1, then Kx = Ky.

Proof. Since U(p) = u(p) for all p ∈ ∆0, K does not play any role for consumption stream
on ∆0.

By assumption, there exists x̄ /∈ Xms ∪∆0. By Lemma 5, there exists αx̄ ∈ (0, 1) such
that αx̄ ◦ x ∈ Xms and α ◦ x /∈ Xms for all α > αx̄. Let Xαx̄ = {y ∈ X | yt � αx̄ ◦ x̄t, ∀t}. If
Xαx̄ ∩Xms 6= ∅, there exists y ∈ Xαx̄ ∩Xms. By Monotonicity, yt % α ◦ x̄t for all t for all
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α > αx sufficiently close to αx. But, then, PBT implies α ◦ x̄ ∈ Xms for such α, which is a
contradiction. Hence, we have Xαx̄ ∩Xms = ∅, or Xms ⊂ X \Xαx̄ .

Now take any y ∈ X \ ∆0. Let x̄ be the stream fixed in the above argument. For
sufficiently large λ > 0, we have λ ◦ yt � αx̄ ◦ x̄t for all t, that is, λ ◦ y ∈ Xαx̄ . Together
with the above observation, λ◦y /∈ Xms. Let x denote such λ◦y. That is, we find x /∈ Xms

on the same ray of y. For such x, define

Kx := ϕ(Dαx◦x) <∞.

Extend to Xms by requiring Kx = Kλ◦x for any λ > 0.
For all x ∈ X \ ∆0, by Lemma 5, there exists αx > 0 such that αx ◦ x ∈ Xms. For

any β ∈ (0, αx), since ϕ is strictly increasing and Du(c)(t) is strictly increasing in u(c),
Kx = ϕ(Dαx◦x) > ϕ(Dβ◦x) ≥ 0. Hence, Kx > 0.

For any x ∈ X \∆0, define

Λx := {D ∈ [0, 1]T |ϕ(D) ≤ Kx}.

From Lemma 8, for any x ∈ Xms we have

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx = arg max
D
{
∑

D(t)u(xt)− ϕt(D(t))}.

There exists x′ /∈ Xms ∪ ∆0 such that x = αx′ for some α ∈ (0, 1). Since ϕ is strictly
increasing and Dαx′ is increasing in α up to αx′ ◦ x′, ϕ(Dx) ≤ ϕ(Dαx′◦x′) = Kx, that is, we
have Dx ∈ Λx. Thus, Dx is also the unique maximizer in the constrained problem:

Dx = arg max
D∈Λx
{
∑

D(t)u(xt)− ϕt(D(t))},

thereby establishing the result for x ∈ Xms.
Next consider x 6∈ Xms ∪∆0, and take αx ◦ x ∈ Xms. By definition, note that Kx <∞.

By the preceding,

Dαx◦x = arg max
D∈Λx
{
∑

D(t)u(αxxt)− ϕt(D(t))}.

For notational simplicity, for any x, let u(x) denote (u(x1), · · · , u(xT )) ∈ RT+. We first
prove that

Dαx◦x ∈ arg max
D∈Λx

D · u(x). (14)

To see this, suppose by way of contradiction that there is D ∈ Λx s.t. D·u(x) > Dαx◦x ·u(x).
Since Dαx◦x is on the boundary of Λx and D ∈ Λx, we have ϕ(Dαx◦x) = Kx ≥ ϕ(D). But
these inequalities imply that

D · u(αx ◦ x)− ϕ(D) > Dαx◦x · u(αx ◦ x)− ϕ(Dαx◦x),
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contradicting the optimality of Dαxx for αx ◦ x, as desired.
To conclude the proof of the lemma, observe that for any D ∈ Λx with D 6= Dαx◦x,

Dαx◦x · u(αx ◦ x)− ϕ(Dαx◦x) > D · u(αx ◦ x)− ϕ(D)

=⇒ Dαx◦x · u(αx ◦ x)−D · u(αx ◦ x) > ϕ(Dαx◦x)− ϕ(D)

=⇒ αx[Dαx◦x · u(x)−D · u(x)] > ϕ(Dαx◦x)− ϕ(D)

=⇒ Dαx◦x · u(x)−D · u(x) > ϕ(Dαx◦x)− ϕ(D)

(since Dαx◦x · u(x) ≥ D · u(x), by (14))

=⇒ Dαx◦x · u(x)− ϕ(Dαx◦x) > D · u(x)− ϕ(D).

Thus,

Dαx◦x = arg max
D∈Λx
{
∑

D(t)u(xt)− ϕt(D(t))},

as desired.
By Lemma 7, if u(xt) = u(yt) for all t ≥ 1, αx = αy. Thus Kx is finite if and only if

Ky is finite. If Kx is finite, it is obvious from the definition that Kx depends only on the
utility stream (u(xt))

T
t=1. Thus, we have Kx = Ky.

Define
Vms := {U(0, x−0) ∈ R++ |x ∈ Xms}.

We claim that Vms is bounded above. Indeed, by assumption, there exists some y /∈
Xms ∪∆0. If there exists x ∈ Xms with U(0, x−0) > U(0, y−0), then by PBT (ii), we must
have y ∈ Xms, which is a contradiction. Hence, for all x ∈ Xms, U(0, x−0) ≤ U(0, y−0).
That is, Vms is bounded above. Hence, there exists a finite v := supVms > 0. Let

Xv = {x ∈ X \∆0 |U(0, x−0) ≤ v}.

The following lemma states that Xms is characterized as the lower contour set of some
indifference curve.

Lemma 10 Xms = Xv.

Proof. Xms ⊂ Xv: Take any x /∈ Xv. By definition, U(0, x−0) > v. Then, we have
x /∈ Xms because x ∈ Xms violates the definition of v.

Xv ⊂ Xms: Take any x ∈ Xv with U(0, x−0) < v. By definition of v, there exists
y ∈ Xms with U(0, x−0) ≤ U(0, y−0). By part (ii) of PBT, x ∈ Xms. Next, take x ∈ Xv

with U(0, x−0) = v. For any α ∈ (0, 1), by Risk Preference and Monotonicity, α◦x ≺ x, and
hence, U(0, α ◦ x−0) < U(0, x−0) = v, which implies α ◦ x ∈ Xv. By the above argument,
α ◦ x ∈ Xms. By Lemma 5, x ∈ Xms as α→ 1.

Define
bd+(Xms) = {x ∈ Xms |λ ◦ x /∈ Xms for all λ > 1}.

Lemma 11 bd+(Xms) = {x ∈ Xv |U(0, x−0) = v}.
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Proof. Take any x ∈ bd+(Xms). Since x ∈ Xms = Xv (by Lemma 10), we have U(0, x−0) ≤
v. Seeking a contradiction, suppose U(0, x−0) < v. By Continuity, there exists some λ > 1
such that U(0, λ◦x−0) < v, which implies λ◦x ∈ Xms by Lemma 10. However, by definition
of bd+(Xms), λ ◦ x /∈ Xms. This is a contradiction.

Conversely, take any x ∈ Xv satisfying U(0, x−0) = v. By Lemma 10, we know x ∈ Xms.
Seeking a contradiction, suppose x /∈ bd+(Xms). Then, there exists some λ > 1 with
λ◦x ∈ Xms. By Monotonicity, U(0, λ◦x−0) > U(0, x−0) = v. Lemma 10 implies λ◦x /∈ Xms,
a contradiction.

Lemma 12 For any x,

Kx =
T∑
t=1

ϕt

(
(ϕ′t)

−1(λxu(xt))

)
,

and λx is the unique solution to
∑T

t=1 λu(xt)(ϕ
′
t)
−1(λu(xt)) = v.

Proof. Take any x ∈ X. Since (ϕ′t)
−1 is strictly increasing, there exists a unique solution

λx to
∑T

t=1 λu(xt)[(ϕ
′
t)
−1(λu(xt))] = v. We observe that U(0, λx ◦ x) = v since by the first

order condition,

U(0, λx ◦ x) =
T∑
t=1

Du(λx◦xt)(t)u(λx ◦ xt) =
T∑
t=1

λxu(xt)[(ϕ
′
t)
−1(λxu(xt))] = v.

Hence, by Lemma 11, λx ◦ x ∈ bd+(Xms). By Lemma 9, we have Kx = Kλx◦x. Thus,

Kx = Kλx◦x =
T∑
t=1

ϕt

(
(ϕ′t)

−1(λxu(xt))

)
,

as desired.

Lemma 13 D(t)ϕ′t(D(t)) = v for all t ≥ 1.

Proof. By definition of D(t), there exists some sequence (pn)t ∈ Xms such that Du(pn)(t)→
D(t). By the FOC, u(pn) = ϕ′t(Du(p)(t)). Since (pn)t ∈ Xms, by Lemma 10, Du(pn)(t)u(pn) ≤
v, or equivalently, Du(pn)(t)ϕ

′
t(Du(pn)(t)) ≤ v. Since Dr(t) and ϕ′t(d) are continuous, we

have D(t)ϕ′t(D(t)) ≤ v as n→∞. Conversely, since v <∞, there exists some p̄t such that
U(p̄t) = v. By Lemma 10, p̄t ∈ Xms, and hence, we have (ϕ′t)

−1(u(p̄))u(p̄) = v. From the
FOC, this condition is equivalent to Du(p̄)(t)ϕ

′
t(Du(p̄)(t)) = v. It follows from the definitions

of ϕ′t(D(t)) and D(t) that D(t)ϕ′t(D(t)) ≥ Du(p̄)(t)ϕ
′
t(Du(p̄)(t)) = v. This establishes the

statement of the lemma.
Recall that in Lemma 4, we constructed ϕt on [0, D(t)] for each t. We close the proof

by extending ϕt to [0, 1] in a manner required by regularity.

Lemma 14 There exists an extension of {ϕt} to [0, 1] such that ϕ′t ≤ ϕ′t+1 for all t < T .
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Proof. First, as a preliminary, we claim that D(t + 1) ≤ D(t). Take p̄t and q̄t+1 such
that u(p̄) = ϕ′t(D(t)) and u(q̄) = ϕ′t+1(D(t + 1)). By Impatieice, p̄t % p̄t+1, which implies
p̄t+1 ∈ Xms from PBT (ii), and hence, u(p̄) = ϕ′t+1(Du(p̄)(t + 1)). Since ϕ′t+1 is strictly
increasing,

u(p̄) = ϕ′t+1(Du(p̄)(t+ 1)) ≤ ϕ′t+1(D(t+ 1)) = u(q̄).

Therefore, we must have q̄ % p̄. Now from Lemma 13, D(t)ϕ′t(D(t)) = v for all t > 0.
Together with u(p̄) = ϕ′t(D(t)) and u(q̄) = ϕ′t+1(D(t+1)), we have D(t)u(p̄) = D(t+1)u(q̄).
Since u(q̄) ≥ u(p̄), we have D(t+ 1) ≤ D(t), as desired.

Next, we claim that ϕ′t(d) ≤ ϕ′t+1(d) for all for all t < T and d ≤ D(t + 1). Take any
d in the domain of ϕ′t+1, that is, d ≤ D(t + 1). Since D(t + 1) ≤ D(t) from the above
claim, d also belongs to the domain of ϕ′t. This implies that there exists some pt ∈ Xms

such that d = Du(p)(t). By Impatience, U(pt) ≥ U(pt+1). PBT (ii) implies pt+1 ∈ Xms.
By the representation on Xms, we have Du(p)(t)u(p) = U(pt) ≥ U(pt+1) = Du(p)(t+ 1)u(p).
Thus, we must have d = Du(p)(t) ≥ Du(p)(t + 1). Since ϕ′t+1 is strictly increasing, we have
ϕ′t+1(d) ≥ ϕ′t+1(Du(p)(t+ 1)). Moreover, it follows from the FOC that

ϕ′t(d) = ϕ′t(Du(p)(t)) = u(p) = ϕ′t+1(Du(p)(t+ 1)) ≤ ϕ′t+1(d),

that is, ϕ′t(d) ≤ ϕ′t+1(d) for all d ≤ D(t+ 1).
To prove the statement of the lemma, we argue by induction. Take any real-valued,

strictly increasing and continuous extension of ϕ′1 to [0, 1]. This is always possible because
ϕ′1(D(1)) < ∞ as demonstrated in Lemma 4. Now assume that there exists a desired
extension up to 1 ≤ t < T . Since ϕ′t(d) ≤ ϕ′t+1(d) for all d ≤ D(t + 1) by the above
claim and ϕ′t+1(D(t + 1)) < ∞, it is possible to find a real-valued, strictly increasing and
continuous extension of ϕ′t+1 to [0, 1] with preserving ϕ′t(d) ≤ ϕ′t+1(d) for all d ∈ [0, 1].
Finally, by the fundamental theorem of calculus, the desired ϕt is obtained on [0, 1] as the
integral of ϕ′t.

E Proof of Theorem 2

(1) For any dated reward pt with u(p) > 0, the discount function (which requires Dpt(t) > 0
and Dpt(τ) = 0 for τ 6= t) is determined by preference: if γ ∈ [0, 1] is such that γ ◦ p ∼ pt,
then Dpt(t) = γ. Thus the discount functions for dated rewards are uniquely pinned down
by preference. Therefore, the set {Dpt(t) ∈ [0, 1] | p % 0} defines the effective domain of
the cost function ϕt in any representation. Let D(t) = sup{Dpt(t) ∈ [0, 1] | p % 0}. Since

an optimal discount function Dx(t) is determined as a solution to the equation (7), D
i
(t)

must be the maximum discount factor at time t achievable in the cognitive optimization

problem.Therefore, we have D
i
(t) = D(t), as desired.

(2) Since u1 and u2 are linear and represent the same preference over lotteries, there
exists α > 0 such that u2 = αu1 (Note that we impose a normalization ui(0) = 0 in the
definition of the regular tuple).
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Take a dated reward x = pt. By the observation given in part (1), Dx(t) is invariant
between the two representation. By the first order condition,

(ϕ2
t )
′(Dx(t)) = u2(p) = αu1(p) = α(ϕ1

t )
′(Dx(t)),

which implies ϕ2
t |D(t) = αϕ1

t |D(t).
By Lemma 4 of Noor and Takeoka [21],

{x ∈ X \∆0 |
∑
t>0

u1(xt)((ϕ
1
t )
′)−1(u1(xt)) ≤ v1} = Xms

= {x ∈ X \∆0 |
∑
t>0

u2(xt)((ϕ
2
t )
′)−1(u2(xt)) ≤ v2}.

Since u2 = αu1 and ϕ2
t |D(t) = αϕ1

t |D(t),∑
t>0

u2(xt)((ϕ
2
t )
′)−1(u2(xt)) =

∑
t>0

αu1(xt)((ϕ
1
t )
′)−1(

1

α
αu1(xt)) =

∑
t>0

αu1(xt)((ϕ
1
t )
′)−1(u1(xt)),

and hence, we have∑
t>0

u2(xt)((ϕ
2
t )
′)−1(u2(xt)) ≤ v2 ⇐⇒

∑
t>0

u1(xt)((ϕ
1
t )
′)−1(u1(xt)) ≤

v2

α
.

Therefore, we must have v2 = αv1.

F Appendix: Proof of Theorem 3

For the necessity, as in Lemmas 3 and 4 of Noor and Takeoka [21], we can establish the
equivalence between Xms and the set of streams where the corresponding unconstrained
optiaml discount functions are feasible in the capacity constraint. Hence, on Xms, the
representation coincides with the CE model in NT. Necessity of Magnitude-Sensitive Ho-
mogeneity is proved in NT, and hence, the proof is omitted.

We show sufficiency. In Lemma 4, we already know that ϕt : [0, D(t)] → R+ is an
increasing convex function that is strictly increasing, strictly convex, and differentiable on
[D(t), D(t)]. Moreover, Dr(t) is strictly increasing in r on

Rms(t) = {r | r = u(p) for some pt ∈ Xms}, (15)

and is constant otherwise. We will show that this cost function ϕt : [0, D(t)] → R+ takes
the power form for some constants m > 1 and at > 0,

ϕt(d) = atd
m. (16)

Since % satisfies Magnitude-Sensitive Homogeneity, by the same proof of Theorem 7
(Appendix E) in NT, we can show that Dr(t) on Rms(t) is written as a power form, that is,
Dr(t) = κtr

θ for some κt > 0 and θ > 0. Then, ϕt : [0, D(t)]→ R+ is rewritten as in (16).
For convenience for the reader, we reproduce the proof of this result here. First we show

that Dr(t) is homogeneous on Rms(t):
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Lemma 15 For each α ∈ (0, 1] there is h(α) s.t. for any pt ∈ Xms,

Dαu(p)(t) = h(α)Du(p)(t).

Moreover, h(α) is a continuous function on (0, 1] with h(1) = 1.

Proof. We first note that for any x ∈ X such that x � 0 and α ∈ (0, 1], there exists a
unique γα(x) ∈ (0, 1] such that γα(x) ◦ cx ∼ α ◦ x: Since x � 0, Risk Preference and Weak
Homotheticity imply cx � α ◦ cx % α ◦ x. Consequently by Continuity and Monotonicity,
the desired γα(x) ∈ (0, 1] exists and is unique.

Take any dated reward pt ∈ Xms. By definition of Xms, it must be that p � 0, and by
Monotonicity, pt � 0. As noted, there exists γα(pt) ∈ (0, 1] such that

γα(pt) ◦ cpt ∼ α ◦ pt.

We make several observations about γα :
(i) γα(pt) is independent of pt for p � 0, and so can be written it as γα.
Magnitude-Sensitive Homogeneity implies that γα(pt) is independent of p and t.
(ii) γα is strictly increasing, γα = 1 when α = 1, and limα→0 γα = 0.
Since cpt ∼ pt by definition of present equivalents, and since γα is defined by γα ◦ cpt ∼

α ◦ pt, it follows trivially that γα = 1 when α = 1. Moreover, by Risk Preference and
Monotonicity, γα must be strictly increasing in α, since α < α′ implies γα ◦ cpt ∼ α ◦ pt ≺
α′ ◦ pt ∼ γα′ ◦ cpt . Finally, α→ 0 implies α ◦ pt = (α ◦ p)t → 0t = 0, and so it must be that
limα→0 γα = 0.

(iii) γα is continuous in α.
By the representation,

Ut(α ◦ p) = U((α ◦ p)t) = u(γα ◦ cpt) = γαu(cpt) = γαU(pt),

that is, Ut(α ◦ p) = γαUt(p). Since Ut is continuous, so is γα.
(iv) γα satisfies

Du(α◦p)(t) =
γα
α
Du(p)(t).

We saw above that Ut(α ◦ p) = γαUt(p). It follows that

Ut(α ◦ p) = γαUt(p) ⇐⇒ Du(α◦p)(t)u(α ◦ p) = γαDu(p)(t)u(p)

⇐⇒ αDu(α◦p)(t)u(p) = γαDu(p)(t)u(p) ⇐⇒ Du(α◦p)(t) =
γα
α
Du(p)(t).

Defining h(α) = γα
α

, we obtain the desired expression.

Lemma 16 Define R(t) := [0, rt]. There is θ ∈ R s.t. for any t > 0, r ∈ R(t) and
α ∈ (0, 1],

Dαr(t) = αθDr(t).
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Proof. From Lemma, for any α ∈ (0, 1], there is h(α) s.t. for any r ∈ R(t),

Dαr(t) = h(α)Dr(t).

Note that h(1) = 1 and h(α) is continuous. Moreover, we find that h(αγ)Dr(t) = Dαγr(t) =
h(α)Dγr(t) = h(α)h(γ)Dr(t). Indeed, h satisfies the multiplicative Cauchy equation:

h(αγ) = h(α)h(γ), α, γ ∈ (0, 1].

To convert this into a standard Cauchy functional equation on R+, define g : R+ → R by
g(λ) = lnh(e−λ) for any λ ∈ R+. Since h is continuous, so is g. Observe that for any
λ, ν ∈ R+

g(λ+ ν) = lnh(e−λe−ν) = lnh(e−λ)h(e−ν) = lnh(e−λ) + lnh(e−ν) = g(λ) + g(ν),

that is, g(λ+ ν) = g(λ) + g(ν), and so g satisfies the standard Cauchy functional equation
on R+. By Aczel [1, Section 2.1.1. Theorem 1], there exists ζ ∈ R such that g(λ) = ζλ.
Define θ = −ζ and observe that h satisfies, for any α ∈ (0, 1],

lnαθ = ζ ln
1

α
= g(ln

1

α
) = lnh(e− ln 1

α ) = lnh(α)

that is, h(α) = αθ for all α ∈ (0, 1]. We have thus shown that Dαr(t) = h(α)Dr(t) =
αθDr(t), as desired.

Lemma 17 For any t > 0, there exist θ > 0 and κt > 0 such that for all r ∈ R(t),

Dr(t) = κtr
θ.

Proof. Take any r ∈ R(t). Then r ≤ rt. By Lemma 16, Dr(t) = D r
rt
rt(t) =

(
r
rt

)θ
Drt(t).

We obtain the expression Dr(t) = κtr
θ by letting κt :=

(
1
rt

)θ
Drt(t). Since R(t) is a

non-trivial interval and Dr(t) is strictly increasing on it, it must be that θ > 0.

Lemma 18 D is the solution to the cognitive optimization wrt to some ϕt defined by at > 0,
m > 1 and ϕt(d) = atd

m for all d ≤ D(t).

Proof. By Lemma 17, Dr(t) = κtr
θ for all r ∈ R(t) where κt > 0 and θ > 0. Using

the FOC, define ϕt on [0, D(t)] as follows. For all r ∈ R(t), let r = ϕ′t(κtr
θ), so that

ϕ′t(d) =
(
d
κt

) 1
θ
. Together with ϕt(0) = 0, we have

ϕt(d) =
θ

(1 + θ)κ
1
θ
t

d
1+θ
θ .

Let m = 1+θ
θ
> 1 and at = θ

(1+θ)κ
1
θ
t

> 0. Then, ϕt(d) = atd
m for all d ∈ [0, D(t)], as desired.

Next, we show that for any stream x ∈ Xms, the total cost for the optimal discount
function Dx is proportional to the utility from period 1 onward.
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Lemma 19 For all x ∈ Xms ,

ϕ(Dx) =
1

m
U(0, x−0).

Proof. As shown in Lemma 18, ϕt admits a power form, ϕt(d) = atd
m. For all x ∈ Xms,

the FOC implies mat(Dxt(t))
m−1 = u(xt). Thus,

ϕ(Dx) =
∑
t>0

ϕt(Dxt(t)) =
∑
t>0

at

(
u(xt)

mat

) m
m−1

=
1

m

∑
t>0

(
u(xt)

mat

) 1
m−1

u(xt)

=
1

m

∑
t>0

Dxt(t)u(xt) =
1

m
U(0, x−0),

as desired.
For any x, there exists a unique αx ∈ (0, 1] such that αx ◦ x ∈ bd+(Xms). By Lemmas

11 and 19,

Kx = Kαx◦x = ϕ(Dαx◦x) =
1

m
U(0, αx ◦ x−0) =

v

m
, (17)

that is, Kx is constant for all x, as desired.
From now on, let K > 0 be the constant number given by (17).

Lemma 20 For all t ≥ 1, at(D(t))m = K.

Proof. Consider a dated reward pt ∈ Xms. By the FOC, u(p) = matDu(p)(t)
m−1. Since pt

is magnitude sensitive,

Du(p)(t) =

(
u(p)

mat

) 1
m−1

≤ D(t).

Let p̄t be a dated reward which attains a supremum of {u(p) | pt ∈ Xms}. Since the capacity
constraint will be binding at p̄t,

K = at

(
u(p̄)

mat

) m
m−1

= at(D(t))m,

as desired.

Lemma 21 For all t < T , at+1 ≥ at.

Proof. Lemma 20 implies 1/m×D(t)×matD(t)m−1 = K, or D(t)u(p̄t) = mK, where p̄t
satisfies the FOC u(p̄t) = matD(t)m−1. By the same argument as in Lemma 14, we can
show that D(t+ 1) ≤ D(t). Thus, Lemma 20 implies at+1 ≥ at.

Since the shape of the cost function beyond the capacity constraint K does not have
any behavioral implications, we can extend ϕt : [0, D(t)] by ϕt(d) = atd

m on the whole unit
interval [0, 1]. Then, (u, {ϕt}t≥1) is a regular tuple by Lemma 21, as desired.
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