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Abstract

Gul and Pesendorfer [9] model the static behavior of an agent who ranks

menus prior to the experience of temptation. This paper models the dy-

namic behavior of an agent whose ranking of menus itself is subject to

temptation. The representation for the agent�s dynamically inconsistent

choice behavior views him as possessing a dynamically consistent view of

what choices he �should�make (a normative preference) and being tempted

by menus that contain tempting alternatives. Foundations for the model re-

quire a departure from Gul and Pesendorfer�s idea that temptation creates

a preference for commitment. Instead, it is hypothesized that distancing an

agent from the consequences of his choices separates normative preference

and temptation.
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1. Introduction

An agent may break his diet or abuse drugs while simultaneously telling himself

that he really should not. Such instances suggest that choice is determined not

by one, but two preference orderings: a temptation preference that captures the

agent�s desires, and a normative preference that captures his view of what choices

he �should�make. Choice behavior is the outcome of an aggregation of temptation

preference and normative preference. The agent is said to experience temptation

when his desires con�ict with his normative preference. In order to write down a

choice-theoretic model of temptation, a foundational question must be answered:

what observable behavior identi�es an agent who struggles with temptation and

reveals his normative and temptation preferences?

Gul and Pesendorfer [9, 10] (henceforth GP) are the �rst to provide a choice-

theoretic model of temptation. Their answer to the foundational question is based

on the idea that temptation creates a preference for commitment : an agent who

thinks he should choose a �good�option g but anticipates being tempted by a

�bad�option b would avoid the latter. In particular he would strictly prefer fgg,
the menu (choice problem) that commits him to g, rather than the menu fg; bg
that provides the �exibility of choosing b:

fgg � fg; bg:

This preference for commitment reveals the existence of temptation, and moreover

reveals a normative preference for g and a temptation by b. Adopting an agent�s

preferences % over menus as their primitive, GP use such ideas to construct a

model of temptation.

This paper studies an agent who may be tempted not just by alternatives in

a menu, but also by menus themselves. Speci�cally, opportunities that lead to

tempting consumption may themselves be tempting. For instance, the agent in the

above example may be tempted by the menu fg; bg because it o¤ers b. Modelling
such agents requires a substantial departure from GP�s strategy for identifying

temptation. Observe that if the temptation by the menu fg; bg is strong enough,
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the agent would exhibit:

fgg 6� fg; bg:

That is, when the very act of choosing commitment requires self-control, it be-

comes possible that temptation may induce the agent to refuse commitment, con-

trary to GP�s hypothesis. Indeed, applying their hypothesis here would lead the

analyst to erroneously conclude that b does not tempt and may even be norma-

tively superior to g. Evidently then, an alternative to GP is required in order

to identify an agent�s temptation and normative preference when menus tempt.

One may consider extending GP�s model by adopting a preference over menus of

menus as the primitive. However, the logic of temptation by menus extends to this

preference as well, and indeed, also to preferences over more complicated domains

consisting of menus of menus.... up to all orders. The objective of this paper

is to provide a choice-theoretic model that describes agents who are tempted by

menus.

Distancing. Our answer to the foundational question is based on the idea that,
at least in stationary environments, normative preference is revealed when the

agent is distanced from the consequences of his choices. The idea is familiar to

philosophers and psychologists, and is part of common wisdom. For instance,

when trying to demonstrate to a friend that his smoking is against his better

judgment, we try to get him to view the act of smoking from a distance by asking

him how he would feel about his children smoking. The �veil of ignorance�(Rawls

[19]) in philosophy is a distancing tool. Psychologists have argued that reversals in

choices induced by temporal distancing, such as the so-called �preference reversals�

and �dynamic inconsistency�in the experimental literature on time-preference [7],

reveal the existence of self-control problems.1

1Preference reversals and dynamic inconsistency reveal a loss in patience when rewards are

brought closer to the present. For a large reward received at time t + d and a smaller reward

received at time t, subjects in experiments on preference reversals exhibit a preference for the

small reward when t = 0 but reverse preferences when t is large. In experiments on dynamic

inconsistency, subjects prefer the large reward when t is large, but switch preferences after t

periods elapse.
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We formalize the idea of temporal distancing in the following way. Suppose

we observe how the agent chooses between delayed rewards. Derive a set of pref-

erence relations f'tg1t=0 where each 't represents choices between consumption
alternatives that are to be received t periods later. By the distancing hypothesis,

as t grows, the in�uence of temptation on the agent�s ranking 't of alternatives
diminishes. That is, as t grows, the temptation component underlying 't becomes
less signi�cant, and so, each 't provides an increasingly better approximation of
the agent�s underlying normative preference. We identify normative preference

with the (appropriately de�ned) limit:

%�� lim
t!1
't : (1.1)

With the normative preference de�ned thus, temptation is naturally identi�ed

through normatively inferior choices. These ideas form the basis for building a

choice-theoretic model of temptation.2

Our Model. The speci�c model we construct is a stationary in�nite horizon
dynamic model. In every period the agent faces a menu, from which he chooses

immediate consumption and a menu for the next period. Choice is determined by a

struggle between normative and temptation preferences (over consumption-menu

pairs). Temptation preferences have a rich structure. The impact of temptation

on choice is stronger for immediate consumption than future consumption. The

agent is tempted by immediate consumption alternatives, may be tempted to

over- or under-discount the future (relative to normative preference), and may be

tempted by menus. A menu tempts to the extent that it o¤ers an opportunity for

future indulgence, but the model also permits normative considerations to a¤ect

the extent of temptation by a given menu. The discounting of menu-temptation

may be nonexponential, in which case the temptation ranking of menus can reverse

with delay.

2Note that the appeal of (1.1) relies on a stationary setup: if the agent, say, anticipates

preference shocks in the future then those considerations will be re�ected in %�, and therefore
this ordering ceases to fully capture normative preference over current consumption.
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Our agent is dynamically inconsistent. For instance, at time t the agent may

plan to commit at t + 2 but, if given the opportunity at time t + 1, may deviate

from this plan and postpone commitment till t+ 3. Our agent is sophisticated in

that he is fully aware of his future behavior. However, choice is not determined

as the outcome of an intrapersonal game (Laibson [14]). Instead, choice in each

period maximizes a recursively-de�ned (though not recursive) utility function.

Some of the components of our utility representation adopt the functional

form of GP [9]. Nevertheless our model is di¤erent from existing in�nite horizon

versions of GP�s model (GP [10], Krussel, Kurusçu and Smith [13] and Noor [15])

in two fundamental respects, described as contributions (b) and (c) below.

Summary of Contributions. This paper makes three main contributions:
(a) Foundations for temptation: While GP identify temptation by means of a

preference for commitment, we introduce an alternative strategy that �rst derives

a normative preference by looking at behavior from a distance, and then identi�es

temptation through gaps between normative preference and choice. This strategy

permits us to study an agent whose behavior is contaminated by temptation in

every period, and yet identify what does or does not constitute temptation. In

particular, whereas GP�s strategy identi�es temptation experienced only in the

next period(s), our�s does so for the current period as well.

(b) Temptation by menus: We axiomatize a dynamic model of tempting menus.

The model is an extension of GP [9] to an in�nite horizon. Other extensions in

the literature are by GP [10], Krussel et al [13] and Noor [15]. A key di¤erence is

that these models satisfy the so-called Stationarity axiom (see Section 5), which

enables a relatively straightforward extension of GP to an in�nite horizon, while

in our model temptation by menus necessitates the violation of Stationarity. We

exploit the distancing hypothesis to extend GP to an in�nite horizon. The models

in GP [10], Krussel at al [13] and Noor [15] have counterparts in our model, and

as such, our model also uni�es them.

(c) Foundations for sophistication: The literature emanating from GP [9] de-

scribes choices at one point in time �the ranking of menus in an ex ante period

�and relies on an interpretation of the representation to describe subsequent dy-
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namic choice behavior. In our model, we take dynamic choice behavior as our

primitive. Thus, our model fully describes not only how the agent ranks menus

over time but also what he chooses from them. While the literature assumes that

the agent correctly anticipates future behavior, such sophistication produces a

restriction on choice behavior in our model, and thus becomes a refutable hypoth-

esis. We also prove a general result (Section 6.1) that shows how the 2-period

model of GP [9] can be enriched so that sophistication can be given foundations

in that model.

The paper proceeds as follows. Section 2 introduces our model. Sections 3 and

4 present axioms and representation theorems respectively. Section 5 relates this

paper with the literature. Section 6 outlines the proof of our main representation

theorem and Section 7 concludes. Proofs are relegated to the appendices and a

supplementary appendix.

2. The Model

Given any compact metric space X, let �(X) denote the set of all probability

measures on the Borel �-algebra of X; endowed with the weak convergence topol-

ogy (�(X) is compact and metrizable [1, Thm 14.11]); K(X) denotes the set of
all nonempty compact subsets of X endowed with the Hausdor¤ topology (K(X)
is a compact metric space [1, Thm 3.71(3)]). Generic elements of K(X) are x; y; z
and those of �(X) are �; �; �. For � 2 [0; 1], ��+(1��)� 2 �(X) is the measure
that assigns ��(A)+(1��)�(A) to each A in the Borel �-algebra of X. Similarly,
�x + (1 � �)y � f�� + (1 � �)� : � 2 x; � 2 yg 2 K(X) is a mixture of x and
y. Denote these mixtures more simply by ��� and x�y respectively. Given a

compact metric space C of consumption alternatives, GP [10] construct a space

Z of in�nite horizon menus. Each menu z 2 Z is a compact set of lotteries, where
each lottery is a measure over current consumption and a continuation menu �Z

is homeomorphic to K(�(C�Z)), a compact metric space. See [10] for the formal
de�nition of Z. Below we often write �(C � Z) as �:
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The primitive of our model is a closed-valued choice correspondence C : Z  �

where � 6= C(x) � x for all x 2 Z. This is a time-invariant choice correspondence
that describes the choices at any time t = 1; 2:::. The time-line is given by:

t=1�
(c;y)2x

� � � � �
t=2�

(c0;z)2y
� � � � �

t=3�
(c00;z00)2z

� (2.1)

For any menu x faced in period 1, the agent chooses (c; y) 2 C(x) say. He receives
immediate consumption c, and a continuation menu y.3 The continuation menu

y is faced in period 2 and a choice is made from it. The process continues ad

in�nitum. All choice are interpreted as possibly subject to temptation.

For any pair of continuous linear functions U; V : �! R, the GP representa-
tion is given by

W (x) := max
�2x

fU(�) + V (�)�max
�2x

V (�)g; (2.2)

where the dependence of W on U; V is suppressed to ease notation. Our model

takes the form of the following representation for C.

De�nition 2.1 (U-V Representation). The choice correspondence C over �
admits a U -V representation if there exist functions U; V : � ! R such that C
satis�es:

C(x) = argmax
�2x

fU(�) + V (�)g, x 2 Z: (2.3)

and U; V satisfy the equations:

U(�) =

Z
C�Z

(u(c) + �W (x))d�, (2.4)

and V (�) =

Z
C�Z

(v(c) +

�
�W (x) + max

�2x
V (�)

�
)d�; (2.5)

for all � 2 �, where W : Z ! R is de�ned by (2.2), u; v : C �! R are continuous
functions and �; ; � are scalars satisfying � 2 (0; 1),  2 [0; �] and � >  � �.

3More generally, if the alternative chosen from x is a nondegenerate lottery � 2 �, then the
uncertainty plays out before the next period, yielding some (c; y). This leaves the agent with

immediate consumption c and the menu y to face in period 2.
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The representation is identi�ed with the tuple (u; v; �; �; ). The model makes

sense of the agent�s (possibly temptation-ridden) choices C by asserting that the
agent possesses normative and temptation preferences over �, re�ected in U and

V respectively. The representation (2.3) states that choice in any period is a

compromise between the two: it maximizes the sum of U and V .

Normative (expected) utility U evaluates lotteries with a utility index u(c) +

�W (x) that comprises of utility u for immediate consumption, a discount factor

� and a utility W over continuation menus that has the familiar GP form (2.2).

To remind the reader: the temptation opportunity cost jV (�)�max�2x V (�)j is
interpreted as the self-control cost of choosing �, and thus, W is a value function

suggesting that the agent maximizes normative utility U net of self-control costs.

An important observation is that the maximizer �the anticipated choice from x

�maximizes U + V . This is precisely what is described by (2.3). Thus our agent

is sophisticated in that her anticipated choices coincide with her actual choices.

Temptation (expected) utility V evaluates lotteries with a utility index v(c)+

�W (x)+max�2x V (�) that evaluates immediate consumption by v and the con-

tinuation menu x according to the discounted utility:

�W (x) + max
�2x

V (�): (2.6)

There are two di¤erences from how U evaluates continuation menus. First, the

normative utility W of a continuation menu is discounted by � instead of �.4

Second, consideration is given to max�2x V (�), the pure temptation value of a

menu. This is discounted by . The model requires  � �, re�ecting the intuitive
idea that the temptation perspective is, in some sense, more myopic than the

normative perspective.

The experience of temptation is suggested by a strict con�ict between U and

V . The experience of temptation by menus, or menu-temptation for short, is

similarly suggested by a con�ict in the ranking of continuation menus, such as

(c; x) vs. (c; y). The nature of menu-temptation is determined in the model by

4The restriction � >  � � permits � < 0. Section 4 characterizes the special case that rules
this out.
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the parameters  and �: When  = 0 and � � 0, there is no menu-temptation:

U(c; x) � U(c; y) =) W (x) � W (y) =) V (c; x) � V (c; y):

When  > 0 and � = 0, menu-temptation is determined completely by the tempt-

ing alternatives contained in it, whereas if � > 0 then the latter consideration is

dampened by the normative value. Moreover, when � > 0, the relatively steeper

discounting of the pure temptation value of a menu ( � �) implies that a menu
may cease to tempt if it is pushed into the future.

Some of these special cases have counterparts in the literature [10, 13, 15], and

we give them related names:

De�nition 2.2 (QSC, FT, DSC). A U -V representation (u; v; �; �; ) is a Quasi-
Hyperbolic Self-Control (QSC) representation if  = 0 and � � 0; a Future Temp-
tation (FT) representation if  > 0 and � = 0, and a Dynamic Self-Control (DSC)

agent if � =  = 0.

The description of and comparison with related literature is deferred to Section

5.

3. Foundations: Axioms

The following notation will aid exposition:

� Fix c 2 C throughout. For any x, de�ne x+1 � (c; x) and inductively for

t > 1, x+t = (c; x+(t�1)). Then x+t 2 � is the alternative that yields menu x after
t > 0 periods, and c in all periods between time 0 and t. We write f�g+t as �+t

and identify �+0 with �. The reader should keep in mind that x+t is not a menu,

but a degenerate lottery that that yields a menu t periods later.

� Let ' denote the revealed preference relation on � that is generated by

choices from binary menus:

� ' � () � 2 C(f�; �g): (3.1)
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The indi¤erence relation t and the strict preference relation > are derived from
' in the usual way. Consider the following axioms on C. The quanti�ers �for all
�; � 2 �; x; y 2 Z; c; c0; c00 2 C; and � 2 [0; 1]�are suppressed.

3.1. Standard Axioms

The �rst set of axioms re�ect that the agent has some features possessed by

�standard� agents: the agent behaves as if he maximizes a single, continuous,

linear, additively separable utility function. Although such features might rule

out certain forms of temptation, the representation theorems in the next section

con�rm that they are consistent with an interesting class of temptation models.

Axiom 1 (WARP). If �; � 2 x \ y, � 2 C(x) and � 2 C(y), then � 2 C(y):

This is the familiar Weak Axiom of Revealed Preference. It is a minimal

consistency requirement on choices. However, though WARP is a standard axiom

in standard choice theory, it is not clear that it is appropriate for a theory of choice

under temptation. While WARP is an expression of the agent using a menu-

independent preference to guide his choices, intuition suggests that the degree of

self-control an agent has may well depend on what is available in the menu.5 The

upshot is that the current model should be thought of one where self-control, or

the relative weight between temptation and normative preference in the agent�s

choices, is menu-independent. This intuition assures us that temptation need not

rule out WARP.

Axiom 2 (Continuity). C(�) is upper hemicontinuous.

Upper hemicontinuity of C(�) is implied by choices being determined by the
maximization of a continuous preference. We impose upper hemicontinuity as an

5This is explored in Noor and Takeoka [17]. To illustrate, let s denote salad, b a burger and

B a large burger. If b is not so tempting, the agent may apply self-control and choose s out of

fs; bg. But when faced with fs; b; Bg, the presence of a large burger B may whet his appetite for
a burger, and in order to compromise between his craving for B and his normative preference

for s, he may settle for b, thereby violating WARP.
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axiom, with the intention of establishing that choices are determined in such a

way. Formally, upper hemicontinuity is equivalent to the statement that if fxng is
a sequence of menus converging to x, and �n 2 C(xn) for each n, then the sequence
f�ng has a limit point in C(x).

Axiom 3 (Independence). � > � =) ��� > ���:

This is the familiar Independence axiom. The next axiom is an explicit state-

ment of the �indi¤erence to the timing of resolution of uncertainty�property that

is implicitly assumed in GP [9].

Axiom 4 (Indi¤erence to Timing). x+t�y+t t (x�y)+t:

Under both rewards x+t�y+t and (x�y)+t, the agent faces x after t periods

with probability � and y after t periods with probability (1 � �). However,

under x+t�y+t, the uncertainty will be resolved today, whereas under (x�y)+t,

the uncertainty will be resolved after t periods. That is, the two rewards di¤er

only in the timing of resolution of uncertainty. Indi¤erence between the rewards

corresponds to indi¤erence to the timing of resolution of uncertainty. The axiom

rules out temptation that may be associated with the timing of resolution of

uncertainty, such as anxiety.6

Axiom 5 (Separability). (1
2
(c; x) + 1

2
(c0; x0))+t t (1

2
(c; x0) + 1

2
(c0; x))+t:

Separability states that when comparing two lotteries (delayed by t � 0 peri-
ods), the agent only cares about the marginal distributions on C and Z induced

by the lotteries. That is, only marginals matter, and correlations between con-

sumption and continuation menus do not a¤ect the agent�s choices. Separability

is not consistent with addiction, where the value of a menu may well depend on

what is consumed today.
6Indi¤erence to Timing and Independence together imply the Set-Independence axiom of

Dekel et al [4] and GP [9]: in our context it can be stated as x+t > y+t =) (x�z)+t >

(y�z)+t: Noor and Takeoka [17] demonstrate that this axiom needs to be relaxed in order

accommodate stories about anticipated choice from menus that violate WARP. This is also

observed by Fudenberg and Levine [8], and Dekel et al [5] note that Set-Independence is also

related with a stochastic version of WARP.
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3.2. Main Axioms

There are four main axioms.

Axiom 6 (Set-Betweenness). x+t ' y+t =) x+t ' (x [ y)+t ' y+t:

This adapts the Set-Betweenness axiom in GP [9] into our setting. GP [9] used

the axiom to describe menu choice prior to the experience of temptation, and that

interpretation is valid here when the ranking of x+t; y+t is not swayed by menu-

temptation. But it is interesting that the axiom may be satis�ed even when the

agent is swayed by menu-temptation. To illustrate, suppose that f�g+t ' f�g+t
is due to overwhelming temptation by the menu f�g. We assert that the agent
would exhibit f�g+t t f�; �g+t ' f�g+t, consistent with Set-Betweenness.7 The
ranking f�; �g+t ' f�g+t would arise because the choice between f�; �g+t and
f�g+t must also be overwhelmed by temptation �f�; �g+t is a tempting menu for
the same reason that f�g+t is, and since f�g+t is chosen over f�g+t, so is f�; �g+t.
The indi¤erence between f�g+t and f�; �g+t re�ects that the agent foresees being
overwhelmed by � in either menu.

Axiom 7 (Sophistication). If f�g+t > f�g+t then f�; �g+t > f�g+t () � >

�:

As the name suggests, this axiom connects the agent�s expectation of his future

choices with his actual choices. Suppose that � is preferred to � from a distance

of t periods, f�g+t > f�g+t. Owing to this, if the anticipated choice from f�; �g
is �, then he would exhibit f�; �g+t > f�g+t. The axiom states that the agent

anticipates choosing � from f�; �g after t periods if and only if he actually does so
(recall that ' re�ects time-invariant choice, and so it describes also choice after
t periods). That is, he is sophisticated in that he correctly anticipates future

choices. It should be noted that this axiom is dynamic in that it relates choice

across di¤erent times.
7The possibility that f�g+t > f�; �g+t when f�g is overwhelmingly tempting is ruled out by

the Reversal axioms presented shortly �note that overwhelming temptation is associated with

the existence of a reversal below.
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From the perspective of one point in time, Sophistication also relates the rank-

ing of di¤erent menus at di¤erent delays: if � is ranked higher than � at delays t; t0

(that is, f�g+i > f�g+i, i = t; t0) then f�; �g+t > f�g+t () f�; �g+t0 > f�g+t0.
Two �nal axioms establish further such connections by describing how the agent�s

ranking between two alternatives might change, if at all, when the alternatives

are pushed into the future.

Axiom 8 (Reversal). If �+t < �+t (resp. �+t / �+t) and �+t
0 ' �+t

0
(resp.

�+t
0
> �+t

0
) for some t0 > t, then �+t

00 ' �+t00 (resp. �+t00 > �+t00) for all t00 > t0.

The axiom states that pushing a pair of rewards into the future may lead

the agent to reverse the way he ranks them, and if this happens, then the re-

versed ranking is maintained for all subsequent delays in the rewards. The axiom

expresses the basic structure of �preference reversals�, a robust �nding in the ex-

perimental psychology literature on time-preference; see [7] for a survey of the

evidence. 8 An explanation given for preference reversals in the literature is that

it is caused by a desire for immediate grati�cation. As in GP [10], we speci�cally

view it as arising due to temptation: when two alternatives are pushed into the

future, temptation is weaker and eventually resistible, and this induces a reversal.

Observe that given the time-invariance of the primitive C, Reversal implies that
revealed preferences in our model are dynamically inconsistent in the sense that

the agent may exhibit (c; f�g) ' (c; f�g) at t but � 6' � at t+ 1.
As a simple consequence of Reversal we obtain a function � : � � � ! R

that de�nes the �switching point�of preference reversals, that is, �(�; �) is the

minimum number of periods that � and � need to be delayed before a preference

reversal is observed; if no reversal is observed, then �(�; �) = 0. For instance,

if �+t ' �+t for all t < T and �+t < �+t for all t � T , then �(�; �) = T . See

Appendix C for a precise de�nition of the function � .

8Let s (resp. l) denote a consumption stream that gives a small (resp. large) reward imme-

diately and c in all other periods. Typical preference reversals are expressed by the Reversal

axiom when �; � are of the form � = s+0 and � = l+d.
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The �nal axiom makes speci�c statements about what menu rankings are not

subject to reversals. Note that part (ii) presumes that A is a neighborhood of

(f�g+t; f�; �g+t) 2 ��� with respect to the product topology on ���.

Axiom 9 (Menu-Reversal). (i) If �(�; �) = 0 then �(f�g+1; f�; �g+1) = 0.
(ii) If f�g+t > f�; �g+t then �(A) = 0 for some neighborhood A of (f�g+t; f�; �g+t).

Part (i) of the axiom states that if the ranking of � and � does not reverse

with delay, then neither must the ranking of f�g+1 and f�; �g+1. Intuitively, the
lack of reversal indicates that the ranking of � and � is either not subject to any

temptation or it is subject to resistible temptation. In either case, the ranking

of the menus (which are necessarily one period away) is either not subject to

temptation or subject to resistible temptation. Therefore delaying the menus will

not give rise to a reversal.9

Part (ii) of the axiom makes two statements. First, if f�g+t > f�; �g+t then
f�g+t0 > f�; �g+t0 for all t0 � t. That is, there is no reversal after a preference for
commitment. Intuitively, the choice to commit is driven by the agent�s normative

considerations, and thus is not subject to a reversal. Second, the axiom says that

there is no reversal also for any neighboring pair of alternatives. Since the ranking

f�g+t > f�; �g+t is driven by normative considerations, it is associated either with
no temptation or with resistible temptation by f�; �g+t. In either of these cases,
continuity of underlying temptation and normative preferences implies there is

either no temptation or resistible temptation in any neighboring pairs of rewards.

Hence no reversals will be observed when these neighboring pairs of rewards are

pushed into the future.

9The axiom may be weakened to hold for �; � such that � > �. The case � � � is implied by
Set-Betweenness, and the case � > � is implied by Sophistication.
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4. Foundations: Representation Results

4.1. Main Theorem

Say that C is nondegenerate if (i) there exists �; �; T such that � < � and �+T >
�+T , and moreover, (ii) there exists �; � such that �(A) = 0 for a neighborhood

A of (�; �) and f�g+1 � f�; �g+1 > f�g+1. Part (i) of this de�nition asserts the
existence of a preference reversal, and part (ii) asserts the existence of �; � that

neither exhibit a preference reversal (and neither do neighboring rewards) nor give

rise to a preference for commitment. This corresponds to the case in the model

where U and V are nonconstant and a¢ nely independent, and in particular where

temptation is non-trivial.

The main result in this paper is the axiomatization of the U -V model (Def

2.1).

Theorem 4.1. If a nondegenerate choice correspondence C satis�es Axioms 1-9
then it admits a U -V representation. Conversely, a choice correspondence C that
admits a U -V representation also satis�es Axioms 1-9.

The Theorem states that an agent�s choices satisfy Axioms 1-9 if and only if

it is as if they are the result of an aggregration of the functions U and V in Def

2.1. The order ' de�ned by (3.1) is represented by U + V . It is worth noting
that Axioms 1-9 do not explicitly restrict the nature of temptation by menus �

none of the axioms make the statement that, for instance, a menu is tempting

only if it contains tempting items. Yet they produce the very special structure

(2.6) on menu-temptation in the U -V representation that capture this property.

The proof of the Theorem is discussed in detail in Section 6.

Next is a uniqueness result that assures us that all the U -V representations of

C deliver the same normative and temptation preferences.

Theorem 4.2. If a nondegenerate choice correspondence C admits two U -V rep-

resentations (u; v; �; �; ) and (u0; v0; �0; �0; 0) with respective normative and temp-

tation utilities (U; V ) and (U 0; V 0), then there exist constants a > 0 and bu; bv such
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that U 0 = aU + bu and V 0 = aV + bv. Moreover, � = �0, � = �0,  = 0,

u0 = au+ (1� �)bu and v0 = av + �bv + (1� )bv.

For the question of when there exist functions (U; V ) satisfying the equations

in the U -V representation, the relevant proofs in [10, 15] can be adapted to show

that the equations in Def 2.1 admit a unique continuous solution (U; V ) when � =

0, that is, when the representation is either FT or DSC. More generally, however,

a contraction mapping argument cannot be used because the U -V representation

is not monotone in the appropriate sense.10 Nevertheless, we can ensure that:

Theorem 4.3. For any continuous functions u; v and scalars �; ; � as in Def 2.1,
the equations (2.4)-(2.5) admit a continuous linear solution (U; V ).

The proof of the theorem considers the space F�F of pairs of continuous linear
functions on � endowed with the weak topology (induced by the norm dual of

F�F). We identify a compact subset of this space and establish that the mapping
de�ned by the equations in Def 2.1 is continuous in the weak topology and a self-

map on the compact subset. We then invoke the Brouwer-Schauder-Tychono¤

�xed point theorem, which states that a continuous self-map on a compact convex

subset of a locally convex linear topological space has a nonempty set of �xed

points.

4.2. Special Cases

We characterize some subclasses that are of interest.

Theorem 4.4. A nondegenerate choice correspondence C admits a U -V repre-

sentation (u; v; �; �; ) with � � 0 if and only if it satis�es Axioms 1-9 and

Weak Menu-Temptation Stationarity: If x+t > y+t for all large t, then fx+2g+t >
fx+2; y+2g+t for all large t =) fx+1g+t > fx+1; y+1g+t for all large t:
10Krussel et al [13] were the �rst to note that such an issue arises for generalizations of GP

[10]. The question of existence was left open.
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The existence of a preference for commitment suggests the existence of tempta-

tion within a menu. Thus, the Weak Menu-Temptation Stationarity axiom states

that, at any t, if y tempts the agent when it is available at t + 2, then it tempts

him also when it is available at t + 1. That is, bringing a tempting menu closer

to the present does not turn it into an untempting menu. This property is the

behavioral meaning of the restriction � � 0 in the representation.
Observe that the axiom allows for the possibility that pushing a tempting menu

into the future may not just make it easier to resist, but may make it altogether

untempting. Consider the implication of a strong version of the axiom that rules

this out, that is, that requires that a menu that tempts when t periods away also

tempts when t0 periods away, for any t; t0 > 0.

Theorem 4.5. A nondegenerate choice correspondence C admits either an FT
representation or a QSC representation if and only if it satis�es Axioms 1-9 and

Strong Menu-Temptation Stationarity: If x+t > y+t for all large t, then fx+2g+t >
fx+2; y+2g+t for all large t() fx+1g+t > fx+1; y+1g+t for all large t:

This result characterizes the union of the QSC and FT classes of models,

thereby identifying the behavior that is common to them. The last result deter-

mines precisely what is di¤erent between them.11

Theorem 4.6. The following statements are equivalent for a nondegenerate choice
correspondence C that satis�es Axioms 1-9:
(i) C admits a QSC representation.
(ii) C satis�es Menus Do Not Tempt: For all t > 0, fx+1; y+1g+t ' fx+1g+t:
(iii) � � 1.

11Note that in Thm 4.6, when C exhibits � � 1, Axiom 9 can be dropped from the hypothesis

and Axioms 5-7 can be weakened by restricting their statements to hold only for t = 1. It is

easily shown by invoking [10, Theorem 1] that if C admits a QSC representation, then it admits
a DSC representation if and only if C satis�es the �Temptation by Immediate Consumption�
axiom in GP [10]. In this setting the axiom states that if � and � both induce the same

marginal distribution on C, and if f�g+1 > f�; �g+1 > f�g+1 and f�g+1 > f�; �g+1 > f�g,
then f�; �g+1 � f�; �g+1.
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Thus, the key behaviors associated with QSC agents are that they exhibit no

preference for delayed commitment (as captured by the Menus Do Not Tempt

axiom), and that the switching point of preference reversals is at most one period

away. The latter is intuitive for QSC agents: if � is overwhelmingly tempting and

� > �, and if only immediate consumption tempts, then a single period delay in

both rewards removes temptation and leads to a reversal, �+1 < �+1.

The result tells us that in the presence of Axioms 1-9 and Strong Menu-

Temptation Stationarity, observing one instance of a preference for delayed com-

mitment, or one instance of a preference reversal with a switching point at two or

more periods delay is equivalent to the existence of an FT representation. Note

that this axiomatization of the FT model di¤ers signi�cantly from the axiomatiza-

tion in [15], even after accounting for the di¤erent primitives: most notably, unlike

any of the axioms we impose here, the key axiom in [15] (called �Temptation Sta-

tionarity�) explicitly identi�es the source of menu-temptation as being temptation

within a menu. Our Strong Menu-Temptation Stationarity corresponds to a sub-

stantial weakening of that key axiom: it imposes stationarity of menu-temptation

but without identifying the source of menu-temptation.

4.3. Foundations for Normative Preference

According to our interpretation of the representation, the U -V agent behaves

as if he struggles with two preferences, represented by the normative utility U

and temptation utility V . Theorem 4.2 assures us that these functions represent

unique preferences, and thus there is a unique normative and temptation pref-

erence associated with the model. In this subsection we identify the behavioral

underpinnings of the normative preference.

Derive a sequence of preference relations f'tg1t=0 over �, where for each t � 0
and �; � 2 �,

� 't � () �+t 2 C(f�+t; �+tg):

Thus, the preference 't ranks � and � when both rewards are to be received t
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periods later. De�ne the preference %� over � by12

%�� lim
t!1
't : (4.1)

Refer to %� as the normative preference derived from C. It captures the agent�s
ranking of alternatives as the alternatives are distanced from him. The next

Theorem tells us that %� is the preference represented by the normative utility U .

Theorem 4.7. If C admits an U -V representation with normative utility U and

if %� is the normative preference derived from C, then U represents %� :

Thus, %� constitutes the empirical foundations for the ranking underlying U .
The justi�cation for referring to %� (resp. U) as normative preference (resp.

normative utility) lies in the intuitive idea that the in�uence of temptation on

choice is reduced when the agent is separated from the consequences of his choices,

and consequently such choices are guided by the agent�s view of what he should

do.

Recall that for the U -V agent, choice maximizes U + V . In a sense, V �lls

the gap between choice C and normative preference %�. In our model, choice is
determined by the normative perspective and visceral in�uences, and thus the gap

between C and %� is naturally attributed to temptation. This is the justi�cation
for referring to V as temptation utility.

5. Perspective and Related Literature

Our model is an extension of GP [9] to an in�nite horizon. In this section we com-

pare it to existing in�nite horizon extensions, namely GP [10], Krussel, Kurusçu

12To be formal, say that a binary relation B on � is nonempty if �B� for some �; � 2 �.
Following Hildenbrand [11], identify any nonempty continuous binary relation on � with its

graph, a nonempty compact subset of���. Thus, the space of nonempty continuous preferences
on � can be identi�ed with P = K(���), the space of nonempty compact subsets of ���
endowed with the Hausdor¤ metric topology. See Appendix B for details. Hence f'tg1t=0 is a
sequence in P and its limit in the Hausdor¤ metric topology is %�� limt!1 't :
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and Smith [13] and Noor [15]. These models are special cases of the following

class of models:

De�nition 5.1 (W Representation). A preference % over Z admits a W rep-

resentation if it admits a GP representation

W (x) = max
�2x

fU(�) + V (�)�max
�2x

V (�)g

such that the functions U; V : �! R take the form

U(�) =

Z
C�Z

(u(c) + �W (x)) d�(c; x) and V (�) =

Z
C�Z

�
v(c) + bV (x)� d�(c; x);

where � 2 (0; 1), u; v : C ! R are continuous and bV : Z ! R is continuous and
linear.

Unlike the U -V model where the primitive is a revealed preference over �, the

primitive of a W model is a preference % over the set Z of menus. The functional
forms for U and V are similar in the two models, except that in the W model the

temptation utility bV from continuation menus lacks structure. The Dynamic Self-
Control (DSC) model of GP [10] takes bV = 0, the (non-axiomatic) generalization
of DSC by Krussel, Kurusçu and Smith [13] takes bV = �W for � � 0, and the

Future Temptation model of Noor [15] takes bV = max�2x V (�) for 0 <  < �.

These functional forms for bV were discussed at the end of Section 2.
A benchmark comparison between the U -V and W models can be provided in

terms of the following time-line:

t=0�
x%y
� � � � �

t=1�
(c;z)2x

� � � � �
t=2�

(c0;z0)2z
�

The W model describes choice in a period 0, where the preference % is used

to guide choice of a menu x. The representation implicitly tells a story about

subsequent choice: the selected menu x is faced in period 1 and a choice (c; z) 2 x
is made by maximizing U + V ; immediate consumption c and a continuation

menu z is obtained, and a choice (c0; z0) 2 z is made in period 2 by maximizing
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U + V , so on and so forth. While these period t > 0 choices are derived from the

interpretation of the representation W , the U -V model can be understood as one

explicitly of period t > 0 choices: it describes an agent that maximizes U + V in

any menu at any t > 0. In a sense, our model describes the revealed preference

implications for period t > 0 choice of some W -model. Indeed, observe that a W

appears as a component in the U -V representation. This can be interpreted as

a representation of preferences in a hypothetical period 0 where the agent ranks

menus prior to the experience of temptation.

Behavioral Comparison 1: A peculiar feature of the W -model is a generic

asymmetry between the agent�s ex ante and ex post ranking of menus. Observe

that period t > 0 choice from f(c; x); (c; y)g maximizes U + V , and in particular,

(U + V )(c; x) � (U + V )(c; y)() W (x) +
1

�
bV (x) � W (y) + 1

�
bV (y):

That is, menus are ranked in period t > 0 by W + 1
�
bV . On the other hand, in

period 0, the preference % ranks menus by W . Evidently, this asymmetry arises
due to the menu-temptation bV experienced in periods t > 0, which is seemingly

absent in period 0. That is, it appears that % is not subject to the same menu-
temptation that it identi�es for subsequent periods. Indeed, the primitive % of
the W -model appears to describe behavior in a period 0 that is special relative to

all subsequent periods t > 0.13

Our motivation for not pursuing a W model of menu-temptation is our view

that this �special period 0� feature is a problem from the perspective of foun-

dations. If we take the common interpretation in the literature that period 0

behavior re�ects how the agent ranks menus if he were not tempted by menus,14

then it is not obvious how to answer questions such as: How is such a ranking

identi�ed? Is it even observable? More generally, the �special period 0�feature is

13The asymmetry does not exist when bV is constant or a positive a¢ ne transformation of W ,
that is, bV = �W for � � 0. Observe that this corresponds to GP [10] and Krussel, Kurusçu and
Smith [13]. Thus, period 0 is not special only when menus do not tempt.
14The literature typically regards period 0 as re�ecting the agent�s preferences in a �cold�state.
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problematic because it is not clear how to justify any particular interpretation of

it. Yet the interpretation of the representation depends heavily on how the special

period 0 is interpreted. If period 0 re�ects behavior in the absence of temptation,

then the representation suggests what the agent�s normative and temptation pref-

erences and anticipated choices are, but if menu-temptation contaminates period

0 behavior, then it is less clear what the components of the representation re�ect.

The special period 0 is a consequence of relying on a preference for commitment

for identifying temptation although the agent being studied is subject to menu-

temptation (recall the discussion in the Introduction). By relying on an alternative

method of identifying temptation we avoid the asymmetry between behavior in

period 0 and all subsequent periods. Indeed, our agent�s behavior is time-invariant.

Behavioral Comparison 2: Another distinguishing property of the ranking %
of menus in the W model is the Stationarity axiom: for all x; y 2 Z,

x % y () f(c; x)g % f(c; y)g: (5.1)

This adapts the standard stationarity condition (Koopmans [12]) to a preference-

over-menus setting. This is a key property of the W model, and thus also of [10,

13, 15].15 In contrast, the U -V model violates Stationarity: given the distancing

hypothesis, menu-temptation may cause the ranking of tomorrow�s menus to di¤er

from the ranking of more distant menus. Moreover, there may never exist a

minimum distance after which the rankings always agree for all pairs of menus. In

the absence of Stationarity, the job of relating the ranking of menus at di¤erent

delays is done by the Reversal and Menu-Reversal axioms, and indirectly also by

the Sophistication axiom.

Stationarity enables a relatively straightforward extension of GP [9] to an

in�nite horizon. Roughly, if W1 is a linear function representing % that can be
15To connect back with our observation about the �special period 0�, it should be noted

that while Stationarity is satis�ed by period 0 behavior, it may be violated in all subsequent

periods t > 0. Intuitively, how the menu-temptation component bV changes as a menu is delayed
determines whether Stationarity holds in periods t > 0, but this component is altogether absent

in period 0.
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written as W1(f(c; x)g) = u(c)+W2(x), where W2 is also linear, then Stationarity

implies thatW1 andW2 are ordinally equivalent, and thus by linearity, they are in

fact cardinally equivalent. Ignoring constants, we can thus write W1(f(c; x)g) =
u(c) + �W1(x) for some � > 0, a key step in establishing an in�nite horizon

extension of GP�s representation. Since our model violates Stationarity, we need

to �nd an alternative means of establishing our representation. Our idea is to

make use of the distancing hypothesis �see the next section.

Comparison of Primitives: Our primitive consists of a choice correspondence
over menus that satis�es WARP. Thus, our primitive is e¤ectively a complete and

transitive revealed preference relation ' over � = �(C�Z). Observe that Z can
be identi�ed with a subdomain of �, and thus the restriction ' jZ is a preference
over menus Z. The induced representation for ' jZ is

x 7�! W (x) +


� + �
max
�2x

V (�): (5.2)

where the components have the form in Def 2.1. The representation suggests that

the agent�s ranking of menus is a compromise between the normative evaluation

(re�ected in W (x)) and menu-temptation evaluation (re�ected in max�2x V (�)).

Instead of taking dynamic choice as a primitive, we could have axiomatized a

single preference over menus that admits this representation (5.2).16 The resulting

model would lie squarely within the literature on menu choice (Dekel, Lipman and

Rusticini [5], GP [9]), to which the W model also belongs. While this observation

reveals that dynamic choice is strictly speaking not necessary to write down or

axiomatize a model of tempting menus, we argue that such a primitive should be

adopted:

1. As is, (5.2) represents static choice, and therefore any dynamic (or ex post)

behavior derived from the model is a mere interpretation of the representation,

based on an assumption that the agent is sophisticated and his accurately an-

ticipated ex post choices a¤ect his ranking of menus in a particular way. While

16We thank an anonymous referee for pointing this out.
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dynamic choice and sophistication are notions of central interest, they lack em-

pirical foundations when the primitive consists of a preference over menus �this

problem is common to the literature on menu choice, including Dekel et al [5] and

GP [9]. In our model, dynamic choice behavior is the primitive data and not de-

rived from the representation, and sophistication is a refutable hypothesis rather

than an assumption. Thus, our use of dynamic choice as a primitive permits us to

�ll the gaps that remain when a preference % over menus is taken as the primitive.
See Section 6.1 below for a general result on this.

2. More pertinent to menu-temptation is the observation that without dynamic

choice, our use of the distancing hypothesis would not be defensible. The agent

exhibits reversals but for all we know these may be driven by anticipated preference

shocks. Due to possibly time-variant choices, the distancing hypothesis would

lose its appeal: When behavior is time-varying, we have to allow that the agent�s

normative evaluations may be time-varying, and as a result it is harder to justify

identifying normative preference over current alternatives from the ranking of

distant alternatives.17 Being able to do so is important because the distancing

hypothesis is the backbone of our model: it is needed to identify temptation,

and in particular, since our agent may experience temptation even if he does

not exhibit a preference for commitment, the hypothesis is required to identify

menu-temptation.

3. Finally, dynamic choice is a very useful technical tool. Since our primitive

C simultaneously describes choice of (continuation) menus and choice from any

menu, restrictions on C have implications for both. As a result, our model is
characterized with relatively simple restrictions despite the very rich structure

on the representation. If we were to axiomatize (5.2), restrictions could only be

imposed on period 0 preference % over menus. Indeed, the restrictions would need
to be strong enough in order to get the rich structure on (implied) choice from

17The issue is not resolved if we suppose that the primitive for (5.2) is a dynamic but time-

invariant preference over menus. This is because ex post choice involves not just menus but

rather (c; x) pairs, and even if the ranking of menus (obtained by �xing c and varying x) is

time-invariant, ex post choice of (c; x) pairs can still be time-varying.
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menus.

6. Proof Outline for Theorem 4.1

Before presenting the proof of Theorem 4.1 we �rst describe a lemma. While this

simpli�es the exposition of one step in the proof, the lemma is of independent

interest as it shows how foundations can be provided for the interpretation of the

GP [9] representation.

6.1. A Result: Foundations for Sophistication

Consider the two period model of GP [9]. As noted earlier, the interpretation of

GP�s representation (2.2) assumes that the agent is sophisticated in the sense of

correctly anticipating ex-post choices. However, there is nothing in the primitives

that can justify this �sophistication assumption�.18 A lemma used in the proof of

Theorem 4.1 provides the missing foundations for this assumption in GP�s model.

We state it below as a theorem.

Extend GP�s model to include ex-post choice. Let C be some compact metric

space, and Z2 = K(�(C)) the set of nonempty compact menus. Take a preference
% over Z2 and a closed-valued choice correspondence C : Z2  �(C) where, for

all x 2 Z, C(x) 6= � and C(x) � x. The preference % captures period 0 preference
over menus, and the choice correspondence C captures period 1 choice from any

menu. Say that % is nontrivial if there exist �; � such that f�; �g � f�g. The
following is a representation theorem for our �extended GP model�.

Theorem 6.1. Consider a non-trivial preference % and a choice correspondence
C over Z2 such that % admits a GP representation (U; V ) and C is rationalized
by a vNM preference. Then C admits the representation

C(x) = argmax
�2x

fU(�) + V (�)g, x 2 Z2;

18Indeed, as recently demonstrated by Dekel and Lipman [3], GP�s axioms for a preference

over menus also characterize another model with very di¤erent implications for ex post choice.
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if and only if, for any �; � such that f�g � f�g,

f�; �g � f�g () C(f�; �g) = f�g:

Thus, the exhaustive testable implications of GP�s model for choice in both

periods 0 and 1 are given by GP�s axioms for %, rationalizability by a vNM pref-

erence for C and the noted joint restriction (the counterpart of the Sophistication
axiom) on % and C. Indeed, these behaviors imply that the agent behaves as in
the interpretation of GP�s representation: period 1 choice maximizes U + V . We

thus obtain as a theorem what GP propose as an interpretation.

The result can be used directly in conjunction with the axiomatizations of

GP [10], Krussel et al [13] and Noor [15] to provide dynamic extensions of these

models. However, while this poses no issue for the extension of models without

menu-temptation (namely GP [10] and Krussel et al [13]), extensions of models

with menu-temptation will still possess the problematic �special period 0�property

noted in the previous section. Given the question of what period 0 behavior re�ects

and whether it corresponds to any observed behavior, the question of empirical

foundations for such models would therefore remain.

6.2. Proof Outline for Main Theorem

The proof of Theorem 4.1 has three broad steps that show:

(i) there is a preference % over menus Z with a W -representation (as de�ned
in Section 5) that can be derived from C,
(ii) temptation utility over menus bV in this representation has the desired form

(2.6),

(iii) the ex-post choice suggested by the W -representation is exactly the orig-

inal choice correspondence C.
In the proof, steps (ii) and (iii) are completed simultaneously in the �nal

lemma.

The sequence of preferences f'tg1t=0 de�ned in Section 4.3 is derived from C
and it produces a normative preference %� over � via (4.1). Existence of %� is
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ensured by WARP, Continuity and Reversal alone. Roughly speaking, the single-

reversal property underlying Reversal implies increased agreement between't and
't+1 as t grows, and gives rise to convergence in the limit. The limit preference
%� is complete, transitive and continuous. A connection with C exploited below
is given by:

� �� � =) � >t � for all large t. (6.1)

The candidate preference % over menus Z is de�ned as the induced normative
preference over menus: for all x; y 2 Z,

x % y () x+1 %� y+1:

Axioms 1-4 and Set-Betweenness imply that % satis�es the GP [9] axioms and
thus admits a GP representation (2.2) with some U; V . This together with Ax-

iom 5 implies additive separability of U; V . Reversal implies that % satis�es the
Stationarity axiom (5.1); roughly speaking, Reversal implies that there are �no

reversals in the limit�. Under these conditions, Lemma D.5 shows that % is a W
model (Def 5.1).19

At this point, we also obtain a key �partial rationalizability�result: Lemma

D.6 shows that there is � � 1 s.t. for all x;

C(x) = argmax
�2x

f�U(�) + V (�)g:

The argument makes use of (6.1). This implies that if f�; �g � f�g (in which case
f�g � f�g also holds), then f�; �g+t > f�g+t and f�g+t > f�g+t for all large t.
By Sophistication � > � follows. That is, whenever the limitW agent normatively

19The proof in an earlier version of this paper was relatively simpler and proceeded from this

point as follows: additional axioms imposed further desired structure on W , and one axiom

connected C with % in a way that Thm 6.1 could be invoked directly to complete the proof.

The axiom connecting C with % was unattractive since % is a limit ranking. The current

proof exploits the observation discussed next in the text: speci�cally, an intimate connection

between C and % already exists due to (6.1) and Sophistication. This allows us to axiomatize
the representation with fewer and simpler axioms. See also the discussion after Thm 4.1.
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prefers � over � and anticipates choosing � over � then our agent chooses � over

�. After exploiting Continuity, this generates the statement:

U(�) � U(�) and U(�) + V (�) � U(�) + V (�) =) � ' �:

Using Harsanyi�s aggregation theorem we obtain the result. Full rationalizability

(� = 1) is obtained only at the end of the proof. The partial rationalizability

result is a crucial step because it enables the axioms on C to directly translate into
restrictions on U and V . The remainder of the proof relies heavily on this.

The �rst step (Lemma D.7) toward obtaining the functional form for bV exploits
the fact that the '-ranking of alternatives of the form x+1 has two di¤erent

cardinally equivalent representations, speci�cally (Rep. A) and (Rep. B) below.

To derive Rep. A, begin by noting that Set-Betweenness implies that the rank-

ing admits a GP representation:

x 7! max
�2x

feU(�) + eV (�)g �max
�2x

eV (�):
By Theorem 6.1 presented in the previous subsection, Sophistication implies thateU + eV represents ' and thus by the partial rationalizability result, it is cardinally
equivalent to �U + V . Moreover, by Menu-Reversal (ii), whenever the agent

exhibits a preference for commitment f�g+1 > f�; �g+1 then so does the limit
preference f�g � f�; �g. This fact is used to show that eV = �U + �0V . Thus,

the '-ranking of period 1 menus is represented by

x 7! max
�2x

f�U(�) + V (�)g �max
�2x

f�U(�) + �0V (�)g: (Rep. A)

The derivation of Rep. B is based on the fact that the partial rationalizability

result implies that this ranking is also represented by x 7! �U(x+1) + V (x+1). In

fact, given the functional form of U; V in theW representation, �U(x+1)+V (x+1) is

ordinally equivalent to ��W (x)+ bV (x). Therefore, (Rep. A) is ordinally equivalent
to

x 7! ��W (x) + bV (x): (Rep. B)
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But linearity of Rep. A and Rep. B implies cardinal equivalence, and so, by

writing down the a¢ ne transformation and rearranging terms we �nd that bV must
take the following form with some � > 0 (ignoring constants):

bV (x) = �max
�2x

f�U(�) + V (�)g � ��max
�2x

fU(�) + V (�)g

+��max
�2x

V (�)�max
�2x

f�U(�) + �0V (�)g; x 2 Z:

This yields a functional form for bV .
The remainder of the proof shows that by the partial rationalizability result,

Reversal and Set-Betweenness, it must be that bV reduces to the desired form

(for some appropriately de�ned �; ). Menu-Reversal (i) is used in the process to

rule out one additional form for bV that is consistent with the other axioms but

nonintuitive. Reversal helps to establish 0 �  � �. Finally, � 6= 1 gives rise to
a violation of Set-Betweenness, and therefore we must have � = 1. At this point,

full rationalizability obtains, and the proof is complete.

6.3. Necessity and Summarizing Comments

Reversal : This ensures the existence of a limit of a sequence of preferences. To

see that Reversal is implied, note that in the model, for all �; � and t,

�+t ' �+t () U(�) +DtV (�) � U(�) +DtV (�) (6.2)

where Dt =
( � )

t

1+�
�
[
Pt�1
i=0(


� )

i
]
, adopting the convention that

P�1
i=0

�

�

�i
= 0. This can

be established with a proof by induction. The model requires 0 �  � � and

� >  � �, and these imply that Dt � 0, D0 = 1 and Dt & 0. Thus, whenever U

and V strictly disagree on the ranking of �; �, delaying the two alternatives leads

to at most one reversal in the ranking. When there is no strict disagreement then

there is no reversal.

Set-Betweenness: As one would expect, this axiom is responsible for the GP

form for the normative preference over menus. However, this feature could be

achieved by requiring merely that Set-Betweenness hold for su¢ ciently distant
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menus. Imposing Set-Betweenness also for the ranking of more immediate menus

places a lot of structure on choices, and is largely responsible for a functional form

for bV that is not more general.
The necessity of Set-Betweenness is established by using (6.2) to see that for

any x; y and t > 0,

x+t ' y+t () W (x) +
Dt

�
bV (y) � W (y) + Dt

�
bV (�): (6.3)

Inserting the functional form for W and bV , and de�ning at := (1 + Dt�
�
) > 0 and

bt := 1 +
Dt(��)

�
> 0, we obtain:

x+t ' y+t () max
�2x

fUt + Vt �max
�2x

Vtg � max
�2y

fUt + Vt �max
�2y

Vtg;

where Ut(�) = U(�) + (1 � bt
at
)V (�) and Vt(�) = bt

at
V (�). That is, the ranking

of period t menus admits a GP [9] representation, and hence Set-Betweenness is

implied.

Sophistication: This is our only dynamic axiom. It plays a part in establishing

the partial rationalizability result (Lemma D.6). Theorem 6.1 (which makes use

of Sophistication) is used to get a connection between ' and the '-ranking of
menus, and this eventually plays a part in getting the functional form for bV . The
proof for necessity uses the observation derived above for Set-Betweenness and

invokes Theorem 6.1.

Menu-Reversal : If Menu-Reversal(i) is dropped then Theorem 4.1 generalizes

to permit bV to also take an additional possible form. This additional form is

nonintuitive, as a violation of the very intuitive Menu-Reversal(i) axiom would

suggest. Menu-Reversal(ii) ensures that an immediate preference for commitment

f�g+1 > f�; �g+1 implies a preference for commitment in the limit f�g � f�; �g.
This ensures that the functional form of bV includes only functions that are linear
combinations of U and V: (Set-Betweenness then does the rest of the job).

One may ask why Menu-Reversal(ii) requires a statement about the neighor-

hood of a pair of menus. The answer is that in general, for any �; �, a strict

preference �+t > �+t for all t does not imply strict preference in the limit. The
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nature of the distant preference between neighboring pairs of rewards plays a role

in how �; � are ranked in the limit (Lemma C.3(b)). Thus, a statement about

neighborhood pairs of rewards is required in order to directly make a statement

about the limit preferences. The necessity of Menu-Reversal is veri�ed in the

Supplementary Appendix.

7. Concluding Remarks

We conclude with a comment on welfare. The standard revealed preference crite-

rion suggests that welfare policy should be guided by '. The concept of normative
preference lends itself as an alternative welfare criterion. The agent�s view of what

he should or should not choose is his own de�nition of his welfare. Thus, his nor-

mative preference is a subjective welfare criterion. If an analyst believes that this

is the appropriate criterion for welfare policy, and if he takes the position that

distancing is an appropriate tool (that serves as a veil of ignorance of sorts [19])

for determining normative preference, then the ranking %� de�ned in (4.1) would
guide welfare analysis in our model while the revealed preference criterion would

be viewed as contaminated with temptation.

A. Appendix: Proof of Theorem 6.1

Prove su¢ ciency of the axioms. By GP, % is represented by (2.2) for some con-
tinuous linear functions U; V : �! R. The �rst lemma collects some simple facts
about the representation [15], and the second establishes the result.

Lemma A.1. For all x; y;
(a) x � x [ y ()maxy V > maxx V and W (x) > W (y):
(b) x [ y � y () maxx U + V > maxy U + V and W (x) > W (y):

(c) x � x[ y � y () maxx U + V > maxy U + V and maxy V > maxx V:

Lemma A.2. � ' � () U(�) + V (�) � U(�) + V (�):
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Proof. By hypothesis there exists �; � such that f�; �g � f�g. By Set-Betweenness,
f�g � f�g and by Lemma A.1(b) and Sophistication, � > � and U(�) + V (�) >
U(�) + V (�). These observations will be used to prove the result.

=): Suppose that � ' �. If f�g � f�g, then by Sophistication, f�; �g 6� f�g
and it follows by Lemma A.1(b) that U(�)+V (�) � U(�)+V (�). If, on the other
hand, f�g % f�g, then by Set-Independence and Independence,

f���g � f���g and ��� > ���,

for all � 2 (0; 1). By Sophistication and Lemma A.1(b), U(���) + V (���) >
U(���) + V (���) for all � 2 (0; 1). By continuity of U + V , it follows that

U(�) + V (�) � U(�) + V (�), as desired.
(=: Suppose that U(�) + V (�) � U(�) + V (�). If f�g � f�g, then by

Lemma A.1(b), f�; �g 6� f�g and by Sophistication, � ' �. If, on the other hand,
f�g % f�g, then for all � 2 (0; 1),

f���g � f���g and Ut(���) + Vt(���) > Ut(���) + Vt(���):

By Lemma A.1(b) and Sophistication, ��� > ��� for all � 2 (0; 1). Thus,

continuity of ' implies � ' �.

B. Appendix: Topology on P

Since is � is compact and metrizable, � � � is compact and metrizable under

the product topology. Let d be a metric that generates the topology on � ��:
Denote the space of nonempty compact subsets of ��� by P. For any A;B 2 P,
let d(a;B) = infb2B d(a; b) and d(b; A) = infa2A d(b; a). The Hausdor¤ metric

hd induced by d is de�ned by hd(A;B) = maxfsup d(a;B); sup d(b; A)g, for all
A;B 2 P. An "-ball centered at A is de�ned by B(A; ") = fB : hd(A;B) < "g:The
Hausdor¤ metric topology on P is the topology for which the collection of balls

fB(A; ")gA2P;"2(0;1) is a base.
View the set P as the space of nonempty and continuous binary relations on

� by identifying any such binary relation B on � with �(B), the graph of B:

�(B) = f(�; �) 2 ��� : �B�g:
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If B is a weak order (complete and transitive binary relation) then �(B) is non-

empty. Given that � is a connected separable space, if B is also continuous then

�(B) is closed, and hence compact. Thus, the set of continuous weak orders on

� is a subset of P.
By [1, Thm 3.71(3)], compactness of ��� implies that P is compact. Also,

under compactness of � � �, �(B) is the Hausdor¤ metric limit of a sequence
f�(Bn)g � P if and only if �(B) is the �closed limit�of f�(Bn)g [1, Thm 3.79].

To de�ne the closed limit of a sequence f�(Bn)g, �rst de�ne the topological limit
superior Ls�(Bn) := fa 2 ��� : for every neighborhood V of a; V \�(Bn) 6= �
for in�nitely many ng and topological limit inferior Li�(Bn) := fa 2 ��� : for
every neighborhood V of a; V \ �(Bn) 6= � for all but a �nite number of ng. The
sequence f�(Bn)g converges to a closed limit �(B) if �(B) = Ls�(Bn) = Li�(Bn).

C. Appendix: Normative Preference

This appendix collects some results from [16]. Take as given a set of preference

relations f'tg1t=0 on some set � of lotteries, de�ned over some compact metric

space, that is endowed with the weak convergence topology. For each �; �, the

preference 't captures how the agent ranks the rewards �; � when they are to

be received t periods later. Normative preference %� over � is de�ned by %�=
limt!1 't; as in Section 4.3.
Consider the following axioms on f'tg.

Axiom A1 (Order�) 't is complete and transitive, for all t.
Axiom A2 (Continuity�) f� : � 't �g and f� : � 't �g are closed for all t.
Axiom A3 (Reversal�) If � <t � (resp. � /t �) and � 't0 � (resp. � >t0 �)
for some t0 > t, then � 't00 � (resp. � >t00 �) for all t00 > t0.
Axiom A4 (Independence�) � >t � =) ��� >t ���; for all t:

De�ne the function � : ���! R which captures the time at which a reversal
takes place for each (�; �) in the following way: First take any (�; �) 2 ��� such
that � '0 �: If � �t � for all t or � >t � for all t, then de�ne �(�; �) = 0. If there

33



exists T such that � <T �, then de�ne �(�; �) = minft : � <t �g. If � >0 � and
there exists T such that � �t � for all t � T , then de�ne �(�; �) = minft : � �t �g.
Finally, to cover all the remaining cases, let �(�; �) = �(�; �) for all �; �: The

following results are proved in [16] (except for Lemma C.3(d)) and will be used

later.

Lemma C.1. Suppose f'tg1t=0 satis�es A1 and A3 and take any �; � such that
� '0 �. If �(�; �) = 0 then � �t � for all t or � >t � for all t. If �(�; �) > 0 then
only one of the following holds:

(a) � >t � for t < �(�; �) and � <t � for all t � �(�; �);
(b) � >t � for t < �(�; �) and � �t � for all t � �(�; �);
(c) There is 0 � T < �(�; �) such that � >t � for all t < T , � �t � for all

T � t < �(�; �), and � <t � for all t � �(�; �).

Lemma C.2. If f'tg satis�es A1-3, then %� is well-de�ned, complete, transitive
and continuous. If f'tg also satis�es A4, then%� also satis�es vNM independence.

The last lemma provides two characterizations of normative preference %� and
collects some observations. Part (c) of the lemma is implied by (a). Let 
 be the

subset of ��� on which � is upper semicontinuous, that is,


 = f(�; �) 2 ��� : (�n; �n)! (�; �) =) lim sup
n!1

�(�n; �n) � �(�; �)g: (C.1)

Lemma C.3. (a) � �� � () [� >�(�;�) � and (�; �) 2 
]
(b) � %� � ()9 a sequence f(�n; �n)g that converges to (�; �) and �n '�(�n;�n)

�n for all n:

(c) � '�(�;�) � =) � %� �:
(d) � <0 � and � >t � for some t =) � �� �:

Proof. We prove part (d). Letting T = �(�; �) we have � >T �. Take any

sequence f(�n; �n)g that converges to (�; �). By Continuity�, for su¢ ciently large
n we have �n <0 �n and �n >T �n. It follows that �(�n; �n) � T = �(�; �) and

thus (�; �) 2 
. Invoke part (a) to get the result.
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D. Appendix: Proof of Theorem 4.1

Necessity is readily or already veri�ed for most of the axioms. The necessity

of Menu-Reversal is established in the Supplementary Appendix. The proof of

su¢ ciency is divided into subsections. We start with a simple lemma. De�ne the

choice correspondence C�(�;') by C�(x;') � f� 2 x : � ' � for all � 2 xg. Say
that a preference ' over � generates C(�) if C(x) = C�(x;') for all x.

Lemma D.1. ' is the unique preference relation that generates C(�). Further-
more ' satis�es the vNM axioms, and there exists �; � s.t. f�g+t > f�; �g+t for
all large t > 0.

Proof. The �rst two assertions are standard. The last follows from the fact

that by nondegeneracy of C there exists �; � such that � < � and �+t > �+t for
large t, and by Sophistication, Set-Betweenness and transitivity it is implied that

�+t > f�; �g+t � �+t for all large t.

D.1. Properties of Normative Preference %�

De�ne 't over � for each t � 0 and �; � 2 � by

� 't � () �+t ' �+t:

Since C(�) satis�es WARP, Continuity and Reversal, f'tg satis�es the conditions
in Lemma C.2. Thus, there is a well-de�ned normative preference %�� limt!1 't
over � and a well-de�ned function � : ���! R as in Lemma C.1.

Lemma D.2. %� satis�es (i) the vNM axioms; (ii) a separability property: for

all c; c0; x; x0; [(c; x)1
2
(c0; x0) �� (c; x0)1

2
(c0; x)], and (iii) an indi¤erence to timing

property: for all �; � and �, [�+1��+1 �� (���)+1]:

Proof. Lemma C.2 establishes that %� is complete, transitive and continuous.
Independence and Indi¤erence to Timing imply that each 't satis�es vNM in-

dependence. Thus by Lemma C.2 the limit %� satis�es vNM independence. By
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the Separability axiom, (1
2
(c; x) + 1

2
(c0; x0))+t t (1

2
(c; x0) + 1

2
(c0; x))+t for all t and

hence by Lemma C.3(c), (c; x)1
2
(c0; x0) �� (c; x0)1

2
(c0; x). The indi¤erence to timing

property follows similarly from the Strong Indi¤erence to Timing property of 't
proved in the Supplementary Appendix.

Lemma D.3. %� satis�es a stationarity property: for any c; �; �;

� %� � () (c; �) %� (c; �):

Proof. We prove this in a series of steps.
Step 1: For any c; c0; �; �; [(c; �) %� (c; �)() (c0; �) %� (c0; �)]:
Suppose by way of contradiction that (c; �) %� (c; �) and (c0; �) �� (c0; �).

Since %� satis�es the vNM axioms, (c; �)1
2
(c0; �) �� (c; �)1

2
(c0; �). But this con-

tradicts the separability property in Lemma D.2.

Step 2: For any c; c0; �; �; [� %� � =) (c; �) %� (c; �)]:
If � %� �, then by Lemma C.3(b), there exists a sequence f(�n; �n)g such that

(�n; �n) ! (�; �) and �n '�(�n;�n) �n for all n. It follows by de�nitions20 that
f(�+1n ; �+1n )g is a sequence such that (�+1n ; �+1n ) ! (�+1; �+1) and �+1n '�(�+1n ;�+1n )

�+1n for all n. But then by Lemma C.3(b), �+1 %� �+1: Apply step 1.
Step 3: The result.
By step 1, it su¢ ces to show � %� � () (c; �) %� (c; �). De�ne a binary

relation %�� over � by � %�� � () (c; �) %� (c; �). We need to show � %�
�0 () � %�� �0: This follows from the facts that, �rst, � %� � =) � %�� �
(step 1), second, %�� satis�es the vNM axioms (by the �rst and last assertion in

Lemma D.2), and third, that %�� is non-trivial, that is, there exist �; � 2 � such

that � ��� �. To see non-triviality, recall that by Lemma D.1 there is x; y such
that x+t > (x [ y)+t for t > 1. Menu-Reversal(ii) implies �(x+t; (x [ y)+t) = 0

and � is continuous at (x+t; (x [ y)+t), and so (x+t; (x [ y)+t) 2 
. By Lemma
20Speci�cally, it follows from the fact that � '�(�;�) � () �+1 '�(�+1;�+1) �+1. This holds

by de�nition of � if �(�; �) = 0 (in which case �(�+1; �+1) = 0 as well), and when �(�; �) > 0,

then note that �+�(�;�) = (c; �)+(�(�;�)�1) and �+�(�;�) = (c; �)+(�(�;�)�1), in which case the

assertion follows from the easily proved fact that �(�+1; �+1) = �(�; �)�1 whenever �(�; �) > 0.
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C.3(a), x+t �� (x [ y)+t. It follows that x+(t�1) ��� (x [ y)+(t�1), that is, %�� is
non-trivial.

D.2. Properties of Normative Menu-Preference %

Consider the preference % over Z de�ned by

x % y () (c; x) %� (c; y); (D.1)

for some c 2 C. By step 1 in the proof of Lemma D.3, the preference % is

invariant to the choice of c. This subsection shows that % has aW representation

(as de�ned in Section 5) and highlights a connection with C.

Lemma D.4. (i) f�g+t > f�; �g+t =) f�g � f�; �g:
(ii) There exists �; �0; �; �0 s.t. f�g � f�; �g and f�0g � f�0; �0g � f�0g.

Proof. (i) If f�g+t > f�; �g+t thenMenu-Reversal(ii) implies �(f�g+t; f�; �g+t) =
0 and � is continuous at (f�g+t; f�; �g+t), and so (f�g+t; f�; �g+t) 2 
. Hence,
by Lemma C.3(a), f�g+t �� f�; �g+t. Repeated application of Lemma D.3 yields
f�g+1 �� f�; �g+1, and the result follows.
(ii) By Lemma D.1 there is �0; �0 such that f�0g+t > f�0; �0g+t for t � 1.

The above result implies f�0g � f�0; �0g, thus establishing the �rst part of the
statement. To show the second part, recall that by nondegeneracy of C there is �; �
such that �(A) = 0 for a neighborhood A of (�; �) and f�g+1 � f�; �g+1 > f�g+1.
By Sophistication, � > � and since �(A) = 0 for a neighborhood A of (�; �),

Lemmas C.3(a) and D.3 imply f�g � f�g. By Menu-Reversal(i), �(�; �) = 0

and f�g+1 � f�; �g+1 implies f�g+t � f�; �g+t for all t. Lemma C.3(c) implies
f�g+1 �� f�; �g+1 and thus f�g � f�; �g. However, since f�g � f�g, transitivity
implies f�g � f�; �g � f�g as desired.

Lemma D.5. % admits the representation

W (x) = max
�2x

U(�) + V (�)�max
�2x

V (�); where for � 2 �,

U(�) =

Z
C�Z

(u(c) + �W (y)) d� and V (�) =
Z
C�Z

�
v(c) + bV (y)� d�;
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and where � 2 (0; 1), the functions u; v are continuous, W; bV are continuous and

linear, and U and V are nonconstant and a¢ nely independent.

Proof. The result is obtained by con�rming that % satis�es Axioms 1-6 in [15].
The analogs of the three vNM axioms for % follow from Lemmas D.2 and D.3, and
the Stationarity property [z % z0 () f(c; z)g % f(c; z0)g] follows from Lemmas

D.3 and step 1 in the proof of Lemma D.3. The Supplementary Appendix con�rms

that (i) the Set-Betweenness property [x % y =) x % x [ y % y], (ii) a Strong
Indi¤erence to Timing condition and (iii) a nondegeneracy property (there exist

�; � such that f�g � f�; �g � f�g) are also satis�ed. Therefore, we can argue as
in the proof of [10, Thm 1] to establish the existence of the desired representation

(alternatively, see the proof of [15, Thm 3.1]). The noted nondegeneracy property

implies that U and V are nonconstant and a¢ nely independent (apply Lemma

A.1).

The next lemma establishes an important connection between U; V and C.

Lemma D.6. There is � � 1 s.t. C(x) = argmax�2xf�U(�) + V (�)g for all x:

Proof. We know that C is rationalized by ' and that ' admits a nonconstant
continuous linear representation �denote this by w : � ! R. If w is a positive
a¢ ne transformation of U+V then the result holds trivially with � = 1. Consider

next the case where w is not a positive a¢ ne transformation of U + V . To ease

notation write UV (�) instead of U(�) + V (�).
Since UV is nonconstant and linear, there exist �0; �0 s.t. UV (�0) > UV (�0)

and w(�0) � w(�0).21 Show that it must be that U(�0) � U(�0). If U(�0) > U(�0)
holds by way of contradiction, then we have that

21Since UV is not a positive a¢ ne transformation of w, there is �; � s.t. either UV (�) >

UV (�) and w(�) � w(�), or UV (�) � UV (�) and w(�) < w(�). If the second case holds with
UV (�) = UV (�) then the nonconstancy and linearity of UV implies the existence of �0; �0 that

takes us into the �rst case (with strict inequalities). An aside: This kind of reasoning will be

applied below to show the existence of �; � on whose ranking two nonconstant linear functions

strictly disagree.
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U(�0) > U(�0) and UV (�0) > UV (�0)

=) f�0; �0g � f�0g
=) f�0; �0g+t > f�0g+t for large t by Lemma C.3(c)
=) �0 > �0 by Sophistication, contradicting w(�0) � w(�0).

Therefore, for every �; �,

�UV (�) > �UV (�) and w(�) � w(�) =) U(�) � U(�):

If �UV (�) = �UV (�) and w(�) � w(�), then linearity and continuity of the

functions and the fact that there exists �0; �0 s.t. UV (�0) > UV (�0) and w(�0) �
w(�0) can be used to show U(�) � U(�). Therefore the weak pareto condition

holds:

�UV (�) � �UV (�) and w(�) � w(�) =) U(�) � U(�):

By Harsanyi�s aggregation theorem [2], there is �; � � 0 s.t. U = ��UV + �w.
Since U and V are a¢ nely independent, � > 0. Moreover, by nondegeneracy we

know there is �; � s.t. � < � and �+t > �+t for all large t. Thus U(�) > U(�)

and w(�) < w(�), which implies � > 0. Taking an a¢ ne transformation of w if

necessary, we can write w = �U + V for some � > 1.

D.3. Structure on bV and Rationalizability

Lemma D.7. Under Axioms 1-9, there exist � > 0 and �;  such that �(�� �)�
� � 0 and ��  � 0 and for all x 2 Z,

bV (x) = �max
�2x

f�U(�) + V (�)g � ��max
�2x

fU(�) + V (�)g

+��max
�2x

V (�)�max
�2x

f(�(�� �)� �)U(�) + (�� )V (�)g � �:

Proof. Consider the revealed preference over next-period menus, that is, the
ranking '1 over Z de�ned by x '1 y () x+1 ' y+1. Since the ranking is

complete, transitive, continuous and satis�es Independence and Set-Betweenness,

it must admit a GP representation [9]:

fW (x) = max
�2x

feU(�) + eV (�)g �max
�2x

eV (�):
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By Sophistication, Lemma D.6 and Theorem 6.1, bU+ bV is cardinally equivalent to
�U +V . We claim also that eV = �U +�0V for �; �0 � 0. Use Harsanyi�s theorem
to establish this. First suppose that U(�) > U(�) and V (�) � V (�). Then

�U(�) + V (�) > �U(�) + V (�) and also eU(�) + eV (�) > eU(�) + eV (�). Suppose
by way of contradiction that eV (�) > eV (�). Then the representation fW implies

f�g >1 f�; �g. By Lemma D.4, this implies f�g � f�; �g, which in turn implies
V (�) 6� V (�), a contradiction. This establishes that

U(�) > U(�) and V (�) � V (�) =) eV (�) � eV (�).
This holds also when U(�) = U(�), as can be established by a limit argument that

exploits linearity and the fact that, by Lemma D.4(ii), there exists �0; �0 satisfying

f�0g � f�0; �0g � f�0g. Thus the weak pareto property holds, and Harsanyi�s
theorem implies eV = �U + �0V + k for some �; �0 � 0 and k. The preceding

shows that '1 admits the representation:

fW (x) = max
x
f�U + V g �max

x
f�U + �0V g+ k

Given Lemma D.6, we also know that the function ��W+ bV is a representation
for '1. Thus ��W + bV and fW are cardinally equivalent, and so, rede�ning �; �0

if necessary, there is � > 0 and � such that for all x;

��W (x) + bV (x) = �max
�2x

f�U(�) + V (�)g �max
�2x

f�U(�) + �0V (�)g � �:

Rearranging yields

bV (x) = �max
�2x

f�U(�)+V (�)g���max
�2x

fU(�)+V (�)g+��max
�2x

V (�)�max
�2x

f�U(�)+�0V (�)g��:

De�ne � and  such that �(� � �) � � = � � 0 and � �  = �0 � 0, and we get
the desired representation.

Below we adopt the convention that
P�1

i=0 = 0.

Lemma D.8. For all x; y; t;

x+t ' y+t () W (x) +Bt�1bV (x) � W (y) +Bt�1bV (y); (D.2)
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where Bt :=
t

��t+1+��t[
Pt�1
i=0(


� )

i
]
= 1

��

( � )
t

1+ �
��
[
Pt�1
i=0(


� )

i
]
. Moreover, if bV is nonconstant

and a¢ nely independent of W , then

(i) Bt � 0 for all t.
(ii) Bt is nonconstant and nonincreasing. In particular, Bt < 1

��
for all large t.

Proof. In the previous lemma, the constants � and  were chosen so that the
temptation utility of a delayed menu bV (x+1) is cardinally equivalent to ��W (x)+
 bV (x). An induction argument establishes that for all t � 1, bV (x+t) is cardinally
equivalent to:22

��t[
t�1X
i=0

�
�

�i
]W (x) + tbV (x):

This can be used to get a representation (D.2) for the ranking of future menus by

noting that for any t � 0, x+t+1 ' y+t+1 () �U(x+t+1)+V (x+t+1) � �U(y+t+1)+
V (y+t+1)

() ��t+1W (x) + bV (x+t) � ��t+1W (y) + bV (y+t)
() W (x) +BtbV (x) � W (y) +BtbV (y) where Bt is as in the statement of the

lemma.

Proof of (i): Since bV is nonconstant and a¢ nely independent of W , there

exist x�; y� s.t. W (x�) = W (y�) and bV (x�) < bV (y�).23 By (D.2), x�+1 < y�+1.

Lemma C.3(d) rules out x�+t > y�+t for any t. Thus x�+t / y�+t for all t. It

follows from (D.2) that 0 = W (x�)�W (y�)bV (y�)�bV (x�) � Bt for all t.
Proof of (ii): Since bV is nonconstant and a¢ nely independent of W , there

exist x�; y�; x0; y0 s.t. W (x�) =W (y�), bV (x�) < bV (y�), bV (x0) = bV (y0) andW (x0) >
22Proof: Lemma D.7 implies that bV (x+1) is cardinally equivalent to ��W (x) +  bV (x). As-

suming the induction hypothesis that bV (x+t) is cardinally equivalent to ��t[Pt�1
i=0

�

�

�i
]W (x) +

t bV (x), we see that bV (x+t+1) is equivalent to ��W (x+t)+  bV (x+t) which itself is equivalent to
��t+1W + ��t[

Pt�1
i=0

�

�

�i
]W (x) + t+1 bV (�)

= ��t+1[1 + 
�

Pt�1
i=0

�

�

�i
]W (x) + t+1 bV (�)

= ��t+1[
Pt

i=0

�

�

�i
]W (x) + t+1 bV (�), completing the induction argument.

23Note that if [W (x) = W (y) =) bV (x) = bV (y)] for all x; y, then W and bV are a¢ nely

dependent.
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W (y0) (see footnote 23). Note that

W (x��x0)�W (y��y0)bV (y��y0)� bV (x��x0) = (1� �)
�

W (x0)�W (y0)bV (y�)� bV (x�) � 0:
Now suppose by way of contradiction that Bt is not nonincreasing: BT > BT 0 for

some T > T 0 � 0. There is some � 2 (0; 1) for whichBT > W (x��x0)�W (y��y0)bV (y��y0)�bV (x��x0) > BT 0
and thus there is a reversal: (x��x0)+T

0+1 > (y��y0)+T
0+1 and (x��x0)+T+1 <

(y��y0)+T+1. However, � 2 (0; 1) impliesW (x��x0) > W (y��y0), while by Lemma
C.3(d), the reversal implies W (x��x0) < W (y��y0), a contradiction. Thus Bt is

nonincreasing.

To complete the step, we need to show that Bt is nonconstant. Suppose that

it is constant, Bt = B0 = 1
��
:= B > 0 for all t. Since W; bV are nonconstant and

a¢ nely independent, B > 0 implies that W + BbV and W are nonconstant and

ordinally distinct. Thus there is �; � where W (�) +BbV (�) < W (�) +BbV (�) and
W (�) > W (�) (argue as in footnote 21, for instance). But then by (D.2) we have

�+t < �+t for all large t but W (�) > W (�), violating Lemma C.3(c). Conclude

that Bt is nonconstant, and therefore that Bt < B0 = 1
��
for all large t.

Lemma D.9. If bV is nonconstant and a¢ nely independent ofW , then 0 �  � �.
Proof. Step 1:  � 0.
Suppose by contradiction that  < 0, and consider three cases. We use the

identities:

tX
i=0

�
�

�i
=

(
(1 + 

�
)(
P t�1

2
i=0

�

�

�2i
) for odd t > 0

(1 + 
�
)(
P t�2

2
i=0

�

�

�2i
) +

�

�

�t
for even t > 0.

Case i: jj
�
= 1.

The last statement of Lemma D.8(ii) requires

�
�

�t
< 1 +

�

��
[
t�1X
i=0

�
�

�i
] for all large t: (D.3)
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This cannot be satis�ed for large even t if jj
�
= 1 and � � 0. If � > 0

then
Pt

i=0

�

�

�i
= 0 for all odd t and

Pt
i=0

�

�

�i
= 1 for all even t. Thus

Bt =
1
��

( � )
t

1+ �
��
[
Pt�1
i=0(


� )

i
]
�uctuates between 1

��
and 1

��
1

1+ �
��

, violating Lemma D.8(ii).

Case ii: jj
�
6= 1 and � � 0

If jj
�
> 1 then the term �

��
[
Pt�1

i=0

�

�

�i
] is negative for all even t, and thus, for

all large even t, while the left hand side of (D.3) is strictly larger than 1, the right

hand side is strictly less than 1, a contradiction.

If jj
�
< 1 then [

Pt�1
i=0

�

�

�i
] is positive and increasing for all t. Consequently,

since  < 0, Bt is negative for some odd t, contradicting Lemma D.8(i).

Case iii: jj
�
6= 1 and � < 0

If jj
�
< 1 then [

Pt�1
i=0

�

�

�i
] is positive for all t, increasing for all odd t, and

increasing for all even t. Moreover, the limit is the same regardless of whether

we consider the subsequence corresponding to all odd t or that corresponding to

all even t. If the limit of 1 + �
��
[
Pt�1

i=0

�

�

�i
] is non-negative (resp. negative), then

1 + �
��
[
Pt�1

i=0

�

�

�i
] is positive for some odd t (resp. negative for some even t ) and

Bt is negative, contradicting Lemma D.8(i).

Suppose jj
�
> 1. Then

Bt =
1
��

( � )
t

1+ �
��

1�( � )
t�1

1� 
�

= 1
��

1

1

( � )
t+

1

( � )
t
�
��

1
1� 

�
� �
��

( � )
�1

1� 
�

! 1
��

1

� �
��

( � )
�1

1� 
�

= 
��
(
�
� 1)

Denote the limit by B > 0. Since W ,bV are nonconstant and a¢ nely inde-

pendent, B implies that W +B bV and W are nonconstant and ordinally distinct.

Thus there is �; � where W (�) + BbV (�) < W (�) + BbV (�) and W (�) > W (�).

But then by (D.2) we have �+t < �+t for all large t but W (�) > W (�), violating

Lemma C.3(c).

Step 2: 
�
� 1.

If � � 0, then 
�
� 1 contradicts (D.3). If � > 0, then suppose by way

of contradiction that 
�
> 1. As at the end of case iii above, show that Bt !


��
(
�
� 1) := B > 0 and argue similarly to establish a contradiction.
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Lemma D.10. Under Axioms 1-9, for all x 2 Z,

bV (x) = �W (x) + max
�2x

V (�)� �:

Moreover, � = 1 and thus C(x) = argmax�2xfU(�) + V (�)g for all x:

Proof. If bV is constant or an a¢ ne transformation of W , the result holds with

 = 0. Henceforth suppose that bV is nonconstant and not an a¢ ne transformation
of W . To ease notation let � := �(� � �) � � � 0 and �0 := (� � ) � 0. Also

denote the '-ranking of t-period menus by the binary relation 't over Z, that is,
x 't y () x+t ' y+t for t > 0. As in Lemma D.8, for any t > 0, the preference
't is represented by the function:
x 7! W (x) +Bt�1bV (x) =

(1�Bt�1��)max
�2x

fU(�) + V (�)g � (1�Bt�1��)max
�2x

V (�)

+Bt�1�max
�2x

f�U(�) + V (�)g �Bt�1max
�2x

f�U(�) + �0V (�)g � �

Consider the following cases:

Case A: ( = 0). In this case Bt = 0 for all t > 0, and so 't+1 is represented
by W for all t > 0 (note that B0 = 1

��
). By Sophistication and Theorem 6.1,

� = 1. If � = 0 then � = (�� �) and from the structure in Lemma D.7 we get

bV (x) = (�� �)max
x
fU + V g+ (� � �)max

�2x
V (�)� � = �W � �:

We show next that � > 0 is impossible. Note that '1 and '2 are respectively
represented by

x 7! max
x
fU + V g �max

x
f�
�
U + V g and x 7! max

x
fU + V g �max

x
V:

Since �
�
> 0 and U; V are a¢ nely independent, there exists �; � s.t. U(�) +

V (�) > U(�) + V (�), �
�
U(�) + V (�) > �

�
U(�) + V (�) and V (�) < V (�):24 It

24Argue as in the proof of Lemma D.8(ii) to show that there exists �0; �0; �00; �00 s.t.

U(�0) = U(�0); V (�0) < V (�0); U(�00) > U(�00); and V (�00) = V (�00), and that for any �;
U(�0��00)�U(�0��00)
V (�0��00)�V (�0��00) =

(1��)
�

U(�00)�U(�00)
V (�0)�V (�0) := f(�). Then choosing � s.t. f(�) > maxf1; ��g gives

rise to the desired � = �0��00 and � = �0��00.
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follows from the representations that f�g+1 � f�; �g+1 and f�g+2 > f�; �g+2,
and hence �(f�g+1; f�; �g+1) 6= 0. We show that �(�; �) = 0, thereby establishing
a contradiction to Menu-Reversal(i): Note that U(�) + V (�) > U(�) + V (�) and

� � 1 implies by Lemma D.6 that � > �. Moreover, since U(�) > U(�), Lemma
C.3(c) then implies �(�; �) = 0, as desired.

Case B: ( > 0). In this case Bt > 0 for all t, and from Lemma D.8(ii) we

know that 1�Bt�� > 0 for all large t. Consider two possibilities:
Case B(i): �U + �0V is a positive a¢ ne transformation of �U + V .

First suppose � = 1. Then (� � �) � � = (� � ) and therefore, � = �� + .
Moreover,bV (x) = �maxxfU+V g��maxxfU+V g+�maxx V �(��)maxxfU+V g��
= �W (x) + maxx V � �, as desired.
Next we show that � > 1 is impossible. First note that

Bt�max
�2x

f�U(�) + V (�)g �Btmax
�2x

f�U(�) + �0V (�)g 6= 0:

For if equality holds, then �U + �0V = ��U + �V and the fact that U and V

are a¢ nely independent then imply �0 = �, and thus (� � ) = �, which is not
possible given the hypothesis  > 0. Thus, it must be that for some k 6= 0,

Bt�max
�2x

f�U(�) + V (�)g �Btmax
�2x

f�U(�) + �0V (�)g = kmax
�2x

f�U(�) + V (�)g:

Note that �U + V is neither an a¢ ne transformation of U + V or V , as U and V

are a¢ nely independent. We show that Set-Betweenness must be violated.

Since the set of simple lotteries (lotteries with �nite support) is a dense subset

of �, we can �nd a �nite set of simple lotteries on which U + V , V and �U + V

are nonconstant and mutually a¢ nely independent (for each pair of functions

take two lotteries which the functions rank equivalently and two which they rank

di¤erently). Denote the (�nite) union of the (�nite) supports of these simple

lotteries by A � C � Z. Viewing A as just some �nite set, one can then restrict
attention to the subdomain of menus consisting of nonempty compact subsets of

�(A) and apply the argument in [5, Lemma 1] to establish a violation of Set-

Betweenness.
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Case B(ii): �U + �0V is not a positive a¢ ne transformation of �U + V .

First we show that � > 1 is impossible. The argument is similar to that in the

previous case. Depending on whether �U+�0V is a positive a¢ ne transformation

of V or U + V or neither, we have either two distinct positive states or two

distinct negative states. In either case, since the distinct states are mutually

a¢ nely independent, the argument in the previous case yields a contradiction to

Set-Betweenness.

Next consider the case � = 1. If �U + �0V is a positive a¢ ne transformation

of V then the fact that U and V are a¢ nely independent implies � = 0 and thus

(�� �)� � = 0 and therefore � = �� �. Moreover,bV (x) = �maxxfU + V g � �maxxfU + V g+ �maxx V �maxx(�� )V � �
= �W (x) + maxx V � �; as desired.

On the other hand if �U + �0V is not a positive a¢ ne transformation of V then

we have a case with one positive state and two distinct negative states. Arguing

as at the end of case B(i) yields a contradiction to Set-Betweenness.

Lemma D.11. � >  � �.

Proof. From the representation, we see that the induced representation for the

ranking '1 of next-period menus is
�W (x) + bV (x) = (� + �)W (x) + maxx V
= (� + �)maxxfU + V g � (� + � � )maxx V:

Set-Betweenness, nondegeneracy and  � 0 implies (�+�) > 0 and (�+��) > 0.

We have shown 0 �  � � and � >  � �; ' is represented by U + V ; for all
c; x,

V (c; x) = v(c) + bV (x) = v(c) + [�W (x) + max
�2x

V (�)]� �:

We can take � = 0 wlog since temptation utility appears in both a negative and

positive term in the function W . This completes the proof.
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E. Appendix: Proof of Thm 4.3

Consider the set F of continuous linear functions on �. The sup norm jj � jj makes
F a Banach space. Endow F � F with the norm de�ned by jj (F;G) jj=jj F jj
+ jj G jj, for all (F;G) 2 F � F . Then F � F is a Banach Space. For a = u; v,

let ca and ca denote the a-best and a-worst consumption in C, and de�ne:

U =

1X
t=0

�tu(ca), V =

1X
t=0

tv(cv) + �

1X
t=0

D(t)u(cu)

whereD(t+1) = �t
Pt

i=0(

�
)i, adopting the convention that

P0
i=0 = 1 and

P�1
i=0 =

0.

Let FU = fU 2 F : U � U � Ug and similarly FV = fV 2 F : V � V � V g.
De�ne

X = FU �FV :

The �rst lemma establishes compactness of X when F �F has the weak topology
(induced by the norm dual of F � F):
For any subset V of a normed vector space, denote by V � the norm dual of V ,

the set of all norm-continuous and linear functionals on V . The weak topology

on V is the weakest topology for which all the functionals in V � are continuous.

A net v� in V converges weakly (ie, wrt the weak topology) to v if and only if

f(v�)! f(v) for all f 2 V �.

Lemma E.1. X is a nonempty, bounded, convex, compact subset of F � F in

the weak topology.

Proof. Step 1: Show that the weak topology of a product is the product of weak
topologies.

We need to show that the weak topology on F �F is identical to the product
topology on F �F with the weak topology on F . The key observation is that any
norm-continuous linear functional L 2 (F �F)� can be written as a sum of norm-
continuous linear functionals l; l0 2 F�, that is, L(f; g) = l(f)+ l0(g). This follows

from linearity and the fact that, for any �xed f 0; g0, (f; g)+(f 0; g0) = (f; g0)+(f 0; g).
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Take a net (f�; g�) in F � F . If (f�; g�) ! (f; g) in the weak topology then

L(f�; g�)! L(f; g) for every norm-continuous linear function L 2 (F � F)�. By
taking all L that are constant either in the �rst or second argument, this implies

that f� ! f and g� ! g in the weak topology on F . Thus, (f�; g�) ! (f; g)

in the product topology. To prove the converse, suppose (f�; g�) ! (f; g) in the

product topology. Then l(f�) ! l(f) and l0(g�) ! l0(g) for all l; l0 2 F�. By our

observation above, it follows that L(f�; g�) ! L(f; g) for all L 2 (F � F)�, and
thus (f�; g�)! (f; g) weakly.

Step 2: Prove the lemma.

Nonemptiness and convexity are evident. (Norm) boundedness follows from

the Banach-Steinhaus theorem. To establish weak compactness, by step 1 it suf-

�ces to show that FU and FV are weakly compact subsets of F . We prove this
for FU below, and an anologous argument implies it for FV .
Convexity and boundedness, and the fact that � is compact metric and that

a convex subset of a locally convex linear topological space is weakly closed if

and only if it is closed [6, Thm V.3.13, pg 422] together imply the following

statement: FU is compact in the weak topology on F if FU is a compact set of
continuous linear functions when F has the topology of pointwise convergence [6,
Thm IV.6.14, pg 269].25

To this end, begin by isometrically embedding � in the linear space ca(C)

of �nite Borel signed measures on C, normed by the total variation norm.26 Let

F e denote the set of all linear and continuous functions on ca(C), and endow it

with the topology of pointwise convergence. De�ne F e
U = fU 2 F e : U � U � Ug.

Given [1, Corollary 6.23, pg 248], the pointwise limit of a sequence fn in F e
U lies

in F e
U . Thus F e

U is closed in topology of pointwise convergence on F e. But

25 [6, Thm IV.6.14, pg 269] states that for a set F of continuous functions on a compact

hausdor¤ space, the weak closure of F is weakly compact i¤ F is norm-bounded and its closure

in the pointwise convergence topology is a compact set of continous functions in this topology.
26Since C is compact, ca(C) is isometrically isomorphic to the topological dual B(C)� of

the space B(C) of continuous functions on C (normed by sup-norm). Use this duality and

endow ca(C) with weak�-topology �(B(C)�; B(C)). This topology induces the topology of

weak convergence on �.

48



F e
U � [U;U ]ca(C), that is, F e

U is a closed subset of a compact set, and thus itself

compact.

Finally, show that FU is compact when F has the topology of pointwise con-

vergence. De�ne the function � : F e! F by �(f) = f j�, the restriction of f to
�. It is obvious that � is continuous. Therefore compactness of F e

U in F e implies

compactness of FU in F . This completes the proof.

De�ne the function � : F � F ! F �F by

� (U; V ) (�) =

 R
C�Z(u(c) + � [max�2xfU + V g �max�2x V ])d�(c; x);R

C�Z(v(c) + [�max�2xfU + V g+ ( � �)max�2x V (�)])d�(c; x)

!
:

Lemma E.2. �jX is a self-map on X.

Proof. Take any (U; V ) 2 X. Write � (U; V ) = (�U;�V ). The Maximum

theorem implies that (�U;�V ) is a pair of continuous functions. Linearity is

evident. The fact that U � � (U) � U is readily determined, given the GP

functional form used. To see that V � � (V ) � V , observe that �max�2xfU +
V g+ ( � �)max�2x V (�) = �W (x) + max�2x V (�), and thus
� (V ) � v(cv) + �U + V
= v(cv) + �

P1
t=0 �

tu(ca) + 
�P1

t=0 
tv(cv) + �

P1
t=0[�

t�1Pt�1
i=0(


�
)i]u(cu)

�
= v(cv) +

P1
t=1 

tv(cv) + �u(ca)
�P1

t=0 �
t + 

P1
t=0[�

t�1Pt�1
i=0(


�
)i]
�

=
P1

t=0 
tv(cv) + u(ca)�

P1
t=0[�

t + �t�1
Pt�1

i=0(

�
)i]

=
P1

t=0 
tv(cv) + u(ca)�

P1
t=0[�

t + �t
Pt

i=1(

�
)i]

=
P1

t=0 
tv(cv) + u(ca)�

P1
t=0[�

tPt
i=0(


�
)i]

=
P1

t=0 
tv(cv) + u(cu)�

P1
t=0D(t+ 1) =

� V

where =� follows from the fact that
P1

t=0D(t + 1) =
P1

t=0D(t) since D(0) =

��1
P�1

i=0(

�
)i = 0. An analogous argument yields V � � (V ). Thus � (U; V ) 2 X.

Lemma E.3. �jX is continuous with respect to the weak topology.
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Proof. By [1, Thm 6.21, pg 247], norm-to-norm continuity of a function between
two normed spaces is equivalent to weak-to-weak continuity. Below we establish

that � is sup-norm continuous.27 It then follows that �, and in turn �jX , is weakly
continuous.

Begin with a preliminary observation. Take any f 2 F and consider the prob-
lem sup�2�

��R (max�2x f)d�(c; x)��. Note that the objective function is insensitive
to any c yielded by �. Since x 7! max�2x f is continuous, the sup is achieved as

a max for some �. Because of the expected utility form, � is degenerate on some

(c; x) wlog. Denoting the maximizer of f in x� by �x, we see therefore that

sup
�2�

����Z (max�2x
f)d�(c; x)

���� = sup
(c;x)2�

���max
�2x

f
��� = sup

(c;x)2�
jf(�x)j = sup

�2�
jf(�)j =jj f jj :

Thus the sup is in fact the norm of f .

To prove the lemma, suppose jj Un � U jj! 0 and jj Vn � V jj! 0. Take

U = V = 0 wlog. Write � (Un; Vn) as (�Un;�Vn). Observe that

jj � (Un; Vn)� � (0; 0) jj
=jj �Un � �0 jj + jj �Vn � �0 jj
=jj

R
C�Z � [maxxfUn + Vng �maxx Vn])d�(c; x) jj

+ jj
R
C�Z [�max�2xfU + V g+ ( � �)max�2x V (�)])d�(c; x) jj : Using the tri-

angle inequality and the observation above, we see that jj � (Un; Vn)�� (0; 0) jj!
0. Thus � is sup-norm continuous.

To complete the proof, we invoke the Brouwer-Schauder-Tychono¤�xed point

theorem [6, Thm V.10.5, pg 456], which states that a continuous self-map on a

compact convex subset of a locally convex linear topological space has a nonempty

set of �xed points.

F. Proof of Theorems 4.2, 4.4-4.6

See the Supplementary Appendix.
27By [1, Thm 6.30, pg 252], the weak and norm topologies on a �nite dimensional space

coincide. Since the range of � is R, we need to be concerned only with the topology on its
domain.
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G. Appendix: Proof of Thm 4.7

Let ' be the preference relation that is represented by ' : � ! R de�ned by

'(�) = U(�) + V (�) for all � 2 �. Given Theorem 4.2 we can assume U; V � 0.
For each t > 0, de�ne 't on � by � 't � () �+t ' �+t. We saw in (6.2) that
't is represented by the function 't : �! R de�ned by 't(�) = U(�) +DtV (�)

for all � 2 �; where Dt & 0.

Lemma G.1. The sequence f'tg uniformly converges to U .

Proof. The sequence f'tg is a sequence of continuous real functions de�ned on
a compact space �. Since Dt & 0, the sequence is monotone (decreasing) and 't
converges pointwise to the continuous function U . Therefore, by Dini�s Theorem

[1, Theorem 2.62], the convergence is uniform.

Since U is nonconstant, there exists �; � 2 � s.t. U(�) > U(�). By linearity

of U ,

U(�) � U(�) =) U(���) > U(���), for all � 2 (0; 1) : (G.1)

This observation will be used in the next lemma. Let%U be the preference relation
represented by U . As in Appendix B, identify any binary relation B on � with

its graph �(B) � ���.

Lemma G.2. %U=%� :

Proof. As limt!1 �('t) � �(%�), it su¢ ces to show that �(%U) = limt!1 �('t).
First establish Ls�('t) � �(%U). If (�; �) 2 Ls�('t) then there is a subsequence
f�('t(n))g and a sequence f(�n; �n)g that converges to (�; �) such that (�n; �n) 2
�('t(n)) for each n. Therefore, for each n, 't(n)(�n) � 't(n)(�n). Since 't(n)
converges to U uniformly, it follows that U(�) � U(�). Hence (�; �) 2 �(%U), as
desired.

Next establish �(%U) � Li�('t). Let (�; �) 2 �(%U) and take any neigh-
borhood V of (�; �). By (G.1), there exists � 2 (0; 1] s.t. (���; ���) 2 V and

U(���) > U(���). By Lemma G.1, there exists T < 1 such that 't(���) >
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't(���) for all t � T , that is, (���; ���) 2 �('t) for all t � T . Hence,

V \ �('t) 6= � for all but a �nite number of t, that is, (�; �) 2 Li�('t). This
completes the proof.
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