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Abstract

In formalizing a ‘veil of ignorance’ type procedure, this paper considers

how an agent’s preferences over a set of alternatives change as he is placed

at an increasing ‘distance’ from the consequences of his choices. A definition

for such ‘removed preferences’ is presented and its properties studied. As an

application, it is demonstrated that decreasingly impatient agents are ‘essen-

tially’ exponential when distanced from the present, and that rank-dependent

expected utility agents are ‘essentially’ expected utility when distanced from

risk.

Keywords: Psychological distance, Veil of Ignorance, Behavioral Welfare,

Discounting, Probability weighting.
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1 Introduction

We consider how an agent’s preferences over a set of alternatives change as

he is increasingly distanced from the consequences of his choices. This paper

formalizes and studies the notion of ‘preferences from a distance’, referring

to it as a removed preference.

Motivation: A recent source of motivation for formally studying removed

preference comes from the recent debate in welfare economics. Economics

has traditionally adopted revealed preference as a guide for welfare policy.

The hypothesized choice-welfare connection has had its early critics and there

is renewed criticism due to the increased attention being paid to findings in

psychology (such as mistakes, biases, anchoring, framing effects, impulse con-

trol problems) which has been accompanied with developments in descriptive

theories of behavior. Researchers have been led to question whether revealed

preference is an appropriate guide for welfare policy in a class of new models

that study non-rational or constrained-rational behavior. In light of this,

removed preferences are of potential interest from the point of view of non-

standard welfare analysis.

Specifically, ‘veil of ignorance’ type reasoning (Rawls [23], Harsanyi [9])

is based on the idea that evaluations that have immediate consequences have

less normative significance than those that have more distant (less immediate

or certain) consequences for the agent. According to Rawls [23, pg 136], the

veil’s purpose is to “nullify the effect of specific contingencies which put

men at odds and tempt them.” Thus, an agent’s preferences at time  about

consumption at time +  may have some primacy over preferences at time

+ (Ainslie [1], O’Donoghue and Rabin [20]). Alternatively, the preferences

at time  over + consumption may reflect the agent’s normative assessment

of his own choices at time  — an agent abusing drugs may normatively assess

his current choice to be bad (such as if he finds himself overwhelmed by

temptation), and reveal this by a preference for avoiding such choices in the

future. However, despite the potential relevance of removed preference for

welfare, this paper studies removed preferences without committing to any

position on its welfare significance, leaving such evaluations to the reader.

A second source of motivation comes from the potential usefulness of re-

moved preference in the axiomatization of decision models. Here the removed

preference need have no welfare significance — it is just a mathematical object

through which a representation may be identified. For instance, consider the
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following intertemporal choice model of preferences over (infinite horizon)

consumption streams,

 (0 1 ) = (0) +

∞X
=1

( + )()   

where discounting is non-exponential and exhibits negative time preference

over part of the horizon when  +   1. The latter may arise perhaps due

to the effect of anticipation, which may drive an agent to postpone desirable

consumption or expedite undesirable consumption (Loewenstein [14]). For

any consumption vector c define c+ as the vector that yields 0 in the first

 periods and then pays according to the schedule c in subsequent periods.

Then preferences over streams c from a distance of  are represented by

 (c+), which is ordinally equivalent to
 (c+)


,

 (c+)


=

1



∞X
=0
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Since   , we see that lim→∞
 (c+)


=
P∞

=0 
(). That is, from an

‘infinite distance’, the agent ranks consumption streams according to the

exponential discounting model. This observation then can serve as a starting

point for providing foundations for such a model — it isolates an aspect of

preference that must satisfy standard axioms and it identifies  and . For a

more involved application of removed preferences, see the axiomatization of

a model of temptation in Noor [19].

This paper: We define removed preferences in an abstract setting and for-

mulate it in entirely choice-theoretic terms. Our primitive consists of a se-

quence of preferences {%}∞=0 on a common domain A, where  is some

measure of distance. We define the removed preference as the set-theoretic

limit inferior of the sequence — thus  is removed preferred to  if  % 

for all large . We study its properties and also those of related notions

in an abstract setting. We then present two applications. Our first applic-

ation is on time preference. Intertemporal choice experiments reveal that

agents’ discount functions are not exponential, but rather exhibit a property
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known as decreasing impatience. With distance defined as temporal distance

and considering a general nonexponential discounting model, we show that

decreasing impatience implies that agents’ removed preferences ‘essentially’

feature exponential discounting, in a sense made precise.1 Our second applic-

ation is on risk preference. Experiments on choice under risk reveal particular

violations of the vNM Independence axiom, such as the Allais paradox, which

suggest nonlinear weighting of probabilities. Research also suggests that risk

has visceral affects on decision makers, such as causing anxiety or dread. If

distance from risk is to be understood as proximity to certainty, then distance

can be achieved by scaling down the probabilities of non-zero outcomes. We

find that in the rank-dependent utility model (of which prospect theory is a

special case), the removed preference must ‘essentially’ be expected utility.

The paper is organized as follows. Sections 2 presents a definition of

removed preferences. Section 3 studies the properties of removed prefer-

ences and its continuous extension under some basic restrictions. Section 4

describes an application that derives removed preferences from a model of

intertemporal choice, and Section 5 does the same for a model of risk. All

proofs are contained in appendices.

2 Removed Preferences

The idea of distancing is familiar to philosophers and psychologists, and is

even part of common wisdom. For instance, when trying to demonstrate to

a friend that his smoking is in fact against his own better judgment, we try

to get him to view the act of smoking from a distance by asking him how he

would feel about his children smoking. In philosophy, the ‘original position’

theories of justice (such as Rawls [23] and Harsanyi [9, 10]) derive an agent’s

notion of a ‘just’ social allocation by eliciting his views only after placing

him behind a ‘veil of ignorance’ that distances him from his own personal

identity, or his position in society. According to Rawls [23, pg 136], the veil’s

purpose is to “nullify the effect of specific contingencies which put men at

odds and tempt them.” According to Harsanyi [10, pg 316], an agent’s choices

1Specifically, we show that a continuous extension of the removed preference, which we

call the closed removed preference, must admit a representation with exponential discount-

ing. We then show that the removed preference agrees with the closed removed preference

on a dense set of pairs of alternatives.
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reflect his ‘ethical preferences’ if they “indicate what social situation he would

choose if he did not know what his personal position would be in the new

situation chosen”. Experiments in psychology have shown that a desire for

immediate gratification is resisted more effectively when the object offering

temptation is out of sight, and thus distant (Mischell and Ebbesen [18]).

Psychologists such as Ainslie [1], Rachlin [21] and Rachlin and Green [22]

have also argued that changes in behavior induced by temporal distancing,

such as those studied in the literature on preference reversals and dynamic

inconsistency (see Fredrick, Loewenstein and O’Donoghue [6] for a survey of

the evidence), reveal that choices among temporally close alternatives were

subject to a desire for immediate gratification. Ainslie [2] used the term

‘long-run preference’ to describe preferences from a (temporal) distance, in

the absence of a desire for immediate gratification, and O’ Donoghue and

Rabin [20] formulated a welfare criterion for the quasi-hyperbolic discounting

model in terms of preferences in a fictional, ex ante (thus distant) period.2

In this section we formalize the notion of ‘preference from a distance’.

The actual notion of distance used necessarily depends on the context. When

dealing with temptation, for instance, temporal distance appears to be nat-

ural since introspection confirms that immediate temptations are harder to

resist than temptations that lie in the future. One of the applications in

this paper makes use of this. Another application, in a risk context, defines

distance from risk in terms of proximity to certainty. Another possible no-

tion relevant for temptation is that of ‘availability’: an item may be more

tempting the more easily available it is, and so, the more distant an item is

in terms of availability, the less tempting it may be. Finally, to the extent

that a desire to look good in others’ eyes may lead one to behave in a man-

ner different from one’s ‘true’ preference, the degree of anonymity of one’s

choices may serve as a notion of distance from the social context.

2Despite the intuitive appeal of the notion of distancing, one may argue for other welfare

notions. For instance, in a multiple selves model, one may argue that some aggregation

of the preferences of the multiple selves is an appropriate welfare criterion (Green and

Hojman [7]), even if distancing isolates the preferences of a single self. We refrain from a

philosophical argument, noting only that the notion of distance seems to have sufficient

appeal on its own to deserve formal study.

6



2.1 Formalization

Let A be a set of alternatives. Let distance be some abstract notion — ex-

amples of distance were discussed in the previous section and are studied in

our applications in the sequel. Let the “degree”  of distance be captured by

the set of non-negative integers N ∪ {0}. Larger  represent greater degrees
of distance. Suppose that the agent’s choices at some fixed point in time are

summarized by {%}∞=0, a set of preference relations defined over A. Each
preference % ranks alternatives in A when these alternatives are distant by
 degrees.3 Then the agent’s removed preference may be identified with a

suitable limit point of the sequence {%}∞=0.
To be formal, identify any binary relation  on A by identifying a binary

relation  on A the graph Γ() = {( ) ∈ A×A : }. Then a binary
relation is a subset of A × A, and the space of all such binary relations is
2A×A.4 We claim that a natural definition for removed preference is the (set-
theoretic) limit inferior of a sequence {%}∞=0, given by %∞:= lim inf %:=

∪∞=0∩∞= %. That is,  %∞  if and only if  %  for all but a finite

number of :

 %∞  ⇐⇒ there exists  s.t.  %  for all  ≥ 

This requires, indeed, that  %  always holds with sufficient distance .

Thus the limit inferior serves as the natural candidate for the definition of

removed preference.5

As we will see below, the removed preference is generally not continuous.

This, along with the results we find in our applications, motivates us to also

consider a continuous extension of the removed preference. Formally, suppose

that A is a topological space and that A × A has the product topology.

Identify any nontrivial continuous order on A with its graph, a nonempty

3Alternatively, one could take as primitive a single preference relation over the set

A×N ∪ {0} of distant rewards. However, this primitive embodies more information than
we require.

4In later sections we will deal with continuous binary relations (that is, those with a

closed graph). When A is a topological space, the space of continuous binary relations on
A×A (endowed with the product topology) is the set of closed subsets of A×A.

5For perspective, note that the limit superior defined by ∩∞=0∪∞= % ranks  higher

than  if  %  for infinitely many . This is not suitable for our purposes. The agent

may, for instance, exhibit  Â  for all even  while [ 6%  and  6% ] for all odd

. Then it cannot be said what the agent prefers from a sufficient distance. Yet the limit

superior will strictly rank  over , an unwarranted conclusion for the removed preference.
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closed subset of the set A×A endowed with the product topology. Identify
the space of such binary relations on A with a subset of P = K(A×A), the
space of nonempty compact subsets of A × A endowed with the Hausdorff

metric topology. The closure of the removed preference, referred to as the

closed removed preference, is denoted:

%∗:=  %∞ 

That is,  %∗  if and only if there exists sequences  and  converging

to  and  respectively such that  %∞  for all . The closed removed

preference makes less conservative assertions about the agent’s preferences

from a distance. For instance, although  Â  for all , suggesting a strict

preference from a distance, it may well be that  ∼∗ . This would happen
if in every neighborhood of  and  there are  and  such that  -∞ .

3 Properties of %∞ and %∗

We explore properties of removed preference and closed removed preference

under a simple ‘single reversal’ restriction on {%}∞=0, which requires that
distancing induce at most one complete reversal in preference.

3.1 Definitions

Consider a set of preference relations {%}∞=0 over a compact metric space
A where each preference % captures the ranking of alternatives in A when
the alternatives are delayed by  periods. We will be interested in whether

the usual assumptions on % carry over to the removed preference. Consider

the following properties on {%}∞=0.

Axiom 1 (Order) % is complete and transitive for all .

Axiom 2 (Continuity) The sets { :  % } and { :  % } are closed
for all  and .

Axiom 3 (Non-Triviality)  Â0  and  ≺00  for some , and 00 
0.
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We will also be interested in whether the vNM Independence condition

holds from a distance. For this case (and only for this case), we suppose

there is some compact metric space  and that A = ∆() is the set of all

probability measures on the Borel -algebra of  endowed with the weak

convergence topology; A is compact and metrizable [3]. For  ∈ [0 1] and
  ∈ A, the mixture +(1−) ∈ A is the measure that assigns ()+
(1− )() to each  in the Borel -algebra of . Now we can state:

Axiom 4 (Independence) For all ,

 Â  =⇒ + (1− ) Â  + (1− )

The next property imposes structure on {%}∞=0 via the restriction that
there can be no more than one reversal for any pair of rewards. The property

ensures convergence of {%}∞=0.

Axiom 5 (Reversal) If  ≺  (resp.  - ) and  %0  (resp.  Â0 )

for some 0  , then  %00  (resp.  Â00 ) for all 
00  0.

3.2 Convergence and Characterization

The first result in this section shows that under Order, Continuity and Re-

versal, the closed removed preference can in fact be computed as the limit of

the sequence {%}∞=0 with respect to the Hausdorff metric topology — this
is the closed limit, and is denoted lim→∞ % (see Appendix A for details).

As is demonstrated in subsequent sections, knowing that the two notions co-

incide proves useful in exploring properties of the closed removed preference.

Though the closed limit is continuous, the two do not coincide in general.6

6To see this, let A = [0 1] (with the relative Euclidian topology) and suppose that each
% is represented by the utility function  defined by

() =

½
 if  6= 1− 1



0 if  = 1− 1


  ∈ [0 1]

(Though  is discontinuous, % is continuous). Each % is strictly monotone (larger

numbers are ranked higher) except that the point (1− 1

) is indifferent to 0. As  increases,

this point tends to 1. The sequence {%}∞=0 converges to a preference lim→∞ % that

is not monotone: it ranks 1 and 0 as indifferent and every number in between is ranked

strictly higher. In contrast, the closed removed preference %∗ is strictly monotone: it
is easy to see that the removed preference %∞ is strictly monotone, and since it must

therefore be continuous it must coincide with the closed removed preference.
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Theorem 1 Suppose that {%} satisfies Order, Continuity and Reversal.
Then % converges and

%∗= lim
→∞

% 

Thus, under Order, Continuity and Reversal, closed limit is characterized

by closed removed preference. Since %∞⊂%∗, the removed preference is
distinct from the limit in general.

Next we characterize the difference between the removed preference and

the closed removed preference under Order, Continuity and Reversal. A

straightforward implication of Order and Reversal is the existence of a func-

tion  : A×A→ R such that for each ( ) ∈ A×A, ( ) is the number
of periods that  and  need to be delayed before a reversal is observed; if

no reversal is observed, then ( ) = 0. For instance, if  Â0 ,  %1  and
 ≺  for all  ≥ 2, then ( ) = 2. This switching function  : A×A→ R
is defined formally in Appendix B.

The set Ω ⊂ A×A on which  is upper semicontinuous is given by:

Ω = {( ) ∈ A×A : lim sup
→∞

( ) ≤ ( ) whenever ( )→ ( )}

The next result identifies the connection between removed preferences and

the close removed preference.

Theorem 2 Suppose that {%} satisfies Order, Continuity and Reversal.
Then, for any   ∈ A, the following statements are equivalent:
(a)  Â∗ 
(b)  Â∞  and ( ) ∈ Ω

By definition,  Â∗  implies  Â∞ . However, the result demonstrates

that the converse is not true in general. Intuitively, the reason is that pref-

erences can reverse “at infinity”, and that these reversals are not captured

by %∞. The behavior of  in the neighborhood of a pair of reward associ-
ated with such a reversal suggests this terminology: for any   such that

 Â∞ , we have ( ) 6∈ Ω if and only if there exists a sequence {( )}
that converges to ( ) such that lim sup→∞ ( ) =∞ and  %∞  for

all . Appendix E shows this formally.

The above result shows us that any disagreement between removed pref-

erence and closed removed preference can only take the form  Â∞  and

 ∼∗ , and that too only happens at points outside Ω. The next result shows
that %∞ and %∗ agree on a dense set, that is, that the two are ‘essentially’
in agreement.
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Theorem 3 Suppose that {%} satisfies Order, Continuity and Reversal.
Then %∞ and %∗ agree on a dense subset of A×A, namely:

 = {( ) ∈ A×A :  Â∗  or  ∼∞ }

We will establish counterparts of this particular result in our applications,

and those will prove useful for the following reason: If %∗ has a particular
property, then there will be justification for claiming that %∞ essentially

satisfies that property. That is, we will be able to make claims about removed

preference by studying properties of closed removed preference. In particular,

the closed removed preference provides a means of understanding removed

preference in a way that goes beyond a discussion of the specific restrictions

satisfied by the latter. This is the main motivation for introducing closed

removed preference.

3.3 Properties

Say that a binary relation % is non-trivial if  6%  for some  , and that %
satisfies Independence if for all   ,  Â  =⇒ +(1−) Â +(1−)

Theorem 4 Suppose that {%} satisfies Order, Continuity and Reversal.
Then the following statements hold:

(a) %∞ and %∗ are both complete
(b) %∗ is continuous but %∞ may not be.

(c) %∞is transitive, and Â∗is transitive but ∼∗ may not be.
(d) If {%} satisfies Non-triviality then %∗ and %∞ are non-trivial.

The result demonstrates that familiar properties imposed on {%} may
not always imply analogous properties for %∗ and %∞. The lack of continuity
of %∞ is due to the existence of “reversals at infinity” noted earlier. In

particular, it is possible that  Â∞  and yet for there to exist a sequence

{( )} that converges to ( ) that satisfies  %∞ . By contrast, %∗ is
continuous — it is a continuous extension of %∞obtained by setting  ∼∗ 
whenever there is a reversal at infinity for  .

The closed removed preference %∗ turns out to have potentially intransit-
ive indifference (see the appendix for an example). Specifically, it is possible

that there is a reversal at infinity for both pairs   and   and yet for there

to be no such reversal for the pair  , thereby permitting a situation where

 ∼∗  ∼∗  but  6∼∗ . In order to rule out such cases some structure is
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required on the behavior of the switching function  across neighborhoods of

various pairs of rewards — note that Order, Continuity and Reversal does very

little in this regard. The applications we consider in subsequent sections have

more structure: for instance, {%} is derived from a model which induces a

uniformly convergent sequence of utility representations {}. Indeed, %∗ is
transitive in each of the applications.

For the current section, with its focus on relatively weak structure, we

consider an example of additional structure in the context of preferences

{%} over a mixture space. Consider the property where for all    and
 ∈ (0 1)

 Â∞  and ( ) ∈ Ω =⇒ (+ (1− )   + (1− )) ∈ Ω (1)

This states that if there is no reversal at infinity for the pair of lotteries 

and , then no reversal arises for pairs obtained by a common mixture with

a third lottery (the condition is restricted to cases where  Â∞ ). In this

sense, the behavior of  around ( ) is similar to that around ( + (1 −
)  + (1− )). This would be implied if %∗ satisfied Independence.
We can show:7

Theorem 5 If {%} satisfies Order, Continuity, Reversal, Independence
and (1) then %∗ is transitive and satisfies Independence.

4 Application to Time Preference

In this section we derive the removed preference %∗ from a model based on

the literature on decreasing impatience. The main finding of this literature

in experimental psychology is that of preference reversals — see Fredrick,

Loewenstein and O’Donoghue [6] for references. An example of a preference

reversal is when an agent exhibits the following at some given point in time:

($100 ) Â ($120 1 )

($100 1 ) ≺ ($120 1   1 )

The first comparison reveals that the agent is impatient when rewards are

near — he prefers a smaller earlier reward to a larger later one. The second

7For completeness, we also show the following in the appendix: If {%} satisfies In-
dependence then %∞ satisfies Independence. If, moreover, %∗ is transitive, then %∗ also
satisfies Independence.
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reveals that the agent’s impatience decreases when the same rewards are

pushed into the future by a common number of periods. The implied feature

of time preference, that impatience diminishes as alternatives become more

distant, is known as decreasing impatience and has inspired the literature on

the desire for immediate gratification — this includes hyperbolic discounting

(Laibson [13]) and temptation (Gul and Pesendorfer [8]). Given that a desire

for immediate gratification is obviously stronger for more immediate rewards

than more distant ones, we take temporal distancing as our notion of distan-

cing. Below we outline a general model that exhibits decreasing impatience

and then explore the implied properties of removed preference.

4.1 Assumptions

The primitive of the model captures how the agent ranks delayed consump-

tion streams. Let  be some bounded interval in R+ including 0, and let
the space of  +1-period horizon consumption streams be given byA =  ,

which is endowed with the product topology. We impose   ∞ (see foot-

note 10 for the reason). The primitive is {%}∞=0, a set of preferences defined
over A that captures the agent’s ranking of delayed  + 1-period consump-

tion streams. More precisely, each % captures, from the perspective of some

fixed period 0, the agent’s ranking of streams of length  +1 that begin after

 periods. We adopt three assumptions on {%}∞=0:

Assumption 1 There exist functions  :  → R and  : N ∪ {0}→ R
such that each % is represented by the utility function defined by:

(0 1   ) =

X
=0

(+ )() (2)

for each (0 1   ) ∈ +1.

That is, % is represented by a discounted utility model with discount

function  (·). One can imagine that {%}∞=0 was derived from a single pref-
erence over infinite horizon consumption streams with the discounted utility

representation defined by  and  (though this would require us to strengthen

Assumption 3 below so that the infinite sum of discounted utilities is well-

defined). Note how  appears in the function : since the consumption

stream (0 1   ) begins after  periods, the  element of the stream
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(that is, ) is in fact  +  periods away. Thus, its utility is discounted by

(+ ).

Assumption 2 The instantaneous utility function (·) is strictly in-
creasing and continuous and satisfies (0) = 0.

Assumption 3 The discount function (·) is strictly positive and weakly
decreasing in , and

(+1)

()
is weakly increasing in .

The first part of the assumption states that a unit of consumption is worth

weakly less the farther it is, and moreover, it is always worth something. The

second part embodies (weakly) decreasing impatience since
(+1)

()
reflects

how, from today’s perspective, the agent weighs consumption in period +1

relative to consumption in period . The literature on preference reversals

and decreasing impatience lends empirical support to this assumption. The

class of discount functions that satisfy Assumption 3 includes both exponen-

tial discount functions , where  ≤ 1, and generalized hyperbolic discount
functions

¡
1

1+

¢ 
 , where    0 (Chung and Hernnstein [4], Loewenstein

and Prelec [15]).

4.2 Results

Though the agent uses the discount function (·) when evaluating consump-
tion streams, he may, for instance, be ‘too’ impatient in his own opinion,

perhaps due to a desire for earlier gratification as discussed in the literature

on decreasing impatience. Thus the discount function that he uses in his

decisions may be different from the discount function he would use when

at a distance. We derive the representation for the agent’s closed removed

preference.

The results of Section 3 are not applicable here: although {%}∞=0 satis-
fies Order and Continuity, it violates Reversal in general.8

8To see this, suppose  = 2 and () = . For  = 049, define the discount func-

tion () by () =

½

√
! if 0 ≤  ≤ 4

(4) otherwise
. Then  satisfies Assumption 3. Take two

deterministic streams (0 1 2) and (
0
0 

0
1 

0
2) = (0 − 0445 1 + 15 2 − 1). Define

 () := (0 1 2)− (
0
0 

0
1 

0
2) = ()0445− (+ 1)15 + (+ 2), and compute

that  (0)  0,  (1)  0 and  (2)  0. It follows that the preference over (0 1 2) and

(00 
0
1 

0
2) reverse more than once.
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Theorem 6 Under Assumptions 1-3, the closed removed preference %∗ is
represented by a utility function ∗ : +1 → R defined by:

∗(0 1   ) =
X
=0

() for any (0 1   ) ∈ +1,

where  ≡ lim→∞
(1+)

()
is a well-defined limit. Moreover, {%}∞=0 con-

verges and %∗= lim→∞ %.

Thus, under the assumptions, discounting by the closed removed prefer-

ence is given by the exponential discount function:

∗() =  0 ≤  ≤ 

Since the removed preference %∞ agrees with %∗ on a dense subset of A×A,9
we conclude that removed preference is essentially an exponential discounted

utility model.

4.3 Examples

We study what commonly studied discount functions imply about ∗. In
what follows, we restrict the domain of (·) to {0 1  } and implicitly
assume the quantifiers ‘for all 0    ≤ 1’, and ‘for all    0’ where

appropriate.

• () =  implies ∗() = 

That is, exponential discounting implies that there is no difference between

an agent’s actual and removed discount function. If a difference between

actual and removed perspectives is attributed to temptation, the standard

model thus precludes any temptation surrounding discounting.

• () =

½
1 if  = 0

 otherwise.
implies ∗() = 

9The proof is as follows. By definition we have [c ∼∞ c0 =⇒ c ∼∗ c0] and [c Â∗ c0 =⇒
c Â∞ c0] for all c c0 ∈ A, so %∞ agrees with %∗ on the subset  = {(c c0) ∈ A × A:
c Â∗ c0 or c ∼∞ c0}. To see that  is dense, we note that ∗ is nonconstant and strictly
monotone. So whenever c %∗ c0 we can always find a sequence (c c0)→ (c c0) such that
c Â∗ c0 for all .

15



Thus, the quasi-hyperbolic discount function implies that the closed re-

moved discount function sets  = 1. This is reminiscent of O’ Donoghue and

Rabin [20].

• () =
¡

1
1+

¢ 
 implies ∗() = 1.

This follows from10

 ≡ lim
→∞

(1 + )

()
= lim

→∞

µ
1 + 

1 + + 

¶


=

µ
lim
→∞

1 + 

1 + + 

¶


= 1

The result states that the hyperbolic discount function
¡

1
1+

¢ 
 , a special case

of which has been used to fit experimental data (Mazur [17]), implies that

the agent’s removed perspective weights the present and the future equally.

This holds regardless of the values of the parameters   (the agent’s idio-

syncrasies).

5 Application to Risk Preference

A well-known finding in the experimental literature on risk preference is the

certainty effect, also known as the Allais paradox (Kahneman and Tversky

[12] for references. An example of a certainty effect is when an agent exhibits:

($3000 probability 1) Â ($4000 probability 0.8)
($3000 probability 0.25) ≺ ($4000 probability 0.2)

The second pair of lotteries is obtained by scaling down probabilities by 0.25

in the first pair. This behavior is incompatible with expected utility theory

since it violates Independence, specifically the fact that for any  ∈ (0 1),
lotteries   and the degenerate lottery 0 that yields $0,

 %  ⇐⇒ + (1− )0 %  + (1− )0

Various nonexpected utility theories have been built to accommodate the

certainty effect. These suggest that the certainty effect is an intrinsic aspect

of preferences. An alternative suggestion is that the certainty effect is an

10The fact that ∗(·) could be 1 for an interesting class of discount functions led us to
restrict attention to finite  .
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emotional response arising from a dread for risk - see Loewenstein et al

[16] for a review of evidence suggesting that risk invokes anxiety and dread

in decision-makers. To the extent that an analyst may be interested in an

agent’s dispassionate evaluation of risk, he may seek to study the agent’s risk

preferences from a ’distance’. Increasing distance from risk - that is, reducing

dread - is naturally understood as increasing the proximity to certainty. Thus

a candidate definition of distance in this context is the uniform scaling down

of probabilities of nonzero outcomes, that is, by mixing lotteries with 0.

Intuitively, by mixing a lottery  with 0, the likelihood of receiving or losing

a reward reduces and in turn so does the ‘size of the risk’ and its associated

dread.

5.1 Assumptions

Let ∆ be the set of finite support lotteries over some arbitrary space . A

generic lottery is . For any  ∈ , let  also denote the lottery yielding 

with probability 1. Let % be a binary relation on ∆.

The first assumption asserts the existence of (what we will interpret as)

0 consumption and also asserts non-triviality of the preference.

Assumption 1 There exists some element 0 ∈ ∆ so that  % 0 for any
 ∈ ∆. Moreover, there exists  ∈ ∆ such that  Â 0.
For any given  ∈ ∆, label the non-zero outcomes 1   so that

 %  % 1 (the dependence on  is suppressed to ease notation here and

in the appendix). We assume that the preference admits a rank-dependent

utility representation, which generalizes expected utility theory by permit-

ting nonlinear weighting of probabilities while preserving monotonicity with

respect to first order stochastic dominance. (Cumulative) prospect theory is

a special case.

Assumption 2 There exists a function  :  → R with (0) = 0 and

a strictly increasing, twice continuously differentiable function  : [0 1] →
[0 1] with (0) = 0 and (1) = 1 such that % is represented by the Rank-

Dependent Utility:

 () =

X
=1

[(

X
=1

())− (

−1X
=1

())]()

for each  ∈ ∆.
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Experimental studies on probability weighting support the following as-

sumption.

Assumption 3 The function  : [0 1] → [0 1] is strictly convex on a

neighborhood of 0.

We now define our sequence of preferences indexed by distance, where

distance is obtained by mixing a lottery with 0. For each , define % over

∆ by

 %  ⇐⇒ 1


+

− 1


0 % 1


 +

− 1


0

As before, %∗ is the closed removed preference generated by {%}. The
main result of this section is that, under the assumptions, %∗ is expected
utility with respect to the utility index . That is, from a distance, the agent

weights probabilities linearly.

Theorem 7 Under Assumptions 1-3, %∗ is represented by ∗() =
X

()().

Since removed preference%∞ agrees with%∗ on a dense subset ofA×A,11
we therefore conclude that removed preference is essentially expected utility.

6 Conclusion

This paper formalizes the notion of removed preference. When studied in

the context of well-known non-standard utility models, it is shown to ‘es-

sentially’ possess the properties of standard models — we show that it is

essentially expected utility in a non-expected utility model and essentially

exponential discounting in a non-exponential model. We show that closed

removed preference is a useful notion for understanding removed preference.

11The proof is as in footnote 9 except that mixture linearity of ∗ is exploited here in

place of strict monotonicity.
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A Appendix: Topology on P
When is A is compact and metrizable, A × A is compact and metrizable

under the product topology. Let  be a metric that generates the topology

on A×A Denote the space of nonempty compact subsets of A×A by P.
For any  ∈ P, let () = inf∈ ( ) and () = inf∈ ( ).
The Hausdorff metric  induced by  is defined by

() = max{sup () sup ( )}
for all  ∈ P. An -ball centered at  is defined by

( ) = { : ()  }
The Hausdorff metric topology on P is the topology for which the collection
of balls {( )}∈P∈(0∞) is a base.
View the elements of P as binary relations on A by identifying a binary

relation  on A with Γ(), the graph of :

Γ() = {( ) ∈ A×A : }
If  is a weak order (complete and transitive binary relation) then Γ() is

nonempty. If  is also continuous then Γ() is closed, and hence compact.12

Thus, the set of continuous weak orders on A is a subset of P.
By [3, Thm 3.71(3)], compactness of A × A implies that P is compact.

Also, under compactness of A×A, Γ() is the Hausdorff metric limit of a
sequence {Γ()} ⊂ P if and only if Γ() is the ‘closed limit’ of {Γ()} [3,
Thm 3.79]. To define the closed limit of a sequence {Γ()}, first define the
topological limit superior Γ() and topological limit inferior Γ() of

the sequence {Γ()}:
Γ() = { ∈ A×A : for every neighborhood  of 

 ∩ Γ() 6=  for infinitely many }
Γ() = { ∈ A×A : for every neighborhood  of 

 ∩ Γ() 6=  for all but a finite number of }
The sequence {Γ()} converges to a closed limit Γ() if Γ() = Γ() =

Γ().

12 To show that Γ() is closed if  is a continuous weak order, use [5, Lemma 5.1

and Exercise 3.16 ]. Note that the space of lotteries A is connected, and moreover, it is

separable since it is compact metric.
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B Appendix: Definition of 

A straightforward implication of Order and Reversal is the existence of a

function  : A × A → R such that for each ( ) ∈ A × A, ( ) is
the number of periods that  and  need to be delayed before a preference

reversal is observed; if no reversal is observed, then ( ) = 0. For instance,

if  Â0 ,  %1  and  ≺  for all  ≥ 2, then ( ) = 2. More precisely,

for any {%}∞=0 that satisfies Order (in fact, completeness of each % is all

we need), define the function  : A × A → R in the following way. First
consider any ( ) ∈ A×A such that  %0  If  ∼  for all  or  Â 

for all , then define ( ) = 0, and if there exists  such that  ≺ ,

then define

( ) = min{ :  ≺ }
If  Â0 , and there exists  such that  ∼  and there is no 0 such that
 ≺0 , then define

( ) = min{ :  ∼ }
Finally, let ( ) = ( ) for all  

Lemma 1 Suppose {%}∞=0 satisfies Order and Reversal and take any  
such that  %0 . If ( ) = 0 then  ∼  for all  or  Â  for all . If

( )  0 then only one of the following holds:

(a)  Â  for   ( ) and  ≺  for all  ≥ ( );

(b)  Â  for   ( ) and  ∼  for all  ≥ ( );

(c) There is 0 ≤   ( ) such that  Â  for all    ,  ∼  for

all  ≤   ( ), and  ≺  for all  ≥ ( ).

Proof. The case with ( ) = 0 follows from the definition of (·). For the
second part, first consider the case where  Â0  and suppose ( )  0 so
that there is  such that  - . Let ∗  0 be the first integer for which

preferences reverse; thus,  Â  for   ∗ and  -∗ . By Reversal,

we must have  -  for all  ≥ ∗. If  ≺  for all  ≥ ∗, then given
the definition of (·), we have ( ) = ∗ and we are in case (a) in the
statement of the Lemma. Similarly, if  ∼  for all  ≥ ∗ then we are in
case (b).

If we are in neither case, then given that we must have  -  for all

 ≥ ∗, there exist 0 00 ≥ ∗ such that  ∼0  and  ≺00 . By Reversal,

 Â0  and  ≺00  implies  ≺  for all  ≥ 00, and so 0  00. For the
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same reason, it must also be that  ∼∗ . Let 
∗∗ be the first integer larger

than ∗ for which indifference turns into strict preference, that is  ∼ 

for ∗ ≤   ∗∗ and  ≺∗∗ . Reversal ensures  ≺  for all  ≥ ∗∗.
Given the definition of (·), we have ( ) = ∗∗ and we are in case (c).
The above established the result for   such that  Â0  and ( )  0.

Now consider   such that  ∼0  and ( )  0. Let ∗ be the first
integer for which preferences reverse, that is,  ∼  for   ∗ and wlog,
 ≺∗ . By Reversal,  ≺  for all  ≥ ∗. By definition of (·),
( ) =  ∗ and we are in case (c) in the Lemma. This completes the proof.

C Appendix: Proof of Theorem 1

Assume that {%}∞=0 satisfies Order, Continuity and Reversal, and define
the switching function (·) as in Appendix B. Since each % is a continuous

weak order, {Γ(%)} is a sequence in P. We show that the closed limit of
% as  goes to infinity is the closed removed preference %∗ over A:
 %∗  ⇐⇒ ∃ sequence {( )} converging to ( ) s.t. ∀,  %∞ 

(3)

Note that

 %∞  ⇐⇒  %() 

Note also that Γ(%∗) = Γ(%∞), where Γ(%∞) denotes the closure of the
graph of %∞, and finally, observe that the definition of %∗ directly implies:

 %∞  =⇒  %∗  (4)

We establish simultaneously the existence of a closed limit and the fact

that it is characterized by %∗.
Step 1: Γ(%) ⊂ Γ(%∗)
Suppose (∗ ∗) 6∈ Γ(%∗) Closedness of Γ(%∗) implies that there exists a

neighborhood 1 of (
∗ ∗) such that 1∩Γ(%∗) = . By the contrapositive

of (4),

1 ∩ Γ(%∞) =  (5)

In particular, (∗ ∗) ∈ Γ(%∗) where 
∗ ≡ (∗ ∗). However, Γ(%∗) is

closed and so there exists a neighborhood 2 of (
∗ ∗) such that

2 ∩ Γ(%∗) =  (6)
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Let  = 1 ∩ 2 and observe that  is a neighborhood of (∗ ∗).
Given (5), the post-reversal preference for any ( ) ∈  ranks  strictly

higher than , that is,

 ≺()  for all ( ) ∈  (7)

But by (6) it is also true that  ≺
∗  for all ( ) ∈  . It follows from

Reversal that

( ) ≤  ∗ for all ( ) ∈  ,

and hence (7) implies  ≺  for all ( ) ∈  and  ≥  ∗. That is,

 ∩ Γ(%) =  for all  ≥  ∗. Conclude that (∗ ∗) 6∈ Γ(%) since  is

a neighborhood of (∗ ∗) that does not intersect with infinitely many %.

Step 2: Γ(%∗) ⊂ Γ(%).

Since Γ(%∞) ⊂ Γ(%) and Γ(%) is closed [3, Lemma 3.67], it follows

that Γ(%∗) = Γ(%∞) ⊂ Γ(%), as desired.

By Steps 1 and 2, Γ(%) ⊂ Γ(%∗) ⊂ Γ(%). Hence,

Γ(%) = Γ(%) = Γ(%∗)

This completes the proof.

D Appendix: Proof of Theorem 2

The set Ω of points in A×A on which  is upper semicontinuous is defined

by

Ω = {( ) ∈ A×A : ( )→ ( ) =⇒ lim sup
→∞

( ) ≤ ( )}

For later, note that since ( ) = ( ) for all   by definition of  (·),
it follows that ( ) ∈ Ω implies ( ) ∈ Ω as well.

We want to show:  Â∗  ⇐⇒ [ Â∞  and ( ) ∈ Ω]

Proof. ⇐=: Take  and  such that  Â∞  and ( ) ∈ Ω. Given Lemma

1,  Â∞  implies  Â()+1 . Since %()+1 is continuous, for every

sequence {( )} that converges to ( ) there exists  such that
 Â()+1  for all  ≥ 
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By hypothesis, lim sup→∞ ( ) ≤ ( ). Therefore, there exists  0 such
that

( ) + 1  ( ) for all  ≥  0

It follows that for all  ≥  0, the ranking of ( ) by %()
must agree

with that by %()+1 and so,

 Â()
 for all  ≥ max{  0}

But  Â()
 is equivalent to  Â∞ . This establishes that for any

sequence {( )} that converges to ( ), there exists  such that  Â∞ 
for all  ≥  . In particular, there is no sequence {( )} that converges to
( ) such that  %∞  for all . Thus  6%∗  as desired.
=⇒: Take   such that  Â∗ . Then (4) yields

 Â∞  (8)

thus establishing the first assertion in the implication. To establish the second

assertion, take any sequence {( )} that converges to ( ). Since  Â∗ 
and since %∗ is continuous (Theorem 1), there exists  such that

 Â∗  for all  ≥ 

By (4),

 Â∞  for all  ≥  (9)

Without loss of generality, let  = 1. Suppose by way of contradiction that

lim sup
→∞

( )  ( )

Then, there exists a subsequence {( )} ⊂ {( )} where for all 

(  )  ( ) ≥ 0 (10)

By construction,  Â∞  for all , that is,  Â( )
 for all .

Thus, by Lemma 1 and (10),

 %()   for all .

However, since%() is continuous and (  )→ ( ), we have  %()

. This is equivalent to  %∞ , which contradicts (8).
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E Appendix: Reversal at Infinity and Proof

of Thm 3

E.1 Reversal at Infinity

We show that  Â∞  and ( ) 6∈ Ω implies that there exists a sequence

{( )} that converges to ( ) such that lim sup→∞ ( ) = ∞ and

 %∞  for all .

By definition, ( ) 6∈ Ω implies that there exists a sequence {( )}
that converges to ( ) and lim sup→∞ ( )  ( ). Without loss of

generality, ( )  ( ) for all . Suppose by way of contradiction that

lim sup→∞ ( ) =   ∞. Thus, there exists  such that for all  ≥ ,

 + 1  ( ). Also, for large enough ,  Â() , and since

 + 1  ( )  ( )

it follows that for all large enough ,  %+1 ; this is because ( ) 

( ) implies  %()
, and  + 1  ( ) implies  %+1 . By

continuity of %+1,  %+1 . But since  +1  ( ), this contradicts the

hypothesis that  Â() . Therefore, lim sup→∞ ( ) =∞.

E.2 Proof of Thm 3

By definition we have [ ∼∞  =⇒  ∼∗ ] and [ Â∗  =⇒  Â∞ ] for all

  ∈ A, so %∞ agrees with %∗ on the subset  defined in the statement of
the theorem. To see that  is dense, begin by noting that disagreements can

only take the form of  Â∞  and  ∼∗ . In this case there is a reversal
at infinity, that is, there exists a sequence {( )} that converges to ( )
such that lim sup→∞ ( ) =∞ and  %∞  for all .

If  ∼∞  for some subsequence then we are done. If not, then wlog

we can suppose that  Â∞  for all . Since  Â∞ , there is an earliest 

such that  Â . Continuity implies that  Â  for large . We claim

that ( ) ∈ Ω for all large . Indeed, for any large , we have  Â  and

 Â∞ , and letting  := ( ) we have  Â . Now take any sequence

(  

 ) → ( ). By Continuity, 


 Â  and  Â  for large ,

and Reversal implies that (  

 ) ≤ ( ) for large . Consequently

lim sup→∞ (  

 ) ≤ ( ) and in turn, ( ) ∈ Ω, as desired.

To conclude the proof, we note that by Theorem 2, ( ) ∈ Ω and

 Â∞  for all large  implies that we have a sequence {( )} that
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converges to ( ) such that  Â∗  for all large . Therefore  is dense in
A×A.

F Appendix: Proof of Theorems 4 and 5

That%∞ is not necessarily continuous follows from Theorem 2. In particular,
if  Â∞  and ( ) 6∈ Ω, then there exists a sequence ( ) → ( ) s.t.

 -∞  for all . The remaining implications for %∞ are straightforward to
establish. Below we establish properties of %∗ only.

F.1 Proof of Thm 4(a)-(c)

To establish completeness, take any   and suppose  6%∗ . By (4),  6%∞ ,

and by completeness of %∞,  %∞ . Then, again by (4),  %∗ .
To establish continuity, we show that { :  %∗ } is closed; the other case

holds by an analogous argument. Take a sequence {} such that  %∗ 
for all  and  → . Also, for each  let  ⊂ A × A be a ball of radius

2− that contains ( ). Because  → , for every  there exists  such

that ( ) ∈ . Furthermore,  %∗  and the definition of %∗ imply the
existence a sequence {( 0 0)} such that ( 0 0)→ ( ) and 

0
 %∞ 0

for all . Since  is also a neighborhood of ( ), for each  there exists

 such that (
0

 0

) ∈ . By construction, 
0

%∞ 0

for each  and

furthermore, ( 0
 0

)→ ( ) as  →∞. Thus  %∗ , as desired.
A counterexample for transitivity is as follows.

Example 1 Let A = [0 2] (with the relative Euclidian topology) and suppose
that each % is represented by the utility function  defined by 1

() =

⎧⎪⎪⎨⎪⎪⎩
 if  ≤ 1



1 if 1

≤  ≤ 1

1 + (− 1) if 1 ≤  ≤ 1 + 1


2 if 1 + 1

≤  ≤ 2

  ∈ [0 2]

Qualitatively, the utility function takes the following shape:  increases from

0 to 1 as  goes from 0 to 1

and then stays constant at 1 until  = 1. Then

there is another increase from 1 to 2 as  goes from 1 to 1 + 1

and stays

constant at 2 until  = 2. As  increases, the upward sloping portions are
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restricted to a smaller subdomain, and the pointwise limit is the step function

∞() =

⎧⎨⎩ 0 if  = 0

1 if 0 ≤  ≤ 1
2 if 1   ≤ 2

  ∈ [0 2]

In fact this utility function represents the removed preference %∞. We show
that %∗ is intransitive. Observe that 2 Â∞ 1 Â∞ 0. However, there is

a sequence ( ) = (1 + 1
−1  2) → (1 2) with  ∼∞  for large , and

similarly there is also a sequence ( ) → (0 1) with  ∼∞  for large .

Thus 2 ∼∗ 1 ∼∗ 0. Yet, for any ( )→ (0 2), we have  Â∞  and thus

2 Â∗ 0, an intransitivity.

Therefore indifference may be intransitive. We observe next that strict

preference is transitive. For later use, we also make an additional observation.

Take any   .

Claim 1  Â∗  Â∗  =⇒  Â∗ 

Proof. Then  Â∞  Â∞  and by the (obvious) transitivity of %∞ we have
 Â∞  and thus  %∗ . Suppose by way of contradiction that  ∼∗ .

Then there exists a sequence ( )→ ( ) such that  %∞  for each .

Since  Â∗ , by definition it must be that for all large  we have  Â∞ .

By transitivity of %∞,  %∞  for all large . But this contradicts  Â∗ .

Claim 2 [ Â∗  ∼∗  =⇒  %∗ ] and [ ∼∗  Â∗  =⇒  %∗ ]

Proof. Consider  Â∗  ∼∗  (the argument for the other case is analogous).
Suppose by way of contradiction that  Â∗ . Then  Â∗  Â∗  and so by
the previous lemma,  Â∗ , a contradiction.

F.2 Proof of Thm 4(d)

We show that  Â0  and  ≺00  for 00  0 implies  ≺∞  and

( ) ∈ Ω. It then follows from Theorem 2 that  ≺∗ , as desired. Given
 Â0  and  ≺00  for 

00  0, Lemma 1 implies  ≺()  , which in turn

implies the first assertion  ≺∞ . To show that ( ) ∈ Ω, first observe
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that by Reversal,  Â0  and  ≺00  for 
00  0 implies  Â0 . Now take

any sequence {( )} that converges to ( ). By Continuity, there exists
 such that for all  ≥ ,  Â0  and  ≺() . It follows by Reversal

that for all  ≥ , ( ) ≤ ( ), and so, lim sup→∞ ( ) ≤ ( ).

That is, ( ) ∈ Ω, as was to be shown.

F.3 Proof of Thm 5

Lemma 2 If {%} satisfies Order, Continuity and Independence, then
(i)  Â∗  =⇒  %∗ 
(ii)  ∼∗  =⇒  ∼∗ 
(iii)  Â∗  =⇒  Â∗ 

Proof. Proof of (i): Given the definition of %∗ and the fact that %∞ satisfies
Independence,  Â∗  =⇒  Â∞  =⇒  Â∞  =⇒  %∗ 
Proof of (ii): If  ∼∞  then the claim follows from Independence and

the definition of %∗. If  6∼∞  then  ∼∗  implies that ( ) 6∈ Ω. That is,

there exists a sequence {( )} that converges to ( ) such that  %∞ .

But then {( )} is a sequence that converges to ( ) such that
 %∞ . Thus ( ) 6∈ Ω.

Proof of (iii): Suppose  Â∗  and  6Â∗  Then by (i) and (ii),

 -∗ , a contradiction.

Lemma 3 If {%} satisfies Order, Continuity, Independence and (1), then:
(a) %∗ satisfies Independence.
(b) %∗ is transitive.

Proof. Proof of (a). Given the previous Lemma, all that needs to be shown

is that  Â∗  =⇒  Â∗ . But this follows easily from (1).

Proof of (b). Given claims 1 and 2, we just need to establish transitivity

of indifference, that is, [ ∼∗  ∼∗  =⇒  ∼∗ ]. Suppose by way of

contradiction that  6∼∗ . Wlog, suppose  Â∗ . Consider each of the

following subcases (observe that  Â∗  implies  Â∞ , and that transitivity

of %∞ implies that these subcases are exhaustive).
(i)  Â∞  -∞ 

Observe that  Â∞  and  ∼∗  implies that there exists a sequence

{( )} that converges to ( ) such that  %∞ . Since  %∞ , In-

dependence implies 
1
2
 %∞ 

1
2
 and thus 

1
2
 %∗ 

1
2
 for all . By
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continuity  1
2
 %∗ 1

2
, which by an application (a) implies  %∗ , a con-

tradiction.

(ii)  Â∞ 

Since  ∼∗  and  Â∞ , there is a reversal at infinity, and thus there

exists the usual sequence  %∞ . If  %∞  then by Independence,

 1
2
 %∞ 1

2
 and thus  1

2
 %∗ 1

2
 for all , but then by continuity,

 1
2
 %∗ 1

2
, and part (a) implies  %∗ , a contradiction. If on the other

hand  Â∞ , then  ∼∗  implies that there exists a sequence 0 %∞ . By

Independence, 0
1
2
 %∞ 

1
2
 and thus 

0

1
2
 %∗  12 for all , but then by

continuity,  1
2
 %∗ 1

2
, and (a) implies  %∗ , a contradiction.

F.4 Proof of Claims in footnote 7

The fact that %∞ satisfies Independence is straightforward to establish. We
show below that if %∗ is transitive then it must satisfy Independence as well.
This is proved in 5 steps, and will make use of Theorem 2.

Step 1:  Â  ⇐⇒  Â , for all 

Axioms 1, 2 and 3 together imply this stronger version of Independence.

Step 2: ( ) = ( ) and  Â()  ⇐⇒  Â() 

This follows from Step 1.

Step 3: ( ) 6∈ Ω =⇒ ( ) 6∈ Ω

If {( )} is a sequence that converges to ( ) and

lim sup
→∞

( )  ( )

then {( )} is a sequence that converges to ( ) and, by the
first assertion in Step 2,

lim sup
→∞

( )  ( )

Thus, ( ) 6∈ Ω

Step 4:  ∼∗  =⇒  ∼∗ 
Suppose  ∼∗ . Then
 ∼∗ 
=⇒  ∼()  or ( ) 6∈ Ω by Theorem 2

=⇒  ∼()  or ( ) 6∈ Ω by Steps 2 and 3

=⇒  ∼∗  as desired.

Step 5:  Â∗  =⇒  Â∗ 
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By the main theorem in Herstein and Milnor [11], under completeness,

transitivity and continuity of %∗, Step 4 implies the result.

G Appendix: Proof of Theorem 6

Note that each % is also represented by the utility function

b(0 1   ) =

X
=0

(+ )

()
()

which is obtained by dividing (·) by the strictly positive constant, ().
Define the function ∗ : +1 → R by:

∗(0 1   ) =
X
=0

∗()()

where ∗() ≡ lim
→∞

(+ )

()


The first lemma shows this function is well-defined.

Lemma 4 For each , lim→∞
(+)

()
exists. Moreover, b converges uni-

formly to ∗

Proof. Step 1:
(+)

()
is bounded above by 1.

By assumption, (·) is decreasing. Therefore, for all  and , (+ ) ≤
().

Step 2:
(+)

()
is weakly increasing in .

Note that
(+)

()
=

(+)

(+−1) 
(+−1)
(+−2) 

(+2)

(+1)

(+1)

()
 and

(++1)

(+1)
=

(++1)

(+)

(+)

(+−1) 
(+−1)
(+−2) 

(+2)

(+1)
 and therefore,

(++1)

(+1)

(+)

()

=

(++1)

(+)

(+1)

()



But by assumption,
(+2)

(+1)
≥ (+1)

()
for any integer . Thus,

(++1)

(+)

(+1)

()

≥ 1 and

in particular,
(++1)

(+1)

(+)

()

≥ 1 for all  and .
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Step 3: The sequence {b} converges uniformly to ∗
By Steps 1 and 2, for each , the sequence {(+)

()
}∞=0 is a bounded,

increasing sequence. Thus, ∗() ≡ lim→∞
(+)

()
is well-defined. Observe

further that {b} is a sequence of continuous real functions defined on a com-
pact space +1, and that it is monotone increasing and converges pointwise

to ∗. By Dini’s Theorem [3, Theorem 2.62], the convergence is uniform.

Lemma 5 ∗() =   0 for each 0 ≤  ≤  .

Proof. For any , {(1++)
(+)

}∞=0 is a subsequence of the increasing sequence
{(1+)

()
}∞=0 that we showed to be convergent in Step 3 of Lemma 4. Hence,

for all ,

lim
→∞

(1 + )

()
= lim

→∞
(1 + + )

(+ )


Define  ≡ lim→∞
(1+)

()
 0 and recall that we defined ∗() ≡ lim→∞

(+)

()

above. For any ,

(+ )

()
= Π−1

=0

(+ − )

(+ −  − 1) 

Therefore,

∗() = lim→∞
(+)

()
= lim→∞Π−1

=0
(+−)

(+−−1) = Π−1
=0 lim→∞

(+−)
(+−−1)

= Π−1
=0 lim→∞

(1+)

()
= Π−1

=0 = , as desired.

Lemma 6 The closed limit lim→∞ Γ(%) exists and is represented by 
∗

Proof. Since  is nonconstant and  is bounded, there is a best and worst

stream   ∈ +1 and ∗()  ∗(). Therefore, for every   ∈ +1,

∗() ≥ ∗() =⇒ ∗()  ∗(), for all  ∈ (0 1)  (11)

where the stream  is the pointwise mixture of the streams  and , that

is, (1 + (1 − )1 2 + (1 − )2 ). This observation will be used

below. Let %0 be the preference relation represented by ∗. As in Appendix
A, identify any binary relation  on A with its graph Γ() ⊂ A × A. We
show that Γ(%0) = lim→∞ Γ(%).
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First establish Γ(%) ⊂ Γ(%0). If ( ) ∈ Γ(%) then there is a

subsequence {Γ(%())} and a sequence {( )} that converges to ( )
such that ( ) ∈ Γ(%()) for each . Therefore, for each ,

()() ≥ ()()

Since () converges to 
∗ uniformly, it follows that ∗() ≥ ∗(). Hence

( ) ∈ Γ(%0), as desired.
Next establish Γ(%0) ⊂ Γ(%). Let ( ) ∈ Γ(%0) and take any neigh-

borhood  of ( ). By (11), there exists  ∈ (0 1] s.t ( ) ∈ 

and ∗()  ∗(). By Step 3 of Lemma 4, there exists   ∞ such

that ()  () for all  ≥  , that is, ( ) ∈ Γ(%) for

all  ≥  . Hence  ∩ Γ(%) 6=  for all but a finite number of , that is,

( ) ∈ Γ(%).

Lemma 7 For any (0 1   ) and (
0
0 

0
1  

0
 )

∗(0 1   )  ∗(00 
0
1  

0
 ) =⇒ (0 1   ) Â∞ (00 01  0 )

Proof. This follows from the fact that b converges to ∗ pointwise, and
that b represents %.

Lemma 8 %∗ is represented by ∗

Proof. Denote consumption streams by  0. Given observation (11), ∗() ≥
∗() implies that there is a sequence ( )→ ( ) s.t. ∗()  ∗()
and thus by the previous lemma,  Â∞ . Therefore  %∗ . Next suppose
∗()  ∗(). Since ∗ is continuous, for any sequence ( )→ ( ) it

must be that ∗()  ∗() for all large , and thus  Â∞ . It follows

that  Â∗ .

H Appendix: Proof of Theorem 7

Recall that % is represented by

 () = (1−
X
=1

())(0)+

X
=1

[(

X
=1

())−(
−1X
=1

())]()  ∈ ∆

31



and (·) is normalized so that (0) = 0. Observe that we can write

 (
1


+

− 1


0) = (1− 1

[1− (0)])(0) +

X
=1

[(
1



X
=1

())− (
1



−1X
=1

())]()

=

X
=1

[(
1



X
=1

())− (
1



−1X
=1

())]()

=
0(0)


X
=1



0(0)
[(
1



X
=1

())− (
1



−1X
=1

())]()

=
0(0)


X
=1

()

≡ ()

where  ≡ 
0(0) [(

1


P

=1 ()) − ( 1


P−1
=1 ())]. Therefore, % is rep-

resented by ̂. Define ̂ by ̂() =
P

=1 

(). Note that () ≥

() ⇐⇒ ̂() ≥ ̂().

We show that ̂ → ̂ pointwise and that ̂ is expected utility. Take a

first order Taylor’s expansion of (·) around 1


P−1
=1 () to get

() = (
1



−1X
=1

())+
0(
1



−1X
=1

())[−1


−1X
=1

()]+
00(0)

[− 1


P
=+1 ()]

2

2

for some 0 ∈ [ 1


P−1
=1 ()

1


P

=1 ()]. For any   0, let ̄00 be the
maximum of 00(·) on [0 1


]. This maximum is well defined and attained

because 00(·) is continuous by hypothesis and [0 1

] is compact. Further,

0 ≤ 00(0) ≤ ̄00 for any 0 in [ 1


P−1
=1 ()

1


P

=1 ()]. By taking  =
1


P

=1 (),

 ≤ ()
0( 1


)

0(0)
+

̄00()
2

20(0)
→ ()

since 0( 1


P
=+1 ()) ≤ 0( 1


). Moreover,

 ≥ ()
0(0)
0(0)

= ()
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since 0( 1


P−1
=1 ()) ≥ 0(0). Both these inequalities follow from 00(·) ≥

0. Therefore,  → () for all  and all  ≤ . Defining ∗() =P
=1 ()(), the above shows that ̂() → ∗() for any . Note that

∗(·) is expected utility.
Finally, we show that the closed removed preference %∗ is represented by

∗. Let b% be the preference represented by ∗. We first observe that ∗() 
∗() implies  Â∞ . Suppose ∗()  ∗(). Since ̂() → ∗() and
̂() → ∗(), ∃ so that ̂()  ̂() all    , and hence  Â∞ ,

as desired. In particular,  %∗  imples  %∞  implies ∗() ≥ ∗().
To conclude that %∗ is represented by ∗, we show that  Â∗  implies

∗()  ∗(). So suppose  Â∗  and suppose by way of contradiction

that ∗() ≥ ∗(). By Assumption 1 (which implies that  and thus ∗ is
nonconstant) and the fact that ∗ is expected utility, there exists a sequence
( )→ ( ) such that ∗()  ∗() for all  (these can be constructed
by mixing  with the ∗-best lottery and  with the ∗-worst lottery). By the
observation we just made, it follows that  Â∞  for all  but, by definition

of %∗ as the closure of %∞, this contradicts the hypothesis that  Â∗ . This
completes the proof.
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