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Abstract

The agent is modelled as a current self that optimally incurs a cognitive cost

of empathizing with future selves. The model unifies well-known experimental and

empirical findings in intertemporal choice and enriches the multiple selves model with

a notion of self-control. The defining feature of the model is magnitude-decreasing

impatience: greater patience towards larger rewards. Two behavioral definitions of

magnitude-decreasing impatience are provided and the model is characterized under

each of them.

1 Introduction

Models of intertemporal choice in economics routinely assume that the utility of an outcome

at time  is discounted by a factor () that is independent of the outcome. However, there

is substantial evidence that people are more patient when dealing with larger outcomes

than smaller ones. The experimental literature on the magnitude effect finds this property

in discount functions elicited in the lab (Fredrick et al [19], Sun and Potters [49], Hardisty

et al [24], Ericson and Noor [18]) and the field (Andersen et al [4]). The property also

explains a host of behaviors discussed in economics, including anomalies of the classic Life-

cycle Hypothesis (Yaari [52], Benartzi et al [10], Browning and Collado [13], Scholnick [45])

and historical differences in time preference across societies (Galor and Özak [21])
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Motivated by such evidence, this paper suggests a theory for why an agent may be

more patient when dealing with larger rewards. Viewing the agent as a sequence of distinct

selves,1 we imagine that the current self has a normative desire to connect with the well-

being of future selves, whether out of some sense of moral responsibility or a sense of

community with them. It achieves this by creating empathy for future selves through the

cognitively costly act of imagining itself in their shoes.2 Higher future rewards incentivize

the current self to incur the cost of higher empathy, thereby giving rise to higher patience.

Our primitive is the current self’s preference % over the set  consisting of finite

horizon consumption streams with generic element  = (0 · · ·   ). A Costly Empathy
(CE) representation  : → R for % takes the following form:

() = (0) +
X
≥1

()()  ∈  (1)

where  = arg max
∈[01]

{
X
≥1

()()− (())} (2)

The current self evaluates the consumption stream  = (0 · · ·   ) via the discounted
utility formula (1) where  is the instantaneous utility and the discount function depends

on the stream. For each   0, () ∈ [0 1] is interpreted as the current self’s empathy for
self . The discount function is a cognitive choice, arising from the cognitive optimization

problem (2) which seeks to maximize the benefit
P

≥1()() of being connected with
future selves through some discount function  net of the additive cognitive cost () :=P

≥1 (()) of the discount function. Each  is an increasing convex function of () ∈
[0 1]. Moreover,  is increasing in  so that empathy costs are increasing with temporal

distance.

The functional form admits alternative interpretations. Consider the classic quote by

Pigou [43]: “[O]ur telescopic faculty is defective, and we, therefore, see future pleasures, as

it were, on a diminished scale”. Consider also the notion of salience or focus (see Bordalo

et al [12] and Koszegi and Szeidl [29] who respectively model salience and focus in an

atemporal context in terms of menu-dependent weights). One can hypothesize that an

investment of attention enhances telescopic faculty, salience or focus, and thus increases

the weight given to it. We adopt the empathy interpretation given its natural fit in the

language of multiple selves. Indeed, discount functions have been interpreted in terms of

altruism in previous literature (see for instance Saez-Marti and Weibull [44], Galperti and

Strulovici [22]).

1The idea that an agent can or should be viewed as a collection of multiple selves has an illustrious

history in philosophy, psychology and in economics (see Parfit [42], Strotz [47], Ainslie [2], Laibson [30],

O’Donoghue and Rabin [39], Saez-Marti and Weibull [44], Galperti and Strulovici [22]). The model is

sometimes interpreted as a metaphor to describe an individual, and sometimes it is taken as a literal

description of an individual (Parfit [42]).
2Indeed, in the literature, it has been shown that visualizing future selves increases saving rates (Her-

shfield et al [25, 26]).
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Theoretical Results. It is readily determined that if a preference admits a CE represen-

tation, then it is also represented by aGeneralized Discounted Utility (GDU) representation

() = (0) +
X
≥1

()()()

where ()() is increasing in (), a property we refer to as magnitude-decreasing impa-

tience (MDI). Theorem 1 shows that the converse is also true: any preference that admits

a GDU representation with MDI admits a CE representation. Thus, the behavioral content

of the CE model is the same as that of the GDU model with MDI.

While the main behavioral content of the GDU model is readily determined to be a

Separability property, the heart of the paper lies in exploring the behavioral meaning of

MDI. We provide two behavioral definitions. The first builds on an intuition familiar from

the standard Discounted Utility model, namely, that  is identified by the marginal rate

of intertemporal substitution (MRS), defined relative to streams that are constant (“on

the diagonal”). We show that MDI breaks the connection between  and MRS, as it

brings  into play in a subtle way. Nevertheless, a notion of MDI can be formulated in

terms of MRS. Our second behavioral definition looks at intertemporal trade-offs “off the

diagonal”, where  and  are necessarily confounded. Assuming a standard homogeneity

structure on , we provide a definition of MDI that is reminiscent of the magnitude effect.

We characterize the CE model using each of these behavioral definitions (Theorems 4 and

6).

Contributions. (a) This paper complements the literature on the magnitude effect (Fredrick

et al [19], Loewenstein and Prelec [31], Noor [34], Baucells and Heukamp [7]). If an agent

finds receiving ( ) today as good as receiving  at time , then the magnitude effect

is defined by the property that
()


is increasing in . This is in fact MDI expressed

in discount functions that have been elicited under particular assumptions (namely, that

the utility of receiving any  at any  is () × and that either the agent does not

integrate  with background consumption or that background consumption is fixed across

time). We present two alternative ways of behaviorally defining MDI, one of which only

assumes smoothness of utility and the other that assumes some homogeneity property of

preference (either CRRA utility or Expected Utility). Moreover, while the theoretical lit-

erature motivated by the magnitude effect often focuses on particular specifications of the

GDUmodel that exhibit MDI, we provide a general model that generates MDI as its central

property and has a novel interpretation.

(b) We add to the multiple selves framework in two ways. (i) While the framework

has mainly been used to model present bias and dynamic inconsistency (Laibson [30]),

we extend the scope of the model to speak to a range of other behaviors: documented

anomalies of the DU model (such as magnitude effects and a preference for increasing

sequences) and of the classic Life-cycle Hypothesis (such as the annuitization puzzle and

the magnitude hypothesis in consumption smoothing). (ii) In economics and in psychology

(Strotz [47], Ainslie [2], Laibson [30], O’Donoghue and Rabin [39]), the multiple selves model
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is understood to capture self-control problems but without the notion of “self-control”: each

self is sovereign and maximizes its preference, and there is no notion of resisting an urge.

The CE model can be viewed as a version of that model where the current self has the urge

to be selfish, but exerts self-control to balance this urge with her normative desire to care

for her future selves. This optimization of this self-control leads to MDI. We explore the

idea of MDI-as-self-control in an application on procrastination.

The remainder of the paper proceeds as follows. We conclude the Introduction with

a discussion of related literature. Section 2 defines the CE model formally and presents

special cases. Section 3 defines the class of General Discounted Utility (GDU) and shows

that the CE class coincides with the subclass of GDU models that exhibit MDI. Sections 4

and 5 respectively provide an “on-diagonal” and “off-diagonal” behavioral definition of MDI

and corresponding foundations for the CE model. Section 6 relates the model to empirical

findings whereas Section 7 applies the model to procrastination. All proofs are relegated

to appendices. Additional results and omitted proofs are provided in a supplementary

appendix (Noor and Takeoka [36]).

Related Literature. In a companion paper, Noor and Takeoka [35] extend the CE model

to include a capacity constraint on empathy, leading to a constrained version of the cognitive

optimization problem. This is reminiscent of the idea that willpower is a limited resource

(see Ozdenoren et al [41] for an early formalization of this in the literature). In this

Constrained CE model, the agent may need to trade-off limited empathy across different

selves, rather than optimize empathy for each self separately as in the CE model. This

gives rise to a violation of the Separability property satisfied by the CE model. Noor and

Takeoka [37] consider a different extension that permits consumption to provide negative

utility. The solution to the cognitive optimization problem is sensitive to the sign of utility

and that paper studies how to identify the sign of utility from behavior.

Our paper relates to the following literatures.

(i)Non-Standard Time Preference: There is a substantial literature that explains behav-

ioral evidence against the standard Discounted Utility model (see for instance Loewenstein

and Prelec [31, 32], Noor [34], Baucells and Heukamp [7], Galperti and Strulovici [22],

Wakai [51], to name a few). Like other multiple selves models in this literature, our model

explains observed violations of Stationarity and a time-invariant dynamic extension of our

static model features dynamic inconsistency (Section 6.2). Our model subsumes the promi-

nent models explaining the magnitude effect, such as Benhabib et al [11] who consider a

fixed immediate cost of discounting, and Noor [34] and Baucells and Heukamp [7] who write

GDU models that exhibit MDI (see Section 3). The model also relates to papers that note

the role of cognitive abilities for time preference (Dohmen et al [16]).

Fudenberg and Levine [20] extend the multiple selves model by positing the existence

of a separate executive self that derives utility from the utility of a sequence of myopic

short-lived selves, and can change the preferences of the short-lived selves at a self-control

cost. The model reduces to a representation closely related to Gul and Pesendorfer [23]’s

model of temptation. Our model admits a self-control interpretation where, unlike these
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papers, the self-control cost is incurred at a cognitive level and not paid from consumption

utility. This could be because the cognitive process is non-deliberative: the preferences

simply appear to the agent in a way that features MDI. Alternatively, it could be that

the agent makes a conscious choice to empathize but, at the time of decision, the cost of

doing so is sunk and therefore irrelevant for self 0’s choice. At the same time, as in the

multiple selves model but unlike Galperti and Strulovici [22], self 0 internalizes only the

consumption utility of future selves, and not their empathy for farther future selves nor

associated empathy costs.

(ii) Endogenous Time Preference: The endogenous time preference literature also de-

viates from the DU model by assuming that the discount function depends on the stream

being faced by the agent (see for instance, Epstein and Hynes [17], Becker and Mulligan

[9] and Wakai [51]). While the CE model satisfies Separability, models in this literature

typically violate it (due to the dependence of the discount factor on current consump-

tion). Another point of comparison is that this literature typically features dynamically

consistent preferences, whereas dynamic extensions of our model will generally be dynam-

ically inconsistent. These differences not withstanding, there is an important overlap with

Becker and Mulligan [9], who hypothesize that an agent can alter her discount function

by physically investing, for instance, in education. Our agent engages instead in cognitive

investment. In Becker and Mulligan [9], the physical investment in education draws from

the same physical budget constraint that is used for consumption and saving, and thus the

optimal discount function is menu-dependent. In contrast, the cognitive investment in the

CE model is independent of the agent’s physical budget constraint.

2 Costly Empathy Representation

2.1 Primitives

There are  + 1 ∞ periods, starting with period 0. The consumption space is  = R+.
Let ∆ denote the set of simple lotteries over , with generic elements   · · · . Some of
our models will employ lotteries and some will not, and so it is convenient to let  denote

either  or ∆. The space of consumption streams is given by  = +1 (endowed with

the product topology), with generic stream  = (0 1 · · ·   ). The space  consists of

deterministic streams when  = , and streams of independent lotteries when  = ∆.

Since  can be embedded in ∆, it is meaningful to talk about deterministic consumption

 ∈  even when  = ∆. The primitive of our model is a preference % over .
Our benchmark is the standard Discounted Utility model. Say that an instantaneous

utility  :  → R+ is regular if (i) it is continuous and strictly increasing on  and satisfies
(0) = 0, and (ii) it is also mixture linear when  = ∆.

Definition 1 (Discounted Utility Representation) A Discounted Utility (DU) repre-

sentation for a preference % over  is a tuple (), where  :  → R+ is regular and
 : {1 · · ·  }→ [0 1] is weakly decreasing in , such that % is represented by the function
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 : → R defined by

() = (0) +
X
≥1

()()  ∈ 

The DU model includes standard exponential discounting given by () =  for all ,

with  ∈ [0 1] (Koopmans [28]), hyperbolic discounting given by () = 1
1+

for all , and

its variants such as beta-delta discounting (Laibson [30], O’Donoghue and Rabin [39]).

2.2 CE Model

Consider a regular  :  → R+ and for each   0, a cost function  : [0 1]→ R+ ∪ {∞}.
Say that the tuple ( {}=1) is basic if for each   0, the cost function  is represented

by the Riemann integral

(()) =

Z ()

0

0() d () ∈ [0 1]

of a marginal cost function 0 : [0 1]→ R+∪{∞}which is (i) left-continuous, (ii) continuous
at 0, (iii) weakly increasing in , and for which (iv) there exist parameters 0 ≤  ≤  ≤ 1
such that 0() is 0 on [0 ], strictly increasing on ( ], and takes the value∞ on ( 1].

Regularity of  is defined by familiar properties, but while the restriction “() ≥ 0”
is just a normalization in the DU model, in our model it is a substantive restriction:3 the

solution to the cognitive maximization problem in the CE model is sensitive to the sign of

(). The problem of endogenizing the sign of () is pursued in Noor and Takeoka [37].

The non-negative, extended-real cognitive cost (()) of empathy () ∈ [0 1] is
computed as a Riemann integral of a marginal cost function 0. Since 

0
 takes the value 0

on [0 ], it must be that (()) = 0 for any () ≤ , and so  is a baseline level

of empathy that can be achieved costlessly. Since 0 takes the value ∞ on ( 1], it must

be that (()) = ∞ for any ()  , so that  is an upper bound on empathy. On

( ], 
0
 is strictly increasing (and thus strictly positive). Given these properties of the

marginal cost function, its integral — the cost function — is therefore continuous on [0 ],

increasing and weakly convex on [0 1], but strictly increasing and strictly convex on [ ].

Condition (iii) implies  ≤ +1 for all 0     (it is more costly to empathize with

farther selves) and +1 ≤  and +1 ≤  (the base-line and upper bound on empathy

decrease with temporal distance).

By condition (i), 0 is at best left continuous. Due to possible discontinuities in 0,
the cost function  can be non-differentiable. The “kinks” in  will play a role in our

analysis (see Section 3.2). Condition (ii), which has bite only when  = 0, plays the role

of ensuring that there is no consumption stream  for which the optimal discount function

in the model is  = 0.

We use a basic tuple to define the CE model:

3We are grateful to a referee for this observation.
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Definition 2 (CE Representation) A Costly Empathy (CE) representation for a pref-

erence % over  is a basic tuple ( {}) such that % is represented by the function

 : → R defined by

() = (0) +
X
≥1

()()  ∈ 

where  = arg max
∈[01]

{
X
≥1

()()− (())}

This functional form was interpreted in the Introduction. We make some simple observa-

tions here. Since the cognitive problem maximizes the sum of distinct ()()−(())

terms, and since the maximization problem is unconstrained, the cognitive problem is

equivalent to solving  independent maximization problems (one for each  = 1 · · ·   ),
whereby for each   0,

() = arg max
()∈[01]

{()()− (())}

Intuitively, the agent can optimize() for each  separately due to the absence of a limited

stock of empathy. Given the continuity of the cost function  on [0 ], a maximizer exists,
4

yielding the optimal (). Given condition (iii) in the definition of a basic tuple, ()

must in fact belong to [ ]. Since  is strictly convex on [ ], it must be that the

objective function is strictly concave on [ ]. Thus,() is unique for all . In particular,

the cognitive optimization problem has a unique discount function  as its solution.

Since the cognitive maximization problem corresponding to period  depends only on

consumption  in that period, the solution() can be written as ()(). In the special

case where  is differentiable, this maximization problem has a first order condition given

by

() = 0(()()) (3)

where the marginal benefit () of empathy must equal the marginal cost at the solution

()(). Observe that if the highest possible marginal benefit, sup (), is strictly lower

than the highest possible marginal cost, sup∈[] 
0
(), then the upper bound  is never

obtained as a solution (that is, ()() =  never holds) and we could marginally reduce

 and still represent the preference. To avoid this, some of our uniqueness results will

consider only representations ( {}) that are maximal in the sense that

sup
∈[]

0() ≤ sup
∈

() (4)

4If () = ∞ (that is,  diverges to infinity as  → ) then for each ()  0, it is possible to

truncate [0 ) effectively to a compact sub-domain. Hence, the maximum exists. See the proof of necessity

of Lemma 4 for more details.
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2.3 Special Cases

The DU model is the special case where the agent’s empathy allocation is fixed at the

base-line level across all periods. Specifically, when  =  = , the marginal cost 
0
 takes

value 0 on [0 ] and value∞ on ( 1] and the cost function is given by () = 0 if  ≤ 
and () =∞ otherwise. Hence, the optimal discount function is magnitude-independent

as in the DU model:

() = 

Since the CE model permits  to be non-differentiable on [ ], it is not always

amenable to standard optimization techniques. A tractable special case of the model can

be obtained by setting  = 0 and taking a power form for the family of cost functions.

Most of our illustrations and applications will utilize this formulation.

Definition 3 (Homogeneous CE) A homogeneous CE representation (  ) is a

CE representation ( {}) such that for all ,

() =

½


 if  ∈ [0 ]
∞ if  ∈ ( 1]

where (i)   1 and (ii)   0 is increasing in .

Since the cost function in this model is differentiable on [0 ], the cognitive optimization

problem can be solved in the usual way by including the constraint  ≤ .

3 Reduced Form Structure

In order to develop an intuition for its structure, we first establish that the CE model

can be nested within a class of representations that maintains the DU model’s additive

separability across time but permits magnitude-dependent discounting:

Definition 4 (General Discounted Utility Representation) AGeneral Discounted Util-

ity (GDU) representation for a preference % over  is a tuple () where  :  → R+ is
regular and  : {1 · · ·  }→ [0 1] is weakly decreasing in  and continuous for all   0,

such that % is represented by a strictly increasing function  :  → R+ defined by

() = (0) +
X
≥1

()()()  ∈ 

A GDU representation () is unbounded if () = R+.

The GDU model permits () to increase or decreasing with , although in the latter

case the monotonicity of  requires that () must be strictly increasing. That said, our

study will lead us into the following GDU subclass where impatience is decreasing with

respect to magnitude of consumption utility:

Definition 5 (Magnitude-Decreasing Impatience) A GDU representation () ex-

hibits magnitude-decreasing impatience (MDI) if () is weakly increasing in  for all

.
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3.1 An Equivalence Result

The main result in this section is that the CE model is the subclass of GDU models that

exhibit MDI:

Theorem 1 A preference % over  admits a CE representation ( {}) if and only
if it admits a GDU representation () that exhibits magnitude-decreasing impatience.

Moreover, the discount function  in the GDU representation corresponds to the optimal

discount function in the CE representation.

We provide a proof outline below. Theorem 1 permits us to immediately deduce that the

CE model subsumes several GDU style-models in the literature such as Noor [34], Baucells

and Heukamp [7], Benhabib et al [11] and the relevant subclass of Chakraborty [14].5 We

also learn from Theorem 1 that the behavioral foundations of the CE model lie in (a) the

behavioral foundations for the GDU model, and (b) a behavioral definition for MDI.

The main task in this paper is to behaviorally define MDI (Sections 4 and 5 provide two

definitions and corresponding characterizations of the CE model). The behavioral founda-

tions of GDU correspond to standard conditions, and are provided in the supplementary

appendix [36]. We note here only that, beyond basic regularity conditions such as order

and continuity, the content of the GDU model lies in Separability, the property that con-

sumption at  is evaluated independently of what is consumed in other periods. This yields

an additive utility representation () = (0)+
P

≥1 (), and the GDU representation

is obtained simply by defining ()() =
()

()
for any   0. Separability lacks empirical

validity — see Loewenstein and Prelec [32] for empirical evidence and Baucells and Zhao [8]

for a more recent critique. However, maintaining Separability here allows us to focus in a

simple way on how discounting of period  consumption depends on the magnitude of that

consumption. In Noor and Takeoka [35], we relax Separability in order to augment the CE

model with a limited stock of empathy. That model accommodates Separability violations

of the type observed in Loewenstein and Prelec [32].

Given Theorem 1, special cases of the CE model must correspond to special cases of

the GDU model. Consider:

5Noor [34] and Baucells and Heukamp [7] are written directly as GDU-style models. Less directly,

Benhabib et al [11] write a model where there is a fixed cost of delay. In our context, their utility of a

stream can be written as

(0) +
X


[()− (  0)]

where   0 and (  0) is an indicator function that takes value 1 when   0 and 0 otherwise.

Write () =
()−
()

for any   0 to see that the model reduces to a GDU model with () that is

increasing in (). Similarly, the model of Chakraborty [14] given by

0 +
X


 (min
∈

−1(()))

where the agent with ambiguous tastes uses a conservative present equivalent to evaluate future consump-

tion, is a GDU model with discount function () =
 (min∈ 

−1(()))


.
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Theorem 2 For any preference % over , and any tuple (  ) as in Definition 3,

the following statements are equivalent:

(a) % admits a homogeneous CE representation (  ).

(b) % admits a GDU representation () such that for all ,

() =

½


1
−1 if  ≤ 

 if   


where  = ()
− 1
−1 and  = 

−1
 .

The result reveals that the homogeneous CE model is equivalent to a GDU model

with a particular form of MDI: the discount function is initially strictly increasing and

homogeneous up to some threshold level  of consumption utility, and constant beyond

that threshold. Thus, for any stream  ∈  that is “large” (()   for all ) the

homogeneous CE model reduces to a DU model:

() = (0) +
X
≥1

()

whereas for any stream that is “small” (() ≤  for all ), the model takes a DU form

except that the future utility index is a convex transformation of :

() = (0) +
X
≥1

()


−1 

3.2 Proof Sketch for Theorem 1

Sufficiency is readily established as follows: As noted in Section 2.2 (in the discussion fol-

lowing Definition 2), the CE representation has the form () = (0) +
P

≥1()()

where, for each   0, () solves its own cognitive optimization problem () =

argmax()∈[01]{()()−(())}, and the solution () can be written as a function

()(). It is readily determined that ()() is weakly increasing in (). Inserting

this optimal discount function  7−→ ()() into the utility representation (1) establishes

that the CE model is a GDU model that exhibits MDI.6 Note that the proof does not rely

on whether consumption is deterministic or risky, that is, on whether  is  or ∆.

The converse is less obvious. Take any GDU representation () that satisfies MDI.

It is instructive to first consider the simple case where () is strictly increasing in . We

show that, in this case, it is possible to construct a CE representation with a differentiable

cost function . Indeed, if such a representation exists, there is a first order condition (3)

for the cognitive optimization problem:

() = 0(()())

6If lim&
0()  0, the optimal discount factor is constant at ()() =  for all () ≤

lim&
0(). Thus, in this case, the agent will not exhibit MDI when payoffs are below a threshold.

(We thank a referee for suggesting this feature, which was absent in an earlier version of this paper).
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When () is strictly increasing in , we can use this equation to construct the cognitive

cost function : define 0 using this equation, and use the first fundamental theorem
of calculus to obtain . Such a cost function is differentiable and strictly convex by

construction, and it is compatible only with () that is strictly increasing in .

However, MDI only requires () to be weakly increasing in . The idea in the proof is

to construct a non-differentiable cost function  and use its kinks to explain flat sections

in the discount functions. Due to the non-differentiability, the first order condition is not

well-defined and so we need to find an appropriate way to define the marginal cost 0. In
Appendix A, we show how to construct a discontinuous function 0 of .

7 We then define

 as the (Riemann) integral of 
0
. We show that () is indeed optimal with respect to

 in the sense of solving the cognitive optimization problem.

4 Foundations: On the Diagonal

Following our remarks in Section 3.1, we proceed to present our first behavioral definition

of MDI and a corresponding characterization of the CE model. We operate here in a purely

deterministic environment ( = +1) under the assumption that:

Assumption 1 Preference % over  = +1 admits a GDU representation () that is

smooth, in that () and () are differentiable in  and  respectively.

Smoothness is a technical requirement for defining the marginal rate of substitution,

and is otherwise not of behavioral interest. In what follows, we say that  is on the diagonal

if it is a constant stream, so that  =  for some  ∈  and all . Otherwise we say that 

is off the diagonal.

4.1 MDI on the Diagonal

Take any deterministic stream  = (  · · ·  ) ∈ +1 on the diagonal as the agent’s

constant background consumption. For any    0 define the present equivalent ( )

by the indifference:

(+ ( )| {z }
period 0

  · · ·  ) ∼ ( · · ·   +| {z }
period 0

  · · ·  )

The ratio
()


defines a rate of substitution between periods 0 and , given stream .

The agent’s marginal rate of intertemporal substitution (MRS) is the limit of this ratio as

7The construction of 0 is natural if  increases in  in a way that partitions the space of utility values

 into “i-intervals” (on which  is strictly increasing) and “c-intervals” (on which  is constant). However,

in general, such a partition may not exist, since there may exist  that are neither in an i-interval nor a

c-interval: every neighborhood of  may contain infinitely many i-intervals and c-intervals. The proof of

Theorem 1 navigates this possibility.
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we take → 0:

() := lim
→0

( )


≥ 0

Given Assumption 1, the MRS is well-defined and corresponds to the slope of the agent’s

indifference curve at a stream on the diagonal. Since the GDUmodel is additively separable,

( ) (and therefore()) is in fact independent of consumption 0 in other periods,

0 6= 0 .
In the standard DU model, MRS identifies the discount function: the trade-offs directly

reveal since the marginal utility of consumption is the same across all periods for any  on

the diagonal, and the use of small changes purges the trade-offs of the effect of the curvature

of utility (due to smoothness). Since the discount function is magnitude-independent in the

DUmodel, MRS cannot vary along the diagonal. We use this property to define magnitude-

independent impatience, requiring MRS to remain unchanged as we uniformly scale down

any stream  ∈  on the diagonal by  ∈ (0 1) to obtain  = (1   ) ∈ .

Axiom 1 (Constant MRS) For any 0   ≤  and  ∈ +1 on the diagonal,

() =() for all  ∈ (0 1)

If, on the other hand, the agent’s impatience decreases as future consumption increases,

then we might expect that the MRS would increase along the diagonal:

Axiom 2 (Increasing MRS) For any 0   ≤  and  ∈ +1 on the diagonal,

() ≤() for all  ∈ (0 1)

This serves as a behavioral definition of MDI.8

4.2 Representation Results

In the context of the smooth GDU model, we first confirm that:9

8Increasing MRS is closely related to, but distinct from, the “decreasing marginal impatience (DMI)”

property discussed in the endogenous time preference literature (for instance, Epstein and Hynes [17]). To

clarify the relationship, define the MRS between time  and + 1 for a stream  ∈ +1 on the diagonal

by (  + 1) :=
(+1)

()
. DMI requires that for any  ∈ +1 on the diagonal, where  =  for

all , it must be that ( + 1) is increasing in . From the fact that, on the diagonal,

() =(0 1)× · · · ×(− 1 )

it is easy to see that DMI implies Increasing MRS. The converse is not true, since even if () and

( + 1) are increasing in , the ratio (  + 1) =
(+1)

()
may not be. The polar opposite

case is called “increasing marginal impatience (IMI)”. There is a debate about whether impatience to

consume should increase or decrease as actual consumption rises (Obstfeld [38]).
9Although 2 and 1 are generally related by an affine transformation in additively separable repre-

sentations, our uniqueness result yields the stronger relationship, 2 = 1, because of the normalization

(0) = 0 in GDU representations.
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Theorem 3 Under Assumption 1, % exhibits Constant MRS if and only if % admits a DU
representation.

Furthermore, if there are two DU representations (),  = 1 2 of the same preference

%, then 1 = 2 and there exists   0 such that 2 = 1.

The next result shows that weakening Constant MRS to Increasing MRS characterizes

a subclass of CE models. It also establishes that the CE model has strong uniqueness

properties. Recall the notion of maximality defined by (4).

Theorem 4 Under Assumption 1, % exhibits Increasing MRS if and only if % admits a

maximalCE representation where the optimal discount function () has the property that

() is a convex function of .

If there are two maximal CE representations ( {
}),  = 1 2 of the same preference

%, then there exists   0 such that (i) 2 = 1, (ii) 2 = 1 for each .

The sufficiency part of the characterization result tells us that Increasing MRS implies

the existence of a CE representation. So, by Theorem 1, MDI is implied. The necessity

part reveals, however, that MDI does not always imply Increasing MRS, unless () is

a convex function of . Therefore, Increasing MRS defines a strong version of MDI, and

characterizes a corresponding subclass of CE models ( {}). We will see shortly (Section
4.3) that this is because, perhaps unexpectedly, MRS fails to identify  when there exists

magnitude-dependence. Instead, it reflects the interaction between  and : even if MDI

holds (
()


≥ 0), MRS may fail to increase along the diagonal if the curvature ()


falls

at a fast enough rate.

In the special case of the model where  is differentiable, the convexity restriction in

Theorem 4 can be stated equivalently in terms of the cost function. By the cognitive first

order condition (3), the optimal discount function must satisfy () = (0)
−1(). Thus

the convexity restriction is equivalent to requiring that (0)
−1() is a convex function of

.

It is instructive to consider whether the Homogeneous CE model — as characterized

in Theorem 2 — satisfies Increasing MRS. It is easy to confirm that () = 
1

−1+1

is strictly convex on the subdomain [0 ], and convex () =  on the subdomain

(∞). However, there is a kink in () at , which violates not only convexity but

also Assumption 1. In the supplementary appendix [36] we define a smooth version of the

Homogeneous model and provide a characterization result.10

Finally, we observe that the uniqueness part of Theorem 4 ensures that the curvature

or elasticity of  is uniquely identified by preference.

10Unlike the Homogeneous CE model, the cost function in the smooth version must approach ∞ from

the left in a smooth manner:

() =

⎧⎨⎩


 if  ∈ [0 e]
− ln( − ) +  if  ∈ (e )
∞ if  ∈ [ 1]

where   e are parameters defined by    0.
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4.3 Proof Sketch for Theorems 3 and 4

Theorems 3 and 4 are corollaries of Theorem 1 combined with the following observations.

Given Assumption 1, we can derive the following key relationship: for any   0 and

 ∈  on the diagonal,

() =
()


|=() =

µ
()


|=()

¶
() +()() (5)

The first equality states that MRS is the derivative of discounted utility() with respect

to  evaluated at consumption . The product rule yields the second equality. In the

standard DU model (where
()


= 0), expression (5) reduces to the well-known fact that

for any  on the diagonal:

() = ()

But, under magnitude-dependence, this equality fails. Expression (5) reveals that MRS

confounds  with the slope
()


scaled by (). Indeed, it is possible that MDI holds

(
()


≥ 0) and Increasing MRS fails if ()


|=() falls steeply enough with .

Write the derivative of ()() wrt () as [()]
0 and note that Increasing MRS

is equivalent to the statement that

[()]
0
¯̄̄
=()

≥ [()]
0
¯̄̄
=()

for all () ≥ ()  0. Thus, Increasing MRS implies that the derivative of ()

is increasing, and therefore, that () is a convex function. The proof of Theorem 4

exploits the convexity of () to show that () is increasing. If Constant MRS holds,

then () is more specifically an affine function, and so () =  +  for some

constants  and . The proof of Theorem 3 establishes that  = 0 and so () = .

It is worth noting that in general,11

() is increasing in  ⇐⇒ () is a star-shaped function of  (6)

since for all  ∈ [0 1], () ≤ () is equivalent to () ≤ (). Star-shapeness

is weaker than convexity, and so MDI does not necessarily imply Increasing MRS.

5 Foundations: Off the Diagonal

Section 4 defines the MDI property in terms of intertemporal trade-offs centered around

streams on the diagonal. We now consider defining it in terms of trade-offs involving

streams off the diagonal. For such streams, the marginal utility of consumption varies

across periods and so the trade-offs confound the interaction of  and . This necessitates

11A function  : R+ → R with (0) = 0 is said to be star-shaped if () ≤ () for all  ∈ R+ and
 ∈ [0 1].
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some structure on  in order to extract information about  from the trade-offs. We adopt

a standard homogeneity assumption on , requiring that when  is “scaled down” by a

factor of  ∈ (0 1] then its utility scales down to ()(), for some increasing function  .
Compared to the classic experimental literature (see Fredrick et al [19]) that elicits discount

functions by assuming that  is linear for the range of small rewards offered to subjects and

that background consumption lies on the diagonal, we relax linearity, consider all possible

rewards and permit background consumption to lie off the diagonal. The homogeneity

assumption appears in the experimental literature in the form of CRRA  (for instance,

Andreoni and Sprenger [6]) and Expected Utility with respect to  (for instance, Andersen

et al [3]).

In what follows, the meaning of “scaled down” will depend on whether consumption is

presumed to be deterministic or risky, that is, whether the space of consumption  is 

or ∆. If  = , then consumption is scaled down in the usual sense as in the previous

section, and homogeneity of  is in the usual sense that () =  for some . If  = ∆,

then risky consumption is evaluated using Expected Utility, which implies a homogeneity

property (specifically, linearity) with respect to “scaling down” probabilities rather than

consumption, without requiring any restriction on the curvature of . Either route has its

merits and demerits. The CRRA form is a very specific restriction on , albeit one that is

standard, weaker than the linearity, and keeps us in the deterministic environment. On the

other hand, assuming Expected Utility allows us to leverage a benchmark model of choice

under risk in order to leave  unrestricted, but the resulting theory of time preference

becomes tied to a theory of risk preference.12

We allow for both routes simultaneously, and leave it to the reader to adopt their

preferred route. We only assume that:

Assumption 2 The preference % over  = +1 admits a GDU representation ()

where

(i) if  =  then () is homogeneous in ,13

(ii) if  = ∆ then  is unbounded,

Since  ⊂ ∆() via a suitable embedding, it is meaningful to talk about deterministic

consumption in  even if  consists of lotteries. Below, we use  to denote any element of

, whether it is deterministic or not, and reserve  ∈  to denote a deterministic element.

5.1 MDI Off the Diagonal

Use  to denote the stream in  that pays  ∈  at time  and 0 in all other periods.

Such a stream is called a dated reward. We write immediate rewards 0 simply as . So 

denotes both consumption  ∈  and ( 0 · · ·  0) ∈ , and in particular 0 also denotes

the stream (0 · · ·  0).
12We thank a referee and the Editor for emphasizing the importance of the distinction between the two

routes.
13A CRRA utility index  can be obtained from conditions on preference — see footnote 26.
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For any stream  ∈ , we refer to  ∈  as its present equivalent if it satisfies:

 ∼ 

These present equivalents capture, for any given (generically off-diagonal) stream , how

much current consumption must be given to the agent to compensate her for losing her

future consumption.14 In contrast, the present-equivalent  defined in the on-diagonal

approach specified, for any given stream on the diagonal, how much extra consumption

today is as good as receiving an extra amount in the future. Note that Assumption 2 posits

unboundedness of  in (ii), and unboundedness is also implied by (i) (given monotonicity

of GDU, it must be that () =  for   0). The role of unboundedness is just to ensure

that every stream has a present equivalent.

We posit the existence of a “scaling operation” that takes each  ∈  and  ∈ [0 1]
into some  ◦  ∈  that is less desirable than . Specifically, in the deterministic context

 = , the scaling operation is just the scaling of consumption, that is,  ◦  := , as

in the on-diagonal approach. In the context of risky consumption  = ∆, the probability

of nonzero consumption is scaled down: lottery  is -mixed with 0 to obtain the lottery

 ◦  :=  ◦  + (1 − ) ◦ 0 . The scaling of a stream  = (0 · · ·   ) ∈  is naturally

defined by

 ◦  := ( ◦ 0 · · ·   ◦  )
Consider a stream  and its present equivalent  ∼ . Note that the agent’s evaluation

of immediate consumption  does not rely on her impatience. If her impatience is inde-

pendent of the stream then, given the homogeneity property, scaling both  and  down

by  will not change the relative desirability of either. We therefore obtain a behavioral

expression of magnitude-independent impatience:

Axiom 3 (Homotheticity) For any  ∈  and any  ∈ (0 1),

 ∼  =⇒  ◦  ∼  ◦ 

Now suppose that the agent is more patient towards larger streams. Scaling down 

makes the stream less desirable, and a corresponding increase in impatience would cause

the stream  ◦  to lose value faster than the immediate reward  ◦ . This suggests a
behavioral definition of MDI:

14If “consumption” is interpreted as the “change in consumption relative to a reference consumption

level”, then zero consumption just stands for the “reference consumption level”, and is therefore not literally

zero. Alternatively, if consumption is taken to be absolute, then the zero future consumption requirement

can be relaxed: Suppose that, for every   0, the agent’s impatience is magnitude-independent for all

consumption below some threshold ∗  0 (which happens when   0 and lim&
0()  0). Then, for

any  ≤ ∗ , the optimal discount factor is constant at the base-line, that is, ()() =   0. In this

case, present equivalents can be defined with future consumption fixed at ∗  0 in each . This satisfies

the key implicit requirement for our behavioral definition of MDI below, namely, that scaling down the

present equivalent (along with the future stream ∗1 · · ·  ∗ ) does not change the corresponding optimal
discount function. See the supplementary appendix [36] for formal details.
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Axiom 4 (Weak Homotheticity) For any  ∈  and any  ∈ (0 1),

 ∼  =⇒  ◦  %  ◦ 

In a deterministic context, Weak Homotheticity is reminiscent of the magnitude effect

(Fredrick et al [19]). Given subjects’ background consumption, these experiments elicit, for

instance, the present equivalent $ of receiving $ at time , and observe how  changes

as a function of . The magnitude effect can be described by the requirement that, for

  1,

[ at time 0 ] ∼ [ at time ] =⇒ [ at time 0] Â [ at time ]

where the consumption here is interpreted as the “change in consumption relative to back-

ground consumption”. For instance, the average choices of the subjects in Thaler [50] were

$15 now∼ $60 in a year and $3000 now∼ $4000 in a year. These preferences imply that
scaling the future $4000 by  = 0015 to the value $60 is worse than scaling an immediate

$3000 by  = 0015 to the value of $45. If we interpret consumption in our model as

“change in consumption” and restrict attention to dated rewards instead of streams, then

the Weak Homotheticity axiom exactly corresponds to the magnitude effect.

In the context of risky consumption, there is mixed evidence on Weak Homotheticity:

in Öncüler [40] and Anderson and Stafford [5], subjects become more impatient under risk,

and Sun and Li [48] find that subjects exhibit the magnitude effect even when rewards are

risky. Keren and Roelofsma [27] find the opposite. The preceding suggests a perspective on

this mixed evidence. While we maintain Expected Utility, experimental findings routinely

confirm the Allais paradox, a behavioral pattern contradicting Expected Utility and sugges-

tive of an inordinate preference for certainty. MDI works in favor of Weak Homotheticity

but the Allais paradox works against it: when  is deterministic (as in the experiments),

then the Allais paradox implies that it steeply loses value in the second comparison ( ◦ 
vs.  ◦ ), and this may well lead to the preference  ◦  -  ◦ .

5.2 Representation Results

As a first step we show that

Theorem 5 Under Assumption 2, % satisfies Homotheticity if and only if % admits a DU
representation. Moreover, DU representations have the same uniqueness property as in

Theorem 3.

Therefore Homotheticity expresses the magnitude-independence of discounting in the

DU representation.15 The magnitude-dependence in the CE model is captured by:

15If  consists of lotteries, it is easily seen that the DU representation is equivalent to GDU augmented

with the vNM Independence axiom: for all streams    ∈  and  ∈ (0 1),  %  ⇐⇒ ◦+(1−)◦ %
 ◦  + (1− ) ◦ . In particular, Homotheticity is equivalent to vNM Independence under GDU.
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Theorem 6 Under Assumption 2, % satisfies Weak Homotheticity if and only if it admits
a CE representation. Moreover, CE representations have the same uniqueness property as

in Theorem 4.

The proof of this result involves the simple verification that Weak Homotheticity yields

the star-shapeness property in (6), which we have already seen characterizes MDI. Then,

by Theorem 1, there must exist a CE representation for the preference. Relative to the

uniqueness result in Theorem 4, we do not need to impose maximality of , since  is

always maximal when  is unbounded (which is presumed in Assumption 2).

It is worth observing that, when consumption is risky, the Expected Utility assumption

that defines the CE model could have been formulated in an alternative way:16 while we

assumed that a lottery  received at  would be evaluated as()()(), one could alterna-

tively posit that it is evaluated as [()()()]. Such an alternative model changes the

behavioral implications of the model. For example, it will be consistent with Homotheticity

despite magnitude-dependent . Moreover, unlike our model, the magnitude-dependence

of  will contribute to the agent’s risk attitude, since the vNM utility index is effectively

()()(). In particular, if % exhibits the Increasing MRS axiom on +1, then Theo-

rem 4 yields that () is convex in , and hence we have the property that ()()() is

less concave than () with respect to . Indeed, the agent will be more risk tolerant when

choice is delayed, generating a finding in the “risk and time” literature spawned by Keren

and Roelofsma [27].

5.3 Special Case: Homogeneous CE

Next, consider the homogeneous CEmodel. Say that a stream  ∈  isMagnitude Sensitive

if the agent’s impatience strictly reduces whenever the stream is made less desirable.

Definition 6 (Magnitude-Sensitivity) A stream  ∈  is Magnitude Sensitive if

 ∼  =⇒  ◦  Â  ◦  for all  ∈ (0 1)

The set of all Magnitude Sensitive streams is denoted by ∗ ⊂ .

It is clear that immediate consumption (whether due to monotonicity of  in the deter-

ministic context or the Expected Utility assumption in the risky context) is not Magnitude

Sensitive.

The homogeneous CE model is characterized by the structure it places on∗. Consider:

Axiom 5 (∗-Regularity) For any  ∈  and   0,

(i) if  6∈ ∗, then  ◦  ∈ ∗ for some  ∈ (0 1], and
(ii) if  ∈ ∗, then  ◦  ∈ ∗ for all  ∈ (0 1).

16We thank a referee for pointing out the possibility of this alternative formulation.
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Consider the ray { ◦  | ∈ (0 1]} defined by the mixtures that lie between  and 0.

By Weak Homotheticity,  weakly increases along this ray. ∗-Regularity requires that it
is in fact strictly increasing, possibly becoming constant as we approach . Specifically,

∗-Regularity (i) requires that if  is not already in ∗, there exists some  ∈ (0 1]
for which  ◦  exhibits Magnitude Sensitivity. ∗-Regularity (ii) requires in addition
that if  exhibits an Magnitude Sensitivity then so must every dated reward in the ray

{ ◦  | ∈ (0 1]}.
Next, consider:

Axiom 6 (∗-Homogeneity) For any dated rewards   ∈ ∗, their present equiva-
lents  ∼  and  ∼  and any   ∈ (0 1)

 ◦  ∼  ◦  =⇒  ◦  ∼  ◦ 
∗-Homogeneity places structure on homotheticity violations, requiring that if scaling

down  by  is as good as scaling down its present-equivalent  by , then  depends

on  but not the stream. It is easy to see that this axiom imposes homotheticity on dated

rewards in ∗, since for any   ∈ ∗, it must be that  ∼  =⇒  ◦  ∼  ◦ .
We close this section with:

Theorem 7 Under Assumption 2, % satisfies Weak Homotheticity, ∗-Regularity and
∗-Homogeneity if and only if % admits a homogeneous CE representation.
Moreover, if there are two homogeneous CE representations ( 



 

),  = 1 2 of

the same preference %, then there exists   0 such that (i) 2 = 1, (ii) 
2

 = 
1

 ,

2 = 1 , and 
2 = 1 for each .

6 Accommodating Evidence

6.1 Magnitude Effect

Recall the notation in Section 4.1. The magnitude effect is defined by the property that
()


is increasing in . Loewenstein and Prelec [31] show that this can arise from the

curvature of utility for money: in the DU model, the present equivalent ( ) satisfies

(0 + ( ))− (0) = ()[( +)− ()]), which implies that

( )


=

−1 (()[( +)− ()] + (0))− 0




Noor [34] provides a calibration theorem to show that the curvature of utility is not an

adequate explanation for the magnitude effect.17 The CE model can readily produce the

magnitude effect due to the magnitude-dependence of , even without any curvature in .

17The calibration theorem implies that for an arbitrary discount function, concave utility, and arbitrary

background stream of wealth, if the agent exhibits, say, $15 now ∼ $60 in a year then the following must
hold: give $60 in a year unconditionally to the agent, and she will subsequently never give up $ today in

return for $4 (=$60
15
) return in a year, for any value of .
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For completeness, we note the mixed evidence for the magnitude effect for losses: Thaler

[50], for instance, finds that subjects are less impatient towards larger losses, whereas

Hardisty et al [24] find that subjects are more impatient towards larger losses. Although

our model does not speak to losses relative to a reference point, it is worth considering

whether these patterns can be understood in terms of optimal empathy. The key issue is

that, in the cognitive optimization problem, if a stream yields negative discounted utility,

then the optimal discount function must be 0, but the evidence requires it to be strictly

positive. To accommodate the pattern in Hardisty et al [24], consider the CE model with

negative payoffs, but maintain that the utility from all payoffs is positive. Then the model

generates higher impatience towards payoffs with lower utility, and in particular, towards

larger losses. The pattern in Thaler [50] is accommodated in Noor and Takeoka [37] where

the cognitive optimization problem is extended so that the agent considers the absolute

value of utility from outcomes.

6.2 Preference Reversals

For any  ∈  and any stream  with  = 0, let  denote the stream ( 0 · · ·  −1). It
is well-known that the behavioral expression of Exponential Discounted Utility (Definition

1) is Stationarity (Koopmans [28]):

Axiom 7 (Stationarity) For any streams   such that  =  = 0 and any ,

 %  ⇐⇒  % 

Stationarity is routinely violated in experiments. A notable finding is that of preference

reversals, also known as the common difference effect, immediacy effect and present bias

(Fredrick et al [19]), defined by   b and   0 such that

 Â (b) and () ≺ (b)+ for some   0
suggesting a bias towards the present. Our model explains this as follows:18 if empathy is

sufficiently costly, the current self will be selfish and prefer the immediate option as in the

first comparison. If the cost function for empathizing with self  is not much different from

that for self + , the agent empathizes with self  and self +  to a similar degree, and

therefore prefers the higher outcome.

The attention received by preference reversals notwithstanding, there is substantial ev-

idence of the reverse (Fredrick et al [19]):

 ≺ (b) and () Â (b)+ for some   0
18For example, assume a homogeneous CE model. When (b) is small, the two comparisons are () vs

(b) 
−1 and () vs

³
+


´−1


(b). Depending on parameter values, the agent can exhibit preference
reversals or their converse.
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This behavior is in fact natural from the perspective of our model. Impatience is sufficient

to explain the second choice — the current self’s empathy for future selves is decaying at

some rate. If the period 0 self has sufficiently high empathy for the first  selves then a

large reward (b) may be chosen over a smaller immediate reward .

While such behavior is frequently observed in experiments, it is all but ignored in theory

and applications, presumably because the lens of present bias is dominant in the literature.

We note that even the beta-delta model can give rise to such behavior: that model is silent

on how long period 0 is, and if it is long enough, then the agent would exhibit “future

bias”.

Given that the CE model does not place any particular restriction on Stationarity

violations, we close by providing a special case of the model that produces preference

reversals:

Axiom 8 (Quasi-Stationarity) For any streams   such that 0 = 0 =  =  = 0

and any ,

 %  ⇐⇒  % 

The condition requires the conclusion of Stationarity to hold only in comparisons where

immediate consumption is not relevant. Observe that the condition requires at least 4

periods ( ≥ 3) for it to meaningfully restrict the agent’s discount function.

Proposition 1 Suppose that  ≥ 3. A homogeneous CE representation (  ) sat-

isfies Quasi-Stationarity iff there exist ∗  0, 0   ≤ 1, and 0   ≤ 1((∗) 1
−1 ) such

that for each ,

 =
1

−1(−1)
 and  = (∗)

1
−1 

and the optimal discount function takes the form:

() =

(
()

1
−1 if  ≤ ∗

(∗)
1

−1 if   ∗

See the supplementary appendix (Noor and Takeoka [36]) for the proof. According to

the proposition, Quasi-Stationarity requires that () takes the familiar beta-delta form

augmented with a transformation of (). This is an increasing transformation for all 

below some threshold ∗  0. Beyond the threshold, the beta-delta form is multiplied

with a constant (∗)
1

−1 . We can view  as the long run discount factor and ()
1

−1 as

reflecting the urge for immediate gratification. This urge reduces as  increases and beyond

∗, it is constant, as in the beta-delta model. In the proof of the Proposition, a key step is
to establish that ∗ cannot in fact depend on .

We illustrate how the CEmodel accommodates preference reversals under Quasi-Stationarity

by using the optimal discount function in Proposition 1. Consider a typical pattern such

as ( 0 0) Â (0  +  0) and (0  0) ≺ (0 0  + ). If  is sufficiently large, the optimal
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discount function is magnitude-independent. Then, the preference reversal choice pattern

is equivalent to assuming (∗)
1

−1  1 as in the beta-delta model. On the other hand, if

 is sufficiently small, a preference reversal may arise even when (∗)
1

−1 6 1. From the

representation, the choice pattern is equivalent to the inequalities ()  (+)


−1 and

()


−1  ( + )


−1 . To see that these inequalities can hold simultaneously, observe

that if ( + ) is less than one, then its convex transformation ( + )


−1 must be less

than (+). If the small payoff + is discounted very severely, then the inequalities can

hold even if  ≥ 1. Indeed, if  = 1, preference reversals arise in the model purely because
smaller rewards are discounted at a steeper rate than larger rewards.

6.3 Consumption Smoothing vs Preference for Increasing Se-

quences

Loewenstein and Prelec [32] demonstrate that subjects prefer increasing sequences of con-

sumption to constant or decreasing sequences with the same present value. Assuming three

periods, our next proposition shows that if self 2 is better off than self 1, then under certain

conditions the agent may be willing to reduce self 1’s welfare to improve self 2’s further,

suggesting a preference for increasing sequences.19

Proposition 2 Assume that % admits a homogeneous CE representation. Suppose there

are only three periods and  is linear. If 1  2 and if 21 is sufficiently close to one,

then for all  in some positive interval,

(0 1 +  2 − ) ≺ (0 1 −  2 + )

The idea is simply that a convex transformation 
−1 can cause the marginal utility at

time  to be increasing.20

The evidence for increasing sequences not withstanding, it is standard in economics to

assume consumption smoothing. This is formally defined by the convexity of upper contour

sets:

Definition 7 A preference % exhibits consumption smoothing if for any  ∈ [0 1] and for
all deterministic streams ,  ∈ +1 and + (1− ) ∈ +1,

 ∼  =⇒ + (1− ) % 

19Proof: The desired preference obtains if:

1[((1) + )


−1 − ((1)− )


−1 ]  2[((2) + )


−1 − ((2)− )


−1 ]

Due to convexity 
−1  1, there is some   0 such that the inequality holds for all     (1).

20Note that whether marginal utility from consumption increases or not depends on both 
−1 and

the curvature of vNM function  over consumption. In the proposition, we assume that  is linear over

consumption.
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We now study conditions under which the homogeneous CE model exhibits consump-

tion smoothing. As shown in Theorem 2, the utility at time  in this model is given by

()()() = ()


−1 if  ≤  := −1(
−1
 ), and ()()() = ()

otherwise.

Proposition 3 Assume that % admits a homogeneous CE representation. If ()


−1 is

concave in  ∈ R+, then % exhibits consumption smoothing. Conversely, if % exhibits

consumption smoothing, then at least  of functions (0), (1)(1) · · ·  ( )( )

are concave. Moreover,  : R+ → R+ is concave if there are   ≥ 1 such that  6= .

See the supplementary appendix (Noor and Takeoka [36]) for the proof. The first part

of Proposition 3 is a sufficient condition for consumption smoothing behavior. Since 


−1

is a convex transformation, the presumption requires that  is concave and its curvature

dominates the convexity of 


−1 . The converse is a direct implication of Yaari [53].21 If

()() is independent of () (as in the DU model), concavity of ()()() imme-

diately implies concavity of (). The last statement in the Proposition is obtained from

the fact that if the interval domains of two concave functions have a non-trivial overlap,

then the function is concave on the whole domain.

In the DU model, it is well-known that consumption smoothing is equivalent to concave

. According to the Proposition 3, this observation is “generically” carried over to the case

of homogeneous CE representations. The only exception is the case that  =  for all

 . 22

6.4 Annuitization Puzzle and Concentration Bias

In a seminal paper, Yaari [52] shows that, under some assumptions, rational agents with

no bequest motive should convert all their retirement wealth into annuities at retirement.

Subsequent literature (see Benartzi et al [10] for references) shows that, under much weaker

assumptions, households should hold a substantial proportion of their wealth in annuities.

The literature also empirically documents the absence of a demand for annuities, which

is dubbed the annuitization puzzle. In an experimental setting, Dertwinkel-Kalt et al [15]

demonstrate a related behavior: a preference for concentrating outcomes in one period over

spreading them, which they dub concentration bias. Our model is consistent with these

findings since it requires that smaller payments over a long horizon should be discounted

at a higher rate than larger payments over a possibly smaller one.

21Yaari [53] shows that if an additively separable function  (1 · · ·  ) =
P

 () is quasi-concave,

then at least  − 1 of functions 1 · · ·   are concave. Yaari also provides a counterexample for the
converse.
22When  =  for all  ,  is not necessarily concave even if ()() is concave for all . Here is a

counterexample: Let () =
√
 if  ≤ 1 and () =  if   1. Assume  = 2,  =

1
2
, and  = 1. Then,

 = ()
− 1
−1 = 1,  = −1(

−1
 ) = 1 for all , and ()()() = ()


−1 =  if  ≤ 1

and ()()() =  if   1. Therefore, ()()() is concave for all , , but  is not concave.
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6.5 Magnitude Hypothesis in Consumption Smoothing

There is considerable evidence that consumption tends to respond to anticipated income

increases more than what is implied by standard models of consumption smoothing. More-

over, this response is inversely correlated with the size or magnitude of anticipated income

increases, that is, for small income changes, consumption tends to overreact to them, while

consumption pattern tends to be consistent with consumption smoothing for medium or

large income changes. This evidence is known as the magnitude hypothesis in consump-

tion smoothing (Browning and Collado [13], Scholnick [45]), which has been attributed to

bounded rationality or costs associated with the mental processing of small anticipated

income changes.

The CE representation may predict a similar behavioral pattern where% exhibits prefer-
ence for concentration in streams with small payoffs, whereas it exhibits preference for con-

sumption smoothing otherwise. Consider the reduced form of the homogeneous CE model

(Theorem 2). Note that ()()() has a flatter curvature up to  ≤ −1() because of
the convex transformation over , and gets more concave beyond the threshold. For exam-

ple, let  = 2 for simplicity. Assume () =
√
 and = 2. Then, (0 1 2) = 11+22

if both 1 and 2 are below the thresholds, (0 1 2) = 1
√
1 + 22 if 1 is above the

threshold and 2 is below the threshold, and (0 1 2) = 1
√
1+2

√
2 if both 1 and 2

are beyond the thresholds. Thus, the agent is more likely to choose a skewed consumption

stream over a smoothed consumption stream when these streams are small.23

6.6 Negative Time Preference

There is evidence of negative discount rates for both positive and negative outcomes. For

instance, subjects in Loewenstein and Prelec [32] would rather have a fancy french dinner

later than sooner, and subjects in Hardisty et al [24] prefer losing $9.10 now over losing

$9 in a week. Negative discount rates have been interpreted in the literature in terms of

anticipation: delaying positive consumption leads to savoring, whereas expediting negative

consumption avoids dread. This interpretation can be recast in terms of empathy. We can

readily extend our model to allow for ()  1, permitting the possibility that the current

self weights the future self’s utility higher than her own, albeit at the cost of sufficient

cognitive effort.24 Thus, empathy can be used to model negative discount rates, coupled

with the hypothesis that the discount rates can be magnitude-dependent.

23In this example, it is more appropriate to interpret zero as a reference point or base-line consumption

and  as a gain from the reference point. See Noor and Takeoka [37] for such an extension.
24We can drop the Impatience axiom in the axiomatization of the GDU representation in the supple-

mentary appendix (Noor and Takeoka [36]) to permit ()  1. As long as () is bounded above for

each , a counterpart of Theorem 1 can be proved for an appropriate generalization of the CE model.
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6.7 Cognitive Costs and Impatience

Our paper relates to the literature connecting impatience with cognitive abilities. Dohmen

et al [16] show that people with lower cognitive abilities are more impatient. Shiv and

Fedorikhin [46] report that cognitive load weakens self-control and makes subjects more

present-biased. Becker and Mulligan [9] propose that future-oriented capital such as edu-

cation or health investment can reduce impatience. Cognitive ability, cognitive load and

education can be viewed as determinants of the marginal cognitive cost of empathy in our

model, and therefore of impatience.

7 Self-Control and Procrastination

As explained in the Introduction, the CE model can be viewed as a multiple selves model

that features self-control. Self-control in this context refers to a cognitive act by the current

self that enhances empathy for future selves and enables her to forgo immediate consump-

tion. In the context of procrastination (O’Donoghue and Rabin [39]) we illustrate how such

self-control can influence choice. The proof of the results can be found in the supplementary

appendix (Noor and Takeoka [36]).

Suppose the time horizon consists of periods 0, 1, 2 and 3. The agent has background

consumption   0 in every period, and evaluates consumption by a weakly concave,

strictly increasing utility index  satisfying (0) = 0. Suppose there are two tasks that

can be completed within the time horizon. Each task takes effort   0, where − 2  0,
and yields a return   0. Choices are made only in periods 0 and 2, and these determine

the consumption in periods 1 and 3. In period 0, the agent may take on zero, one or both

tasks. Either task can be completed either in period 0 or in period 2, and two tasks can

be completed simultaneously. If the agent completes  ∈ {0 1 2} tasks in period  = 0 2,

then the agent’s utility is (− ) in period  and (+ ) in period + 1.

We study the dynamic behavior of sophisticated DU and CE agents. The dynamic

behavior can be modelled as a subgame perfect equilibrium of an extensive-form game

between self 0 and self 2. To simplify exposition, adopt the tie-break rule that if any self

is indifferent between completing  vs  tasks, then she completes the higher number of

tasks.

Begin with the DU benchmark. Denote by (|) the utility of self  = 0 2 of com-
pleting  tasks in period  out of  uncompleted tasks in that period. We first show that

if self 2 would be unwilling to complete 1 task, then in the DU model, no task will get

completed by either self:

Proposition 4 Consider a sophisticated DU agent. Suppose self 2 would not complete a

task when there is one to be done. On the path of a unique equilibrium, neither self 0 nor

self 2 completes any tasks.

The result is driven by the concavity of . If receiving  tomorrow does not compensate

for exerting effort  today, then neither will 2 today compensate for effort 2 today.
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Moreover, the problem of self 0 and self 2 are identical: each must consider the trade-off

between today and tomorrow, from their respective temporal vantage points.

The behavior of the CE agent can differ substantially. Consider the homogeneous CE

model where the optimal discount factor is given by ()() = ()
1

−1 for the range of

utilities being considered (Theorem 2). Let (|) denote the utility of self  = 0 2 of

completing  tasks in period  given that there are  uncompleted tasks in that period.

We show that, under the hypothesis of Proposition 4, there are parameter values for which

the CE agent would behave like the DU agent, but for other parameter values, the CE

agent can exhibit novel behaviors.

Proposition 5 Consider a sophisticated CE agent. If self 2 would not complete a task

when there is one to be done, then the model permits three possibilities on the path of a

unique equilibrium:

(i) Neither of self 0 nor self 2 completes any tasks.

(ii) Self 0 completes no task and self 2 completes 2 tasks.

(iii) Self 0 completes 2 tasks.

The Proposition gives rise to two new possibilities beyond those in the DU model. The

first is that self 0 procrastinates on two tasks in the knowledge that the high returns of

completing the two tasks together will motivate self 2 to complete them. The second is

that the returns of completing the two tasks together are high enough to motivate self 0 to

complete them immediately herself. She does not wish to delay the returns, even though

doing so would delay her effort as well.

In summary, the CE model implies that each self may have a stronger incentive to

complete several tasks together. Moreover, a current self may exploit such attitudes of

future selves and strategically procrastinate several tasks for future selves to complete.

A Appendix: Proof of Theorem 1

We showed in the text that the CE model reduces to a GDU model with MDI. To prove

the converse, suppose % admits a GDU representation () that exhibits MDI.
Note that  is either  or ∆. From now on, a generic element of  is denoted by 

regardless of whether consumption is deterministic or risky.

We typically use  ∈ R+ to denote the utility level  = () at some consumption level

 ∈ . Denote the set of all utility levels by

 = () = { ∈ R+ |  = () for some  ∈ }

For any given   0,  is the domain of () when viewed as a function of . The image

of  in this function is:

() = { ∈ [0 1] |  = ()() for some  ∈ }
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Say that a non-empty closed interval [ ] ⊂  (with   ) in the domain is a c-interval

if  is constant over it:

() = 0() for all  
0 ∈ [ ] ⊂ 

Since a -interval is the inverse image of a singleton  ∈ (), it is always closed by continuity

of () in . Say that a non-empty open interval ( ) ⊂  in the domain is an i-interval

if  is strictly increasing over it:

()  0() for all  
0 ∈ ( ) ⊂  with   0

For any c-interval in  there corresponds a unique . For any i-interval in  there

corresponds a unique open interval ( ) in the range of  (since the image of an open

interval in a strictly monotone continuous function is open). In general, there will not exist

a finite number of c-intervals and i-intervals partitioning . For any  ∈ , there may exist

a -interval containing it, or an -interval containing, but also, neither may be true: every

neighborhood of  may contain -intervals and -intervals. Our argument below needs to

account for this.

With this in mind, for any fixed , let  = { ∈ () |  is the image of some -interval},
the set of discount factors whose inverse image generates a c-interval (as opposed to a point).

For any  ∈ , there are two key possibilities to consider. A discount factor  ∈  may

be locally isolated : there may exist a neighborhood of  (in the space ()) that does not

intersect with  \ {}. This would happen when the inverse image of  is a c-interval that
is sandwiched between two -intervals.25 Alternatively,  may be an accumulation point of

, that is, there is a sequence in  \ {} converging to . This would arise if the inverse
image of  lies in a c-interval that is not sandwiched between two i-intervals.

The corresponding two sets defined by

()   = { ∈  |  is locally isolated}
()  = { ∈  |  is an accumulation point of }

form a partition of  =   ∪  . Observe that points outside  may also be accumulation
points of . Define

()  = { ∈ () \  |  is an accumulation point of }
()   = () \ ( ∪ )

The above four sets form a partition of ().

For any given   0, and any discount factor  ∈ () there is a (possibly singleton)

subset of  that generates it, in the sense that () =  for all  in the subset. The next

lemma defines a “cognitive marginal cost” 0() of the discount factor  in terms of the
minimum utility level in the subset, and establishes some properties.

25It cannot have another -interval on either side since () is continuous in .

27



Lemma 1 Suppose % admits a GDU representation () that exhibits MDI. Consider

the real-valued function 0 : ()→ R+ defined for each  ∈ () by

0() = min{ |  = ()} ∈  (7)

This function satisfies:

(a) 0(·) is strictly increasing.
(b) On any open interval ( ) ⊂ () that is the image of an i-interval, 0(·) is the
inverse of (·)().
(c) 0(·) is discontinuous at  if and only if  ∈ .

(d) 0(·) is left continuous on ().

Proof. By hypothesis, there is a GDU representation () such that () is continuous

and weakly increasing in . Consider the function 0 defined in the statement of the lemma.
We establish the following.

(a) Show that 0(·) is strictly increasing.
This holds because () is weakly increasing in .

(b) On any open interval ( ) ⊂ () that is the image of an i-interval, 0(·) is the inverse
of (·)(), that is, 0()() =  for all  ∈ ( ).
Since () is strictly increasing on ( ) it must be that, for any point  ∈ ( ),

the inverse image () given by ()() =  is a singleton. Consequently 0() = ().

(c) Show that 0(·) is discontinuous at  if and only if  ∈ .

It is clear from definitions that if  ∈  then  is a point of discontinuity for 0(·).
To show the converse, we establish the contrapositive. So take any  6∈ , specifically,

 ∈ () \ . Since we defined  = () \ ( ∪ ), note that () \  =   ∪ . Assume
first that  ∈ . Since  is not an accumulation point of , there exists an open interval

( ) ⊂ () that contains  and does not intersect with . The corresponding open

interval in  is an -interval, and since () is strictly increasing and continuous on such

an interval, the inverse image of any point in ( ) is a singleton and correspondingly,

0(·) is continuous at . Next, assume  ∈ . Seeking a contradiction, suppose that 
0
(·)

is not continuous at . Since 0(·) is strictly increasing, we have lim% 
0
(

) =    =

lim& 
0
(

), which means that  is the inverse image of a c-interval [ ], a contradiction.

Therefore, 0(·) is continuous at . This completes the proof of only-if part.
(d) Show that 0(·) is left continuous.
From (c), we know that 0(·) is continuous on () \ . It is enough to show that 0(·)

is left continuous on . First take any  ∈   . Then, the c-interval associated with  is

sandwiched between two i-intervals. This c-interval can be denoted by [0() ] ⊂  in the

domain. Then the adjacent i-interval ( 0()) ⊂  on its left has an image ( ) ⊂ ()

that is an open interval in the range. Clearly, for any sequence  %  that approaches

 from the left, its inverse image must eventually belong to the i-interval ( 0()) in the
domain. Consequently, it must be that 0(

)% 0(). Next, take any  ∈  . Seeking a

contradiction, suppose that 0(·) is not left continuous at . Since 0(·) is strictly increasing,
we have 0()   = lim% 

0
(

), which means that the c-interval corresponding to 
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takes a form of [ ], which contradicts the definition of 0() because 0() is not the
minimum in this interval.

In Lemma 1 we defined 0 on (), which is the image of  in (·)(). Let  = inf () =
inf∈() and  = sup () = sup∈(). Note that  is attained in () since  is

bounded below by 0. Indeed, 0() = 0. However  may not be attained since  may

not be bounded above, and () may approach  only asymptotically as →∞. In this
case, lim%

0() =∞. Extend 0(·) from () to [0 1] by setting 0() = 0 for all   ,

0() = lim%
0(), and 0() =∞ for all   .

We claim that 0(·) is continuous at 0. If   0, the claim holds because 0() = 0 for all
sufficiently small  ≥ 0. Now assume  = 0. By seeking a contradiction, suppose that 0(·)
is not continuous at 0. Since 0(·) is strictly increasing, 0 = 0() = 0(0)  lim&0 0(),
which means from (7) that ()() = 0 for all 0  ()  lim&0 0(). For all such  ∈ ,

let  be the stream that pays  at time  and 0 otherwise. Then, () = ()()() = 0,

which violates the strict increasingness of the GDU representation.

Now, we define . Since 
0
(·) is monotone on [0 1], it is Riemann-integrable. For any

() ∈ [0 1], define the cognitive cost function by the Riemann integral:

(()) =

Z ()

0

0() d

Then, (()) = 0 for any () ∈ [0 ] and (()) = ∞ for any () ∈ ( 1]. If
0() =∞ then () =∞.
Since 0 is monotone increasingly,  is a convex function on [0 1]. Since 

0
(·) is strictly

increasing on (),  is strictly convex on [ ]. Moreover,

Lemma 2 (·) is differentiable at  if  ∈ .

Proof. By property (c) of 0(·) (in Lemma 1), ̄ ∈  if and only if 
0
(·) is continuous at

̄. By the fundamental theorem of calculus, the derivative exists at ̄ and satisfies

d

d
(̄) = lim

→̄

R 
̄

0() d

 − ̄
= 0(̄) (8)

Since 0(·) is not continuous at all points, (·) is not differentiable at all points.

Lemma 3 0 ≤ 0+1.

Proof. Since () is a GDU representation, () is weakly decreasing in  for all fixed .

Thus, for all  ∈ [0 1], if () =  = 0(+1) holds, then 0(+1) = () ≥ (+1).

Since (+ 1) is weakly increasing in , we must have 0 ≥ . Hence, by definition of 0,
0() ≤ 0+1(), as desired.
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Lemma 4 Suppose % admits a GDU representation (). Then () is weakly increas-

ing and continuous in  for each  iff there exists a basic representation ( {}=1) such
that for each  ,

()() = arg max
()∈[01]

{()()− (())}

Proof. First establish sufficiency. Consider  obtained by Lemma 1. Take any  ∈  and

note that

max
()∈[01]

() − (()) = max
()∈[01]

Z ()

0

( − 0()) d

We show that, since  is constant and 0(·) is increasing, the solution to this maximization
problem is given by

∗
() = max{ |  ≥ 0()}

First we show that the set  = { ∈ [0 1] |  ≥ 0()} contains its supremum and

that this supremum is finite. Since this set is non-empty and bounded above, it admits a

supremum, denoted by ∗. By definition of the supremum, for all sufficiently large , there
exists  ∈  such that 

∗ − 1

  ≤ ∗. As  → ∞,  → ∗. Moreover, since  ∈ ,

0() ≤ . By the left continuity of 0(·), we have 0(∗) ≤ , or ∗ ∈ . Therefore, the

maximum of  is attained, and ∗
() = ∗.

We show next that () must equal the solution ∗
() to this maximization problem.

If  ≤ lim&
0(), then the maximizer is uniquely given by , and so 

∗
() =  = ().

Suppose henceforth that   lim&
0(). If  does not belong to any c-interval, then

0(()) =  and  is differentiable at (). By (8) the FOC:

 = 0(()) (9)

is satisfied at exactly ∗
() = max{ |  ≥ 0()} = (). On the other hand, if  belongs

to a c-interval, then there is a kink in  at() with  contained between the left derivative

and right derivative of  at (). Since  is strictly convex on [ ], it must be that

for any  ≤ ()  

0() ≤   0()

Consequently the solution must be exactly ∗
() = max{ |  ≥ 0()} = ().

Conclude with the proof of necessity: show that if  is obtained from such a maxi-

mization problem, then it must be weakly increasing and continuous. Since the objective

function is strictly concave, the solution is unique if it exists. First observe that if ()

is finite, a maximizer () always exists since it is obtained by maximizing a continuous

objective function over the compact interval [0 ]. By the Maximum theorem, together

with the uniqueness of the solution, () is continuous in . If () = ∞,  diverges

to infinity as  → . Since  is strictly increasing and strictly convex on ( ), for all

  0, there exists a unique () ∈ ( ) satisfying () = (()). As () is continuous

and the domain of the optimization is effectively restricted to [0 ()] = {| ≥ ()},
again, by the Maximum theorem, () is continuous in .
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For any , since 0 is strictly increasing, the solution is given by () = max{ |  ≥
0()}. The maximum exists because 0 is left continuous. This solution is weakly increas-
ing in  because 0 is strictly increasing.

B Appendix: Proof of Theorem 2

Suppose that the preference admits a homogeneous CE representation with corresponding

parameters   . We establish a corresponding GDU representation by solving the

cognitive optimization problem. Let () = 
 on  ∈ [0 ]. For each , an optimal

discount factor () is determined by max()∈[0]()() − (()). Define  :=

0() = 
−1
 .

Let  be such that () ≤ . By the FOC, we have () = ()
−1, or

() =

µ
()



¶ 1
−1

= ()


where  := 1
−1 and  := ()

−. Thus, for any  ≤ , () = 
. Since () =

()
 = () for all  ∈ (0 1], () is homogeneous.

Next suppose ()   := 0(). Then the boundary constraint () ≤  is binding

and we have  = . Conclude that

() =

½


 if 0 ≤  ≤ 
 if   



Note that () is continuous in , and in particular is not discontinuous at  = : by the

preceding definitions (namely,  = 
1


 and  = ()
−) it must be that  = 


 , as

desired.

For the converse, consider a GDU model () as in part (b) of the Theorem. We show

that  can be written as the solution to a cognitive optimization problem with the desired

form for the cost function .

Lemma 5 Define () := [0 ]. There is  ∈ R s.t. for any   0,  ∈ () and  ∈ (0 1]
() = ()

Proof. Homogeneity of  requires that for any  ∈ (0 1] there is () s.t. for any
 ∈ (),

() = ()()

Trivially, (1) = 1. By continuity of  in  (required by GDU representations), () is

a continuous function defined on (0 1]. Moreover, we find that ()() = () =

()() = ()()(). Indeed,  satisfies the multiplicative Cauchy equation:

() = ()()   ∈ (0 1]
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To convert this into a standard Cauchy functional equation on R+, define  : R+ → R by
() = ln(−) for any  ∈ R+. Since  is continuous, so is . Observe that for any
  ∈ R+

(+ ) = ln(−−) = ln(−)(−) = ln(−) + ln(−) = () + ()

that is, (+ ) = () + (), and so  satisfies the standard Cauchy functional equation

on R+. By Aczel [1, Section 2.1.1.Theorem 1], there exists  ∈ R such that () = .

Define  = − and observe that  satisfies, for any  ∈ (0 1]

ln =  ln
1


= (ln

1


) = ln(− ln

1
 ) = ln()

that is, () =  for all  ∈ (0 1]. We have thus shown that () = ()() =

() as desired.

Lemma 6 For any   0, there exists   0 such that for all  ∈ (),

() = 


Moreover,   0 and  is decreasing in 

Proof. Take any  ∈ (). Then  ≤ . By Lemma 5, () =  

() =

³



´
().

We obtain the expression () = 
 by letting  :=

³
1


´
(). Since () is a non-

trivial interval and () is strictly increasing on it, it must be that   0. Since () is

decreasing in  it must be that  is decreasing in 

Lemma 7  is the solution to the cognitive optimization wrt to some  defined by   0

  1 and () = 
 for all  ≤ . Moreover, +1 ≥ .

Proof. By Lemma 6, () = 
 for all  ∈ () where   0 and   0. Using the FOC

(9), define  on [0 ] as follows. For all  ∈ (), let  = 0(
), so that 0() =

³



´ 1


.

Together with (0) = 0, we have

() =


(1 + )
1




1+
 

Let  = 1+


 1 and  =


(1+)
1



 0. Then, () = 
 for all  ∈ [0 ], as desired.

Since  is decreasing in  (by Lemma 6), we have () ≤ +1(). Then 
 =

() ≤ +1() = +1
, implying  ≤ +1, as desired.

We have established that the cost function has a power form on [0 ], where  =

() = 

 . Since () is constant beyond , we can set () = ∞ for all  ∈

( 1]. Then, by the FOC,  is optimal for all   . Thus, we have a homogeneous CE

representation.
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C Appendix: Proof of Theorems 3 and 4

Suppose % admits a smooth GDU representation ().

Lemma 8 If () and () are differentiable, then for any stream  ∈ ,

() =

µ
()


|=()

¶
0()()
0(0)

+()()
0()
0(0)



Proof. For notational convenience, let () denote (). For any , use the representa-

tion to obtain

(0 + ( ) 1 · · ·   · · ·   ) ∼ (0 1 · · ·   + · · ·   )
⇐⇒ (0 + ( )) + (())() +

X
 6=

(())( )

= (0) + (( +))( +) +
X
 6=

(()()

Differentiate this equality with respect to  to obtain

0(0 + ( ))
( )



= 0(( +))0( +)( +) + (( +))0( +)

⇐⇒ ( )


= 0(( +))

0( +)( +)

0(0 + ( ))
+ (( +))

0( +)

0(0 + ( ))


Moreover, apply L’Hospital’s rule to the definition ( ) :=
()


to obtain:

() := lim
→0

( )


=

( )


|=0

Therefore, by evaluating at  = 0 (in which case it must be that ( ) = 0) we

obtain

() =
( )


|=0 = 0(())

0()()
0(0)

+ (())
0()
0(0)

as desired.

In particular, Lemma 8 implies that for all steams  on the diagonal,

() =

µ
()


|=()

¶
() +()() = [()]

0
¯̄̄
=()

 (10)
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The result can also be used to provide foundations for the CRRA form for .26

Lemma 9 % satisfies Constant MRS iff for any   0, () is constant wrt .

Proof. If () = (), (10) implies () = (). Thus, Constant MRS holds.

Conversely, by Constant MRS, for all  and deterministic streams  on the diagonal, we

have() =() ≥ 0. Denote () = (). By (10), for all  ̃  0, [()]
0 =

[(̃)̃]
0 = () for some constant () ≥ 0, which means that () is an affine function.

Thus, () = () +  for some () ≥ 0 and  ∈ R. Since () = ()()() for

all   0,

0 = lim
→0

() = lim
→0

()()() = lim
→0
(()() +) = 

Therefore, we have () = () + 

= () as desired.

Lemma 10 % satisfies Increasing MRS iff for all , () is convex in . Moreover, the

latter implies that () is increasing in .

Proof. By (10), Increasing MRS is equivalent to

[()]
0
¯̄̄
=()

≥ [()]
0
¯̄̄
=()

for all () ≥ ()  0. Defining () ≡ (), the above condition means that 
0() is

increasing, that is,  is a convex function. Moreover, by strict monotonicity of GDU, ()

is strictly increasing. Finally, since (()) = ()()() = () for all  ∈ ,

lim
→0

() = lim
→0

(()) = lim
→0

() = 0

Note that we can write () =
()


for all   0. Thus,

d()

d
=

µ
()



¶0
=

 0() − ()

2


By convexity of  , (0)− () ≥  0()(0− ) for all fixed   0, that is,  0()− () ≥ 0.
Therefore,

d()

d
≥ 0, that is, () is increasing, as desired.

26When  = , a CRRA utility index  can be obtained from more basic conditions as follows. Adopt

Assumption 1 so that MRS is well-defined. For any stream  ∈  let 0 ◦  define the stream that scales

down only immediate consumption, that is, 0 ◦  = ( ◦ 0 1  ). Then  is CRRA if and only if it

satisfies the following MRS-homogeneity condition: for any   ∈ ,

0◦() = () =⇒0◦() = ()

That is, scaling down immediate consumption by  changes the MRS by a proportion  that is independent

of the stream. By Lemma 8, we know that() =
1

0(0)
[
()

()


0()()+()()

0()], where
the term in the square bracket does not depend on 0. Thus, if MRS is homogeneous in 0, then 0(0)
must be homogeneous. By Euler’s Theorem, (0) must be homogeneous, as desired.

34



By Theorem 1 and Lemma 10, % satisfies Increasing MRS if and only if it admits a

CE representation with () being convex in . It is easy to see that , constructed in

Lemma 1 in the proof of Theorem 1, is maximal: since  = (), (7) implies 0() ∈ ()

for all  ∈ (), which in turn implies sup∈[0] 
0
() ≤ sup∈ ().

Uniqueness

Consider two maximal CE representations ( {
}),  = 1 2, that represent the same

preference. Their reduced forms are denoted by  () = (0) +
P

≥1

()

()(),

where 
()

is an optimal discount function. Since these are GDU representations that

represent the same preference, by the uniqueness shown in Noor and Takeoka [36, Theorem

1], there exists   0 such that (i) 2 = 1, and (ii) for all  ∈  and ,

1
1()() = 2

2()() (11)

This directly implies the uniqueness of DU representation.

By Lemma 4 in the proof of Theorem 1, for  = 1 2,


()() = max{ |() ≥ (

)
0()} (12)

First, we show 1 = 2 =  and 
1

 = 
2

 = . Take any  such that 
1() ≤ lim&1

(1 )
0().

From (12), 1
1()() = 1 . Together with (11), we conclude 

1
 = 2 . Again, from (11),


1

 = lim
→∞

1
1()() = lim

→∞
2

2()() = 
2

 

Next, take any  ∈ ( ). We want to show (2 )
0() = (1 )

0() for all such ,

which implies 2 = 1 . By seeking a contradiction, suppose that there exists 
∗ with

(2 )
0(∗)  (1 )

0(∗). Since (2 {2}) is maximal and 2() is an interval, there exists

 ∈  such that 1

(2 )

0(∗)  1()  (1 )
0(∗). By the first inequality and

2
2()() = max{ |1() ≥ (1)(2 )0()}

we have 2
2()

()  ∗. Since (1 )
0 is strictly increasing, the above second inequality and

1
1()() = max{ |1() ≥ (1 )0()} imply 1

1()() ≥ ∗, which contradicts to (11).

D Appendix: Proof of Theorems 5 and 6

We prove the results under a weaker assumption than Assumption 2.

Assumption 3 % over  = +1 admits a GDU representation () where

(1)  is unbounded on 

(2) there is a continuous scaling operation ( ) 7→  ◦  ∈  that satisfies
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(i)  ◦  = 0 when  = 0,

(ii)  ◦ ( ◦ ) =  ◦ 
(3) there exists a strictly increasing continuous function  : [0 1]→ [0 1] satisfying: for

any  ∈  and  ∈ [0 1]
( ◦ ) = ()

If  =  and  is assumed to be homogeneous of the form () =  for some   0,

then  = . If  = ∆ and  is assumed to be an expected utility, then  = .

Some simple implications are:

Lemma 11 Under Assumption 3,

(i)  = 1 when  = 1, and  = 0 when  = 0.

(ii) For any  ∈ [0 1] there exists a unique  ∈ [0 1] s.t.  = .

(iii) For any  ∈ (0 1]  % 0 ⇐⇒  ◦  %  ◦ 0.
Proof. Trivially,  = 1 when  = 1. For any ()  0, we have 0 = (0 ◦ ) = ()

and so it must be that  = 0 when  = 0. This establishes (i). To establish (ii) observe

that by continuity and monotonicity of , it is a homeomorphism. Moreover, given (i),

 maps [0 1] to [0 1]. The assertion follows. Assertion (iii) follows directly from property

(3) in the Assumption.

The following lemma highlights the implication of Weak Homotheticity and Homothetic-

ity for this GDU representation.

Lemma 12 Under Assumption 3, % satisfies Weak Homotheticity (resp. Homotheticity)

if and only if () is weakly increasing (resp. constant) in .

Proof. By the GDU representation, for any  ∈  and   0, it must be that () =

()()(). Take any  ∈ (0 1]. By Lemma 11, there is  ∈ (0 1] s.t.  =  and in

particular () = ( ◦ ) for any  ∈ . But then, for the dated reward ,

()()() = () = () = ( ◦ )
≥ ( ◦ ) = (◦)()( ◦ ) = ()()()

where the inequality holds since Weak Homotheticity requires  ◦  %  ◦ . Conclude
that ()() ≥ ()(), that is,  is weakly increasing in utility of magnitude, as desired.

Replacing the above inequality with an equality establishes that Homotheticity implies that

 is constant. The converse directions of these claims are straightforward to establish.

Theorem 5 is established as part of this lemma. Theorem 6 obtains by invoking Theorem

1.

The uniqueness follows from the same proof of Theorems 3 and 4. First of all, under

Assumption 2, () is unbounded above, whereby,  is always maximal. If  = , the

proof is exactly the same as before. If  = ∆, as shown by Noor and Takeoka [36, Theorem

2], GDU representations on ∆+1 admit the desired uniqueness property. The subsequent

argument is the same as before.
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E Appendix: Proof of Theorem 7

E.1 Intermediate Characterization

Proposition 6 Under Assumption 3, % over  = +1 satisfies ∗-Regularity if and
only if it admits a GDU representation such that () is strictly increasing up to some

threshold and constant thereafter.

We first show sufficiency. By Theorem 1, since the preference % admits a CE represen-
tation, it also admits a GDU representation with () weakly increasing in . Define

∗() = { |  = () for some  ∈ ∗} ⊂ R (13)

where R denotes the set of strictly positive reals.

Lemma 13 ∗() is an nonempty interval with inf ∗() = 0.

Proof. By ∗-Regularity (i), for any  ∈  there is  s.t.  ◦  ∈ ∗. Therefore ∗

and ∗() are nonempty. We show that ∗() is an interval: Take any  ∈ ∗(). There
exists  ∈ ∗ with  = (). By ∗-Regularity (ii),  ◦  ∈ ∗ for all  ∈ (0 1). Then,
by Assumption 3,  = ( ◦ ) ∈ ∗() all  ∈ (0 1) In fact, by Lemma 11,  ∈ ∗()
for all  ∈ (0 1), and so ∗() is an interval with inf ∗() = 0.

Lemma 14 () is strictly increasing on ∗().

Proof. Take any   ∈ ∗() where   . By definition of ∗(), there exist  ∈ ∗

and  ∈ (0 1) with  = () and  = ( ◦ ). By definition of ∗, for all  ∈ (0 1),
 ◦  Â  ◦ . In particular,  ◦  Â  ◦ . But, given Assumption 3,  ◦  Â  ◦ 
implies

( ◦ )  (◦)()( ◦ ) =⇒ ()  (◦)()()

=⇒ ()()()  (◦)()() =⇒ ()()  (◦)() =⇒ ()  ()

as desired.

Lemma 15 () is constant on R \∗().

Proof. If ∗() = R, there is nothing to prove. Thus, assume otherwise. Since ∗() is
an interval with inf ∗() = 0, its complement in R is also an interval that is unbounded

above. Take any    with this interval. We want to show () = (). We do this in

steps, with the first two being preliminary.

Step 1: Fix an arbitrary  ∈ . Show that if there exist   ∈ (0 1) such that

 ◦  ∼  ◦  and  ◦ ◦ ∼  ◦ ( ◦ ), then  ◦  ∼  ◦ .
By definition of ◦, ◦ ∼  ◦ . Thus, ◦ ∼  ◦  ∼  ◦ , where the last

indifference holds by hypothesis. By Lemma 11, ◦ ∼  ◦  implies  ◦ ◦ ∼  ◦ .
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Finally, we have  ◦  ∼  ◦ ◦ ∼  ◦ ( ◦ ) =  ◦ , where the second indifference
holds by hypothesis and the equality holds by the definition of scaling of streams and by

Assumption 3. But then  ◦  ∼  ◦ , as desired.
Step 2: Show that for any ,  ◦  Â  ◦  implies  ◦  Â  ◦  for all  ∈ (0 ].
By hypothesis and by definition of a present equivalent,  ◦  Â  ◦  ∼ ◦. For any

 ∈ (0 1), let  =  ∈ (0 ). By Lemma 11,  ◦  Â ◦ implies  ◦  Â  ◦ ◦. By
Weak Homotheticity and Assumption 3,

 ◦  =  ◦  Â  ◦ ◦ %  ◦ ( ◦ ) =  ◦ 
Recall the number  chosen at the beginning of the proof. Since  is unbounded above,

there exists  ∈  such that  = (). As  ∈ R\∗(),  ∈ ∗. Let ∼ = { ∈ (0 1) |◦
 ∼  ◦ } and Â = (0 1) \ ∼. Since the CE model satisfies Weak Homotheticity,
 ◦  %  ◦  for all  ∈ (0 1], and so it must be that Â = { ∈ (0 1) | ◦  Â  ◦ }.
These sets satisfy the following properties:

(a) ∼ 6= ∅.
As  ∈ ∗, by definition of ∗, there exists  ∈ (0 1) with  ◦  ∼  ◦ . Hence,

∼ 6= ∅.
(b) Â 6= ∅.
By ∗-Regularity (i), for some  ∈ (0 1),  ◦ ∈ ∗. To prove the claim, we show that

◦ Â ◦ for some  ∈ (0 1). Suppose by way of contradiction that ◦ ∼ ◦
for all  ∈ (0 1). It must be that ◦◦ Â ◦ since by definition of∗ and Assumption
3,  ◦ ∈ ∗ implies ◦ ◦ Â ◦ ( ◦) =  ◦. Together then,  ◦  ∼  ◦ and
◦◦ Â ◦ imply ◦◦ Â ◦, which in turn implies ◦ Â ◦ by Lemma 11.
However, by Weak Homotheticity,  ◦  %  ◦ , and so we obtain ◦ Â  ◦  %  ◦ ,
contradicting the definition of present equivalent, ◦ ∼  ◦ .
(c) Â is an interval with inf Â = 0.
Take any  ∈ Â, that is,  ◦  Â  ◦ . The claim follows from Step 2.

(d) ∼ is an interval with sup∼ = 1.
Since ∼ = (0 1) \Â, the claim follows from (c).

Recall again the numbers    chosen at the beginning of the proof. Recall also  chosen

above so as to satisfy  = (). There exists  ∈ (0 1) such that  = () = ( ◦ ).
Step 3:  ∈ ∼.
Let ∗ = inf ∼  0. Take any sequence  → ∗ with  ∈ ∼. Since ◦ ∼ ◦,

by the continuity of the scaling operation, ∗ ◦  ∼ ∗ ◦ , that is, ∗ ∈ ∼. If  ≥ ∗,
we have  ∈ ∼ by part (d), as desired. Seeking a contradiction, suppose   ∗. Since
∗()  () =  ∈ ∗(), Lemma 13 implies ∗ ◦  ∈ ∗. By definition of ∗, there
exists  ∈ (0 1) such that  ◦ ∗◦ ∼  ◦ (∗ ◦ ). Since ∗ ◦  ∼ ∗ ◦ , by Step 1,
∗ ◦  ∼ ∗ ◦ . Since ∗  ∗, this contradicts to ∗ = inf ∼.
Step 4: The result.

Since  ◦  ∼  ◦  by Step 3, Assumption 3 and the GDU representation imply that
()()() = (◦)()( ◦ ) =⇒ ()() = (◦)()
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which in turn implies () = (), as desired.

We turn to necessity of Proposition 6. Assume that % admits a GDU representation

where () is strictly increasing up to some threshold and constant thereafter. By Lemma

12, % satisfies Weak Homotheticity. To verify∗-Regularity, take  ∈ ∗, so that ◦ Â
◦ for all  ∈ (0 1). Assumption 3 implies()()  (◦)(). In particular, by Lemma
11, () is strictly increasing for all  ≤ (). Thus, For any   ∈ (0 1), ()() 

()(). Let e and e ∈ (0 1) denote their inverse image under  in Assumption 3, that
is,  =  and  = . Then, the above strict inequality implies (◦)()(e ◦ ) 
(◦)()(ee ◦ ), which means e ◦ ◦ Â e ◦ (e ◦ ). Since e and e vary through
(0 1), e ◦  ∈ ∗, that is, ∗-Regularity (ii) holds. Next, take  6∈ ∗. There exists a
sufficiently small  ∈ (0 1) such that () is below the threshold up to which () is

strictly increasing. Since ()()  ()() for all  ∈ (0 1), we can show e ◦  ∈ ∗

by the same argument as above. That is, ∗-Regularity (i) holds.

E.2 Result: Sufficiency

By Proposition 6, % admits a GDU representation such that () is strictly increasing in

 on ∗() (defined by (13)) and is constant otherwise. By Theorem 2, it suffices to show

that () is homogeneous on ∗():

Lemma 16 For each  ∈ (0 1] there is  s.t. for any  ∈ ∗

()() = ()()

Proof. We first note that for any  ∈  such that  Â 0 and  ∈ (0 1], there exists a
unique () ∈ (0 1] such that () ◦  ∼  ◦ : Since  Â 0, Assumption 3 and Weak
Homotheticity imply  Â  ◦  %  ◦ . Consequently by Lemma 11 and by Continuity
and Monotonicity of GDU, the desired () ∈ (0 1] exists and is unique.
Take any dated reward  ∈ ∗. By definition of ∗, it must be that  Â 0, and by

Monotonicity of the GDU representation,  Â 0. As noted, there exists (
) ∈ (0 1]

such that

(
) ◦  ∼  ◦ 

We make several observations about  :

(i) (
) is independent of  for  Â 0, and so can be written it as 

∗-Homogeneity implies that (
) is independent of  and .

(ii)  is strictly increasing,  = 1 when  = 1, and lim→0  = 0.
Since  ∼  by definition of present equivalents, and since  is defined by  ◦

 ∼  ◦ , it follows trivially that  = 1 when  = 1. Moreover, by Assumption

3 and Monotonicity of GDU,  must be strictly increasing in , since   0 implies
 ◦  ∼  ◦  ≺ 0 ◦  ∼ 0 ◦ . Finally, by the properties of the scaling operation
in Assumption 3,  → 0 implies  ◦  = ( ◦ ) → 0 = 0, and so it must be that

lim→0  = 0.
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(iii)  is continuous in .

By the representation,

( ◦ ) = (( ◦ )) = ( ◦ ) = () = (
)

that is, ( ◦ ) = (). Since  and  are continuous (by Continuity of GDU and

Assumption 3), it follows that  is continuous.

(iv)  satisfies

(◦)() =




()()

We saw above that ( ◦ ) = (). It follows that

( ◦ ) = () ⇐⇒ (◦)()( ◦ ) = ()()()

⇐⇒ 

(◦)()() = ()()() ⇐⇒ (◦)() =





()()

By Lemma 11, for any  ∈ (0 1), there is  s.t. () = ( ◦ ). Defining  =



we

obtain the desired expression.

E.3 Result: Necessity

By Proposition 6, it is enough to check whether ∗-Homogeneity holds. By Theorem 2,

the reduced form of a homogeneous CE representation is given as

() = (0) +
X
≥1

()()()

where

()() =

⎧⎨⎩
³
()



´ 1
−1

if () ≤ 
−1
 

 if ()  
−1
 

Therefore,

∗ = { ∈  | there exists some  ≥ 1 such that 0  () ≤ 
−1
 }

To show ∗-Homogeneity, take any dated reward  ∈ ∗. Then, given Assumption 3,
 ◦  ∼  ◦  if and only if

()()() = (◦)()( ◦ )

⇐⇒ 

µ
()



¶ 1
−1

() =

µ
( ◦ )


¶ 1
−1

( ◦ )

⇐⇒ 

µ
()



¶ 1
−1

() = 


−1


µ
()



¶ 1
−1

()

Thus,  = 


−1
 . Since  is independent of 

, we have established ∗-Homogeneity.
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E.4 Result: Uniqueness

Assume that there exist two homogeneous CE representations. By the assumption of

unbounded range of (),  is automatically maximal. From Theorem 4, we have already

shown that there exists   0 such that 2 = 1 and 
2
 = 1 . In particular, 

1

 = 
2

 = .

Thus, 2
2

= 1
1

for all  ≤ . Note that 
1−2

is constant and equal to
2
1

for all

such , which happens only when 1 = 2. Consequently, 2 = 1 , as desired.
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