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Abstract

The literature on self-control problems has typically put forth models that imply
behavior that is consistent with the weak axiom of revealed preference (WARP).
We argue that when choice is the outcome of some underlying internal conflict, the
resulting choices may not be perfectly consistent across choice problems: an agent’s
ability to resist temptation may well depend on what alternatives are available to
him. We generalize Gul and Pesendorfer [17] so that self-control weakens in the
presence of temptation. To model choices from menus explicitly, we consider a choice
correspondence as well as a preference over menus and relax both the Independence
axiom for the preference and the WARP condition for the choice correspondence. The
model is shown to unify a range of well-known findings in the experimental literature
on choice under risk and over time within a single specification.

1 Introduction

Decision-making under temptation involves a compromise between two potentially conflict-
ing underlying preferences: a normative preference reflecting his perspective on what he
“should” choose, and a temptation preference reflecting his desires. This paper proposes
that a plausible outcome of this internal conflict is that choice behavior may be inconsistent
across choice problems, in the sense of violating the Weak Axiom of Revealed Preference
(WARP). Specifically, we hold that an agent’s ability to resist temptation may well de-
pend on what is available in the menu: self-control may be menu-dependent. For instance,

∗Noor is at the Dept of Economics, Boston University, 270 Bay State Road, Boston MA 02215; Email:
jnoor@bu.edu. Takeoka is at the Faculty of Economics, Yokohama National University, 79-3 Tokiwadai,
Hodogaya-ku, Yokohama 240-8501, Japan; Email: takeoka@ynu.ac.jp. We thank the audiences at Boston,
Keio, Hitotsubashi Universities, Econometric Society Summer Meeting (Minnesota), Canadian Economic
Theory Conference (Toronto), the 2005 JEA Spring Meeting (Tokyo), and Econometric Society World
Congress (Shanghai) for helpful comments. We would like to thank an anonymous referee for his/her
useful comments and suggestions. We also owe a special thanks to Larry Epstein and Bart Lipman for
valuable discussions. The usual disclaimer applies. Takeoka gratefully acknowledges the financial support
by Grant-in-Aid for Young Scientists (B).

1



the extent to which an agent deviates from his diet may depend on the strength of his
sugar craving, and the strength of this craving may in turn depend on what desserts are
available on the menu. Clearly, when self-control is menu-dependent, the agent’s choices
may not satisfy WARP. The dieter may resist temptation and choose to have no dessert
from the menu {no dessert, small piece}, but the presence of a large piece of cake in {no
dessert, small piece, large piece} may trigger a strong sugar craving, which he responds to
by choosing the small piece, the compromise between his strong craving and his normative
preference.

Examples suggestive of temptation-driven violations of WARP are available in the ex-
perimental literature on social preferences (List [26], Bardsley [5]). Consider the following
experiment involving the dictator game [26]. ‘Dictators’ and ‘recipients’ were given an
endowment ($10,$5), where $10 denotes the dictator’s endowment and $5 the recipient’s.
Each dictator was given the option of sharing any part of $5 from his endowment with a
recipient, that is, they were offered the menu:

x1 = {(10− x, 5 + x) : 0 ≤ x ≤ 5}.

The mean offer among dictators was $1. However, when given also the option of taking
exactly $1 from the recipients,

x2 = x1 ∪ {(11, 4)},

few dictators took the new option but the rate of giving substantially declined, and the
mean offer fell to $0. In the context of social preferences, it is natural to hypothesize
a normative desire to share but a temptation to be selfish. The above finding suggests
that greater temptation may cause choice to become more closely aligned with temptation
preferences.

WARP (or a probabilistic version of it) is a peculiar feature of most models put forth in
the literature on temptation since the seminal work of Gul and Pesendorfer [17] (henceforth
GP). In this paper we introduce a generalization of GP that permits violations of WARP.
GP’s model takes the form of a representation for an ex ante preference over menus that
describes behavior in the anticipation of (and prior to the experience of) temptation. Foun-
dations for any assertion about the nature of ex post choice in these models are absent: ex
post choice in these models is derived as an interpretation of a functional form. While this
is common for the literature, it is problematic for this paper since our emphasis is explicitly
on the nature of ex post choice.1 Therefore our analysis considers an ex ante preference
≿ over menus (the set Z of nonempty compact subsets of a mixture space ∆) as in the
literature, but also a choice correspondence C : Z ⇝ ∆ that captures ex post choice from
menus.

1There are several papers in the literature that provide axiomatizations taking as primitives both an ex
ante preference over menus and an ex post choice correspondence. The earliest ones are: Gul and Pesendor-
fer [19], who study the Strotz model, and Noor [31] and Kopylov [24] who study models that generalize GP.
In contrast to the current paper, these papers explicitly assume that the choice correspondence satisfies
WARP.
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We seek behavioral conditions on (≿, C) that admit the following representation: the
ex ante preference ≿ is represented by a Menu-Dependent Self-Control (MDSC) represen-
tation, defined as

W (x) = max
µ∈x

{
u(µ)− ψ

(
max
η∈x

v(η)
)(

max
η∈x

v(η)− v(µ)

)}
, x ∈ Z,

where ψ(·) ≥ 0 is increasing. The non-negative term (maxη∈x v(η)− v(µ)) is the self-control
cost of choosing µ from x: this is strictly positive whenever the choice µ is different from the
most tempting item in x. The function ψ(·) bumps up or down the self-control costs from
menu to menu, as the size of the temptation varies. Thus the utilityW (x) of a menu x is the
maximum of normative utility net of self-control costs, and this value function represents
≿. When ψ(·) is a constant, the model reduces to GP’s model. As will be evident below,
ψ(·) parametrizes the agent’s self-control, or lack of it thereof, at the moment of choice.

The choice correspondence implied by the MDSC representation is described as:

C[u, v, ψ](x) = argmax
µ∈x

{
u(µ)− ψ

(
max
η∈x

v(η)
)(

max
η∈x

v(η)− v(µ)

)}
= argmax

µ∈x

{
u(µ) + ψ

(
max
η∈x

v(η)
)
v(µ)

}
. (1)

Menu-dependence obtains through ψ(·), specifically via the degree of temptation in the
menu, given by ‘maxx v’, which gives rise to the feature that self-control may weaken in
the presence of temptation, which in turn can give rise to violations of WARP.

We say that a preference over menus and choice from menus pair (≿, C) is rationalized
by the MDSC model if ≿ admits a MDSC representation (u, v, ψ) and C coincides with
the choice correspondence induced by the MDSC representation, that is, C = C[u, v, ψ].
Our axiomatization is obtained by relaxing both the Independence axiom for the ex ante
preference and the WARP condition for the ex post choice.

We explore implications of the model for ex post choice C. As an application we use
the model to unify disparate evidence from experiments on choice under risk and over time
within a single specification. We assume that in the case of static choice under risk, the
temptation utility v is more risk averse than the normative utility u. Furthermore, in the
case of choice over time, both utilities are assumed to be additively separable over time
but the temptation utility exhibits greater impatience than the normative utility. A similar
application has been done by Fudenberg-Levine [15, 16], Noor-Takeoka [32] and Takeoka
[36] for the Convex Self-Control model, which is a model that exhibits convex costs of
self-control. We note that the MDSC model can accommodate more experimental findings
that the Convex model cannot.

The remainder of the paper is organized as follows. Section 2 describes GP’s model and
identifies conditions that lead to the existence of vNM temptation preferences. Section 3
presents our model – it provides axioms and representation theorems. Section 4 discusses
related research on convex self-control models. Section 5 demonstrates how the ex post
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choice generated by the model can accommodate various findings (from experiments on
choice under risk and over time) within a single specification. All proofs are relegated to
appendices.

2 Preliminaries

2.1 Domain

For any compact metric space X, ∆(X) denotes the set of all probability measures on
the Borel σ-algebra of X, endowed with the weak convergence topology; ∆(X) is compact
and metrizable [2], and we often write it simply as ∆. Let Z = K(∆) denote the set of
all nonempty compact subsets of ∆. When endowed with the Hausdorff topology, Z is a
compact metric space (see Theorems 3.93 and 3.95 of [2]). An element x ∈ Z is referred to
as a menu. Generic elements of Z are x, y, z whereas generic elements of ∆ are µ, η, ν. For
α ∈ [0, 1], αµ+ (1−α)η ∈ ∆ is the α-mixture that assigns αµ(A) + (1−α)η(A) to each A
in the Borel σ−algebra of X. Similarly, αx+(1−α)y ≡ {αµ+(1−α)η : µ ∈ x, η ∈ y} ∈ Z
is an α-mixture of menus x and y.2

We will consider a preference defined over Z, and subsequently a choice correspondence
over Z as well.

2.2 GP Model

GP model an agent who struggles with temptation when choosing from a menu, and foresees
this in an ex-ante stage where he selects a menu. This ex ante preference ≿ over Z is the
primitive of the model (ex-post choice is unmodelled). GP adopt the following axioms.

Axiom 1 (Order) ≿ is complete and transitive.

Axiom 2 (Continuity) The sets {y ∈ Z : y ≿ x} and {y ∈ Z : x ≿ y} are closed for
each x ∈ Z.

Axiom 3 (Set-Betweenness) For all x, y ∈ Z,

x ≿ y =⇒ x ≿ x ∪ y ≿ y.

Order and Continuity are standard. The anticipation of a struggle with temptation is
reflected in Set-Betweenness. A preference for commitment,

x ≻ x ∪ y,

reveals temptation by some alternative in y. Anticipated behavior is revealed as follows.
Suppose {µ} ≻ {η}. When {µ, η} ∼ {η} holds, the indifference suggests that the agent

2In the appendices, we often use the notation µαη and xαy instead of αµ+ (1−α)η and αx+ (1−α)y
for abbreviation.
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would choose the same item when faced with {µ, η} or {η}. The ranking {µ, η} ≻ {η}
suggests that µ is chosen from {µ, η}. Observe that if {µ} ≻ {µ, η}, that is, if η is
tempting, then the preceding rankings reveal whether the agent anticipates successfully
exerting self-control.

GP’s fourth and last axiom is the standard vNM Independence condition adapted to
the menus setting:

Axiom (Independence) For any x, y, z ∈ Z and α ∈ (0, 1),

x ≻ y =⇒ αx+ (1− α)z ≻ αy + (1− α)z.

GP prove the following representation theorem.

Theorem 1 (Gul-Pesendorfer (2001)) A preference ≿ satisfies Order, Continuity, Set-
Betweenness, and Independence if and only if there exist continuous and linear utilities
u, v : ∆ → R such that ≿ is represented by a function W : Z → R defined by:

W (x) = max
µ∈x

{
u(µ)−

(
max
η∈x

v(η)− v(µ)

)}
, x ∈ Z.

2.3 Derivation of Temptation Utilities

Independence clearly plays the key role in guaranteeing that temptation preferences are
represented by vNM utility in the GP model, but it is also clear that the full force of In-
dependence is not required for this. Because of its relevance for generalizations of the GP
model, it is of interest to inquire into minimalistic conditions that guarantee a vNM temp-
tation preference. In this subsection, we present these below. The result in this subsection
will be one important component of the proof of our main theorem.

In order to obtain vNM temptation preference we impose the following Independence-
type conditions.

Axiom 4 (Commitment Independence) For all µ, η, ν ∈ ∆ and α ∈ (0, 1),

{µ} ≻ {η} =⇒ {αµ+ (1− α)ν} ≻ {αη + (1− α)ν}.

This is the vNM Independence axiom imposed on commitment preference. Given Order
and Continuity, the existence of a vNM representation for commitment preference is thus
guaranteed.

Axiom 5 (Temptation Independence) For any µ, η, ν and α ∈ (0, 1) s.t. {µ} ≻ {η},

{µ} ≻ {µ, η} ⇐⇒ {αµ+ (1− α)ν} ≻ {αµ+ (1− α)ν, αη + (1− α)ν}.
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The axiom states that if η tempts µ then αη + (1− α)ν tempts αµ+ (1− α)ν as well.
This is clearly consistent with the existence of a vNM temptation preferences. However,
while Order imposes completeness and transitivity on commitment preferences, none of our
axioms impose these basic properties on temptation preferences. Neither does the following
(at least not on its own), but it ensures that temptation preferences are minimally consistent
with a vNM structure.

Axiom 6 (Temptation Convexity) For any µ, η, η′ and α ∈ (0, 1) s.t. {µ} ≻ {η}, {η′},

{µ} ≻ {µ, η} and {µ} ≻ {µ, η′} =⇒ {µ} ≻ {µ, αη + (1− α)η′}
{µ} ∼ {µ, η} and {µ} ∼ {µ, η′} =⇒ {µ} ∼ {µ, αη + (1− α)η′}.

The axiom says simply that a mixture of two tempting items is tempting, and a mixture
of two non-tempting items is non-tempting as well.

To derive a vNM temptation utility, we do not need the full force of the Continuity and
Set Betweenness axioms. The following are weaker versions of them.

Axiom (Semi-Continuity) The following sets are closed for each x ∈ Z:

{y ∈ Z : y ≿ x} and {{η} ∈ Z : x ≿ {η}}.

The first claim states that upper contour sets are closed, while the second states that the
set of singletons in the lower contour set of a menu is closed. Note that Semi-Continuity
implies that commitment preference must be continuous in the sense that the sets {η :
{η} ≿ {µ}} and {η : {µ} ≿ {η}} are closed for each µ ∈ ∆. The next axiom is a restriction
of Set-Betweenness to singleton menus.

Axiom (Binary Set-Betweenness) For all µ, η ∈ ∆,

{µ} ≿ {η} =⇒ {µ} ≿ {µ, η} ≿ {η}.

Binary Set-Betweenness does not restrict the nature of menu-dependence of self-control
in any way. Self-control is not relevant for singleton menu, and although it may be relevant
for binary menus, the comparison of a binary menu with a singleton menu speaks nothing
of the nature of menu-dependence of self-control.

We can now state:

Theorem 2 Suppose that ≿ satisfies Order, Semi-Continuity, Binary Set-Betweenness and
Commitment Independence. Then the following statements are equivalent:

(i) ≿ satisfies Temptation Independence and Temptation Convexity.
(ii) There exists a continuous linear function v : ∆ → R such that if {µ} ≻ {η} then

{µ} ≻ {µ, η} ⇐⇒ v(η) > v(µ). (2)

Moreover, if there exists µ, η s.t. {µ} ≻ {µ, η} and if there are two such v, v′, then v′

is a positive affine transformation of v.
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The result identifies the extent to which the Independence axiom is responsible for
the existence of a vNM temptation preference. It tells us that Independence-type restric-
tions that go over and above Temptation Independence and Temptation Convexity require
justification in terms of features other than linearity of temptation preference.

The proof of this result is inspired by the literature on vNM extensions of preorders
(Aumann [4], Fishburn [14], Dubra et al [11]). In this literature, conditions on a preorder
(reflexive and transitive binary relation) are sought such that there exists a compatible
extension that admits a vNM representation. In our setting, the preference ≿ defines a set
T of (not necessarily complete or transitive) temptation preferences over ∆ by the condition
that each T ∈ T satisfies:

{η} ≻ {η, µ} =⇒ µTη and ¬ηTµ
{µ} ∼ {µ, η} ≻ {η} =⇒ µTη.

Our theorem identifies conditions that guarantee the existence of a temptation preference
in T that admits a continuous vNM representation. As in the literature, the proof identi-
fies such a preference in the form of a hyperplane that supports an appropriately defined
closed convex cone at the origin. Because our axioms do not guarantee transitivity we
cannot simply invoke results from the literature. Nevertheless similar mathematical tools
(in particular see Dubra et al [11]) are applicable in our setting.

Other related literature includes Abe [1] and Chatterjee and Krishna [7]. Abe [1] also
uses an extension of vNM preorders to obtain a vNM temptation preference with assuming
the Independence axiom as in GP.3 In contrast, due to the demands placed by our objec-
tives, our proof relies on considerably less structure on preference. We exactly identify the
weakest set of axioms that ensures a unique vNM temptation preference.

Chatterjee and Krishna [7, Lemma 4.0.4] derive a vNM temptation preference using
a different approach. They define a temptation relation and verify that it satisfies the
vNM axioms. Their proof is constructive but also more involved.4 They also maintain the
Independence axiom, though it is evident from their proof that they do not require the
full force of the axiom: their proof utilizes a ‘Translation Invariance’ condition and the
counterpart of our Temptation Convexity axiom.

3 Menu-Dependent Self-Control

3.1 The Model

We consider an ex ante preference ≿ over menus like GP, but also a choice correspondence
that captures ex post choice from menus.

3We learned of his paper while writing ours, but the ideas were conceived independently, as is reflected
in the different proof strategies.

4A part of their proof makes use of a separating hyperplane argument to show that the temptation
preference they define is complete and transitive. However, they do not derive a temptation preference in
the form of a separating hyperplane.
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Definition 1 C : Z ⇝ ∆ is a choice correspondence if it is upper hemicontinuous, non-
empty and closed-valued and satisfies C(x) ⊂ x for all x ∈ Z.

The primitive of our model is a pair (≿, C) of an ex ante preference and a choice
correspondence.

In this section we present a model that expresses our theory of menu-dependent self-
control, namely that self-control weakens in the presence of temptation.

Definition 2 (Menu-dependent self-control preference) A preference ≿ is said to be
a menu-dependent self-control (MDSC) preference if it admits a representation W : Z → R
for ≿ defined by:

W (x) = max
µ∈x

{
u(µ)− ψ

(
max
η∈x

v(η)
)(

max
η∈x

v(η)− v(µ)

)}
, (3)

for continuous linear functions u, v : ∆ → R and some continuous and weakly increasing
function ψ : v(∆) → R+ such that ψ(l) > 0 for all l > min v(∆).

Given a MDSC representation (u, v, ψ), we can define the induced choice correspondence
by

C[u, v, ψ](x) = argmax
µ∈x

{
u(µ) + ψ

(
max
η∈x

v(η)
)
v(µ)

}
,

for all x ∈ Z. Note that this choice correspondence exhibits context effects through varying
temptation intensity maxx v. That is, this model is consistent with the hypothesis that self-
control weakens in the presence of temptation and can capture menu-dependent self-control.

The following definition requires that the ex ante preference admits a MDSC repre-
sentation and the choice correspondence coincides with the choice induced by the MDSC
representation.

Definition 3 (Rationalization) A pair of an ex ante preference and a choice correspon-
dence (≿, C) is said to be rationalized by a MDSC model if ≿ admits a MDSC representation
(u, v, ψ) of the form (3) and C = C[u, v, ψ].

Since C[u, v, ψ] is derived from the ex ante preference, it captures the agent’s expectation
about the ex post choice, while the choice correspondence C is the agent’s actual choice at
the ex post stage. Thus, Definition 3 requires that the agent is sophisticated in the sense
that he correctly anticipates his future behavior.

3.2 Axioms for the MDSC Representation

We first introduce the axioms for the MDSC representation. As preliminaries, we define
two notions as below: For all µ, η ∈ ∆, say that η weakly tempts µ, denoted by

η ≿T µ,
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if and only if either {µ} ≻ {µ, η} or {η} ∼ {µ, η} ≻ {µ} or µ = η holds.
For all menus x ∈ Z, define its singleton equivalent ex ∈ ∆ by 5

x ∼ {ex}.

In particular, when x = {µ, η}, its singleton equivalent is denoted by eµη.
The following axiom is introduced by Noor and Takeoka [32] and is arguably uncon-

tentious.

Axiom 7 (Temptation Aversion) If {µ} ≻ {µ, η} ≻ {η} for some µ, η, then for any ν,

ν ≾T η =⇒ {µ, ν} ≿ {µ, η}.

Suppose that the menu {µ, η} is such that η is tempting but resisted. The axiom makes
the simple and intuitive claim that if η is replaced with something less tempting, then
the menu becomes more attractive. This is intuitive particularly considering that we are
modelling an agent whose self-control improves in the presence of lower temptation.

Now we seek a weaker version of Independence which is consistent with menu-dependent
self-control. For all x, y ∈ Z, if ≿ satisfies the Independence axiom, we will have

αx+ (1− α)y ∼ α{ex}+ (1− α){ey}. (4)

However, under the hypothesis that self-control weakens in the presence of temptation,
this ranking may not hold. When {αex + (1 − α)ey} is given to the agent, he makes a
commitment to this lottery, and does not have to exert self-control. On the other hand,
when αx+ (1−α)y is given, he may exercise self-control at this menu, and hence concerns
about the most tempting option in it. The level of temptation in the menu may well depend
on how the two menus are mixed.

The above intuition also suggests that the implication of Independence given as (4)
will hold if two menus x and y contain the same most tempting alternative, in which case
mixing does not change the level of maximal temptation. The following axiom is motivated
by such an intuition.

Axiom 8 (Linear Self-Control) For any µ, ν, η ∈ ∆ and α ∈ (0, 1), if η ≿T µ, ν then

α{µ, η}+ (1− α){ν, η} ∼ α{eµη}+ (1− α){eνη}.

By assumption, the two menus {µ, η} and {ν, η} have the same most-tempting alterna-
tive, η. The axiom imposes the implication of Independence only on these menus.

The last axiom is also motivated by our hypothesis that self-control weakens in the
presence of temptation. Suppose that for some x ∈ Z, ν, ν̄ ∈ ∆, and α ∈ (0, 1),

αx+ (1− α){ν} ∼ α{ν}+ (1− α){ν}.
5Under Continuity and Set Betweenness, a singleton equivalent exists for all menus x ∈ Z.
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If ≿ satisfies Independence, this indifference still holds after replacing ν with any other
lottery ν ′. However, the intensity of temptation from ν ′ may affect self-control at αx+(1−
α)ν ′, while there is no such effect under commitment. Thus, we may have αx+(1−α){ν ′} ̸∼
α{ν}+ (1− α){ν ′} as below:

Axiom 9 (Decreasing Self-Control) For any µ, η, ν, ν̄ ∈ ∆ and α ∈ (0, 1), if α{µ, η}+
(1− α){ν} ∼ α{ν}+ (1− α){ν}, then,

ν ≿T ν
′ =⇒ α{µ, η}+ (1− α){ν ′} ≿ α{ν}+ (1− α){ν ′},

ν ≾T ν
′ =⇒ α{µ, η}+ (1− α){ν ′} ≾ α{ν}+ (1− α){ν ′}.

The interesting case is where {µ} ≻ {µ, η}. Then Linear Self-Control (with ν = η) tells
us the hypothesis of Decreasing Self-Control is satisfied with

α{µ, η}+ (1− α){η} ∼ α{eµη}+ (1− α){η}. (5)

This ranking suggests that the agent is indifferent between exercising self-control at the
menu α{µ, η} + (1 − α){η} and making a commitment to αeµη + (1 − α)η. Suppose η is
replaced with a less tempting alternative ν. This will reduce temptation on α{µ, η}+ (1−
α){ν}, and hence the agent’s self-control is enhanced with the reduction of temptation,
while there is no such effect on the agent, who has already made a commitment. Thus, the
agent will exhibit the ranking stated as in Axiom 9. On the other hand, if η is replaced
with a more tempting alternative ν, this will increase temptation on α{µ, η}+ (1−α){ν},
while there is no such effect on the agent making a commitment. Thus, the agent will
exhibit the reversed ranking stated as in Axiom 9.

Now we are ready to state a representation theorem for the ex ante preference.

Theorem 3 A preference ≿ satisfies Axioms 1-9 if and only if it is a MDSC preference.

An outline of the proof is presented in section 4.1, while a formal proof is given in
Appendix B.

The next corollary is an axiomatization of the GP model as a special case of our MDSC
representation. Obviously, if ψ is a constant function, the model is reduced to the GP
model.

Corollary 1 A MDSC preference ≿ admits a MDSC representation with a constant func-
tion ψ : v(∆) → R++ if and only if for all µ, η, ν and α ∈ (0, 1),

{µ} ≻ {µ, η} =⇒ α{µ, η}+ (1− α){ν} ∼ α{eµη}+ (1− α){ν}.

The result reveals the various implications of assuming that a preference satisfying Or-
der, Continuity and Set-Betweenness also satisfies Independence, thereby highlighting what
is bought with Independence and how precisely it interacts with preferences to characterize
the model.
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Finally, consider the uniqueness properties of the MDSC representation. Given a rep-
resentation (u, v, ψ), the self-control subdomain is defined as follows:

L = {l ∈ R+ | l = v(η) for some µ, η s.t. {µ} ≻ {µ, η} ≻ {η}}.

This is the set of all values of v(η) for which {µ} ≻ {µ, η} ≻ {η} holds for some µ. Observe
that if v(η) /∈ L, then for any µ such that {µ} ≻ {η}, it must be that either there is no
temptation in {µ, η} or there is overwhelming temptation. In either case, the precise shape
of ψ is immaterial for the description of choice behavior; for instance it could be increased
without affecting behavior. Thus, the precise shape of ψ is meaningful only on L. Notice
also that L is an interval with inf L = min∆ v.

6 Say that preference ≿ is nondegenerate if
there exists µ, η such that {µ} ≻ {µ, η} ≻ {η}.

Theorem 4 Suppose that (u, v, ψ) and (u′, v′, ψ′) are both representations of a nondegen-
erate MDSC preference. Then there exist constants αu, αv > 0 and βu, βv ∈ R such that

u′ = αuu+ βu, v
′ = αvv + βv.

Moreover, if L and L′ are the self-control subdomains associated with the two representa-
tions, then

L′ = αvL+ βv, and ψ′(αvl + βv) =
αu

αv

ψ(l) for all l ∈ L.

Note that αvL+ βv is standard notation for the set {αvl+ βv | l ∈ L}. See Appendix D
for the proof. A corollary of the uniqueness result is that if the functions W ′,W : Z → R
represent the same nondegenerate MDSC preference, then there exist constants αu > 0 and
βu such that for all x,

W ′(x) = αuW (x) + βu.

That is, MDSC utility functions are unique up to an affine transformation.

3.3 Rationalization of the MDSC Model

We turn to the rationalization for (≿, C). The purpose is threefold. First, like Gul and
Pesendorfer [19], Noor [31] and Kopylov [24], we seek to identify behavioral conditions that
reveal that the agent is sophisticated, in that his ex post choice behavior is correctly antic-
ipated ex ante. Second, unlike these papers, our agent violates WARP, and consequently

6To see this, take any l ∈ L. By definition, there exists µ, η such that l = v(η) and {µ} ≻ {µ, η} ≻ {η}.
Moreover, let ν be a minimal lottery with respect to v. By the representation, for all α ∈ (0, 1),

u(µ)− ψ(v(η))(v(η)− v(µ)) > u(η)

⇒ u(αµ+ (1− α)ν)− ψ(v(η))(v(αη + (1− α)ν)− v(αµ+ (1− α)ν)) > u(αη + (1− α)ν)

⇒ u(αµ+ (1− α)ν)− ψ(v(αη + (1− α)ν))(v(αη + (1− α)ν)− v(αµ+ (1− α)ν)) > u(αη + (1− α)ν),

which implies that {αµ+(1−α)ν} ≻ {αµ+(1−α)ν, αη+(1−α)ν} ≻ {αη+(1−α)ν} and αl+(1−α)min∆ v ∈
L.
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we are interested in studying the properties of ex post choice implied by the MDSC model.
Lastly, these properties will serve as a means of testing a possible hypothesis that we pro-
vide in Section 5. There, we show that the findings of several experiments can be generated
by the choice correspondence induced by the MDSC model:

C[u, v, ϕ](x) = argmax
µ∈x

{
u(µ) + ψ

(
max
η∈x

v(η)
)
v(µ)

}
(6)

However, the choice correspondence (6) can arise from other models as well. Consequently
in order for future research to test whether the experimental evidence is indeed arising due
to temptation as our model suggests, the testable implications of the MDSC model on the
joint primitive (≿, C) is needed. This is precisely what our rationalization for (≿, C) yields.

Note first that WARP requires the following consistency condition for a choice corre-
spondence: for all x, y ∈ Z and µ, η ∈ x ∩ y,

µ ∈ C(x) and η ∈ C(y) =⇒ µ ∈ C(y).

As stated in the Introduction, WARP may not be satisfied when choices are made under
temptation. Recall the example. Denote n =no dessert, s =small piece of cake, and
l =large piece of cake. Then, the WARP violation driven by temptation is illustrated as

C({n, s}) = {n}, and C({n, s, l}) = {s}.

Although the choice under temptation may violate WARP, it may still satisfy some
consistency condition. Note that the above violation of WARP arises only because tempta-
tion levels change between two menus. It is therefore intuitive to hypothesize that WARP
will hold if two menus have the same level of temptation. Though not obvious at first, this
motivates the next axiom which requires WARP only for pairs of menus that are indifferent
in the ex ante preference.

Axiom E1 (Weak WARP) For all x, y ∈ Z with x ∼ y and µ, η ∈ x ∩ y,

µ ∈ C(x) and η ∈ C(y) =⇒ µ ∈ C(y).

Given the hypothesis, x ∼ y implies that choosing µ in x is just as good as choosing
η in y, from the ex ante perspective. Since µ is (weakly) chosen over η in x, it follows
that choosing η in x is (weakly) worse than choosing η in y, which is only possible if the
temptation in x is (weakly) greater. On the other hand, since η is (weakly) chosen over µ
in y then it follows that choosing µ in y is (weakly) worse than choosing µ in x, which is
only possible if the temptation in y is (weakly) greater. Therefore, we can conclude that
given the hypothesis, x and y have the same level of temptation, and so WARP should
hold between these menus.

Axiom E2 (ex post Decreasing Self-Control) If {µ} ≻ {µ, η} then

µ ∈ C({µ, η}) =⇒ C({µ, αµ+ (1− α)η}) = {µ} for all α ∈ (0, 1).

12



This restriction says that if the agent normatively prefers µ over η but is tempted by
the latter, then his self-control can only increase if η is replaced by something less tempting
(for instance, αµ + (1 − α)η as in the axiom). Thus, if he can pick µ from {µ, η} – albeit
not uniquely if he is on the margin between exerting self-control or not – then he can
pick µ uniquely in {µ, αµ + (1 − α)η}. The idea that a reduction in temptation increases
self-control is the heart of the MDSC model, and the restriction is its expression in ex post
choice.

Our final axiom expresses the agent’s sophistication: the choice from a menu he antici-
pates ex ante is the one he makes ex post. The axiom requires a way to express that one
menu contains more temptation that another. When {µ} ̸∼ {η}, then we can directly infer
if µ tempts η or the converse. However, if {µ} ∼ {η} then the only way to infer which
is more tempting is to see whether rewards in the neighborhood of µ tempt those in the
neighborhood of η, or conversely. Indeed, we can infer that η is temptation-ranked weakly
higher than µ if there exists a sequence (µn, ηn) → (µ, η) s.t. ηn ≿T µn for all n. Say
that a menu x temptation-dominates a lottery µ if there is η ∈ x that is revealed to be
temptation-ranked weakly higher than µ in this way.

Axiom E3 (Sophistication) For any x and µ,

x ∪ {µ} ≻ x =⇒ C(x ∪ {µ}) = {µ}.

Moreover, the converse holds if x temptation-dominates µ.

If adding µ to x makes the menu strictly more attractive then it should be because µ is
chosen in the new menu – otherwise µ would only potentially add to temptation thereby
making the menu weakly less attractive. The restriction requires that choice behavior
respect this suggested implication of the ranking of menus. For the converse, if µ is uniquely
chosen from x ∪ {µ} then in general it is not obvious that x ∪ {µ} ≻ x, because µ could
be a unique overwhelmingly tempting alternative in x ∪ {µ} in which case we could have
x ∪ {µ} ̸≻ x. However, when x temptation-dominates µ, then we can be sure that µ is
not a unique overwhelmingly tempting alternative, and the only possibility that remains is
x ∪ {µ} ≻ x.

Say that ≿ is nondegenerate∗ if there exists µ∗, η∗, µ′, η′ s.t. {µ∗} ≻ {µ∗, η∗} ≻ {η∗}
and {µ′} ∼ {µ′, η′} ≻ {η′}.

Theorem 5 Suppose that ≿ is a nondegenerate∗ preference satisfying the axioms of the
MDSC representation. Then the following statements are equivalent:

(a) The pair (≿, C) satisfies Weak WARP, ex post Decreasing Self-Control, and Sophis-
tication.

(b) The pair (≿, C) is rationalized by the MDSC model.

The theorem specifies that the three axioms of this section are the key joint implications
of the MDSC model for ex ante preference ≿ and ex post choice C. In other words, the
only observable implications of sophisticated behavior are these three axioms in the MDSC
model.
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4 Proof Outline and Related Literature

4.1 Proof Outline for Theorem 3

The MDSC representation is constructed as follows. First of all, Theorem 2 ensures that
there exist continuous mixture linear functions u, v : ∆ → R, where u represents the
commitment ranking of ≿, and v satisfies

{µ} ≻ {µ, η} ⇒ v(η) > v(µ), and {η} ∼ {µ, η} ≻ {µ} ⇒ v(η) ≥ v(µ).

Since u is continuous on ∆, there exists a maximal and a minimal lottery µ∆, µ∆ ∈ ∆
with respect to u. Given Continuity and Set Betweenness, we can show that for each x ∈ Z
it must be that {µ∆} ≿ x ≿ {µ∆} and there exists a unique number α(x) ∈ [0, 1] such that
x ∼ {α(x)µ∆ + (1− α(x))µ∆}. Thus,

W (x) ≡ u(α(x)µ∆ + (1− α(x))µ∆)

is a representation of ≿ such that W ({µ}) = u(µ) for all µ ∈ ∆.
The next question is how to define ψ : v(∆) → R+ and show that W has the desired

form. As a first step, we define the self-control cost function. Take any lotteries µ, η with
{µ} ≻ {µ, η} ≻ {η}. This ranking suggests that self-control is exerted in {µ, η}. Thus, the
difference u(µ)−W ({µ, η}) should express the self-control cost when the absolute level of
temptation is l = v(η) and the temptation frustration is w = v(η)− v(µ). Thus, define the
self-control cost function φ(l, w) as

φ(v(η), v(η)− v(µ)) = u(µ)−W ({µ, η}).

To show that this definition is indeed well-defined, we need to show that for any other µ′, η′

with {µ′} ≻ {µ′, η′} ≻ {η′},

v(η) = v(η′) and v(µ) = v(µ′) =⇒ u(µ)−W ({µ, η}) = u(µ′)−W ({µ′, η′}).7 (7)

This key result comes from the following observations. Intuitively, Decreasing Self-
Control implies that if v(ν) = v(ν ′) then

α{µ, η}+ (1− α){ν} ∼ α{ν}+ (1− α){ν}
⇐⇒ α{µ, η}+ (1− α){ν ′} ∼ α{ν}+ (1− α){ν ′}. (8)

That is, the ranking of {µ, η} and {ν} when mixed with a common singleton {ν} is un-
changed when the singleton is replaced with one containing an equally tempting lottery.
This reflects a ‘translation invariance’ property that states that if a common ‘translation’
is applied to the elements of both the menus {µ, η} and {ν}, then the ranking of the menus

7By Continuity and the fact that the set of all lotteries with finite supports is dense in ∆ under the weak
convergence topology, we can assume also that µ, µ′, η, η′ have finite supports, and hence can be viewed as
vectors in a finite dimensional space Rn.
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is unaffected. More formally, a translation is a vector θ ∈ Rn such that
∑n

i=1 θ(i) = 0.
We say that a translation θ is admissible for a menu x if µ + θ ∈ ∆ for all µ ∈ x. The
counterpart of (8) for the representation is the following “translation linearity” property:
if θ is admissible for {µ, η}, then 8

v(θ) = 0 =⇒ W ({µ+ θ, η + θ}) = W ({µ, η}) + u(θ). (9)

This is used to show (7). So suppose v(η) = v(η′) and v(µ) = v(µ′). To consider
the simplest case, assume that the translation θ ≡ µ′ − µ is admissible for {µ, η}.9 Note
that v(θ) = 0. By (9), {µ} ≻ {µ, η} ≻ {η} implies {µ + θ} ≻ {µ + θ, η + θ} ≻ {η + θ},
that is, {µ′} ≻ {µ′, η + θ} ≻ {η + θ}. Since v(η′) = v(η + θ) by assumption, we have
W ({µ′, η′}) = W ({µ′, η + θ}). Again, by (9),

W ({µ′, η′}) = W ({µ′, η + θ}) = W ({µ, η}) + u(θ) = W ({µ, η}) + u(µ′)− u(µ),

as desired.
The next step is to show that φ(l, w) is homogeneous of degree one with respect to

w. This property comes from Linear Self-Control. Take any µ, η with {µ} ≻ {µ, η} ≻
{η}. Let l = v(η) and w = v(η) − v(µ). By Linear Self-Control, for all α ∈ (0, 1),
α{µ, η}+ (1− α){η} ∼ α{eµη}+ (1− α){η}. By definition of φ,

u(αµ+ (1− α)η)− φ(l, αw) = α(u(µ)− φ(l, w)) + (1− α)u(η).

Thus, φ(l, αw) = αφ(l, w). From this property, for a fixed w and for all w < w,

φ(l, w) = φ(l,
w

w
w) =

w

w
φ(l, w).

That is, on the self-control subdomain L, ψ can be defined as

ψ(l) ≡ φ(l, w)

w
.

By using (u, v, ψ) defined as above, we first show that the desired representation is
possible for binary menus. In this step, ψ is extended appropriately to the whole domain
v(∆) in an increasing way. The remaining argument is more or less the same as in Gul and
Pesendorfer [17]. Since ≿ satisfies Set Betweenness, the representation can be extended to
the set of all finite menus. Finally, by Continuity and a property of the Hausdorff metric,
the representation can be extended to Z as desired.

8Let u(θ) and v(θ) denote
∑

i u(ci)θ(i) and
∑

i v(ci)θ(i), respectively.
9In general, θ ≡ µ′−µ is not necessarily admissible for {µ, η}. Then, we need more elaborated arguments.

See Lemma 17 in Appendix B for details.
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4.2 Related Axiomatic Literature and the Convex Model

There are several related studies that investigate generalizations of the temptation model
by relaxing the Independence axiom. In Noor and Takeoka [32] we relax Independence
in order to study non-linear self-control costs - the paper will be discussed below. Ep-
stein and Kopylov [12] provide a theory of “cold feet” using a GP-style model of agents
who are tempted, post-choice, to change beliefs over a state space. Their model violates
Independence. However, their’s is not a generalization of GP [17] because their choice
domain is specialized to the set of menus of Anscombe-Aumann acts. Two models in a
discrete settings (where Independence has no meaning) that allow for WARP violations are
Dillenberger and Sadowski [10] and Masatlioglu, Nakajima, and Ozdenoren [28].

In Noor and Takeoka [32] we show that a preference ≿ over Z that satisfies Axioms 1-7
admits a General Self-Control representation,

W (x) = max
µ∈x

{
u(µ)− c(µ,max

η∈x
v(η))

}
, (10)

which generalizes GP so as to retain its basic features while expunging linearity and im-
posing minimal structure on the nature of the cost of self-control, captured by the cost
function c : ∆× v(∆) → R+.

There are three main differences between Noor and Takeoka [32] and the present paper.
First, Noor and Takeoka [32] consider only the ex ante preference ≿ on Z and the ex
post choice is unmodeled, while the choice correspondence is also considered as a primitive
in the present paper, whereby we can identify the testable implication of the ex post
choice and to what extent WARP can be relaxed. Second, the representation theorem
for the General Self-Control representation relies in a fundamental way on the key result
obtained in Theorem 2 of this paper, that is, the existence of a vNM temptation utility.
Third, the proof of Theorem 3 does not start with the general representation (10) and
impose additional axioms in order to specialize the self-control costs into the desired form.
Rather, we use a different construction altogether, which achieves a separation between the
“temptation frustration” (that is, maxx v−v(µ)) and the menu-dependent effect ψ(maxx v).

Noor and Takeoka [32] axiomatize also a special class of representation, called the
Convex Self-Control model, where c(µ,maxx v) is specialized as

φ(max
x

v − v(µ)) (11)

for some increasing convex function φ. As can be seen from the corresponding axioma-
tizations in terms of ex ante preference over menus, the Convex and MDSC models are
not nested within each other. The properties of ex post choice in the Convex model have
not been studied, but one clear difference is that the MDSC model satisfies the follow-
ing ”indifference to randomization” property while the Convex model routinely violates it:
C({µ, η}) = {µ, η} =⇒ C(co{µ, η}) = {µ, η}, where co{µ, η} is the convex hull of {µ, η}.

We see the two models as telling different stories about the nature of temptation and
self-control. The Convex model embodies the intuitive idea that the exertion of self-control
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is met with increasing marginal self-control costs. The MDSC model highlights the idea
that the intensity of temptation is dependent on cues which trigger cravings. A given
dessert may appear more or less attractive depending on how strong the agent’s sugar
craving is. The strength of the craving in turn is cued by the kind of desserts she is faced
with. In the MDSC model the temptation ranking of alternatives is fixed but the intensity
of temptation, and consequently the agent’s ability to resist it, changes with the menu.
An alternative way to look at this is that at the time of choice the agent has a particular
propensity of self-control and this propensity may be affected by cravings: for instance, a
craving may weaken the agent’s resolve to stick to her diet as she starts thinking to herself
that “well, a little indulgence won’t kill me.”

The proof of the MDSC and Convex models consists of common important steps:
(a) construction of a representation W , and derivation of a temptation utility v, (b)
by using self-control behavior {µ} ≻ {µ, η} ≻ {η}, a self control cost is measured by
u(µ) − W ({µ, η}), and is converted to the desired form, (c) construction of the desired
representation over binary menus, (d) extension of the representation to finite menus by
Set Betweenness, and (e) extension to general menus by Continuity.

The argument in steps (d) and (e) are the same between the MDSC and Convex models.
Step (a) is also the same, but, as stated above, the derivation of v is established in the
present paper. We do this step differently than GP and in a more general way. Regarding
step (b), notice that the Convex model satisfies the translation invariance property, that is,
for all admissible θ, W ({µ+ θ, η+ θ}) = W ({µ, η})+u(θ), which makes easier to show the
well-definedness of the self-control cost function, φ(v(η)−v(µ)) = u(µ)−W ({µ, η}). On the
other hand, the MDSC model satisfies the translation invariance only when v(θ) = 0, and
hence, a more elaborated argument is required to establish well-definedness of φ(v(η), v(η)−
v(µ)) = u(µ)−W ({µ, η}). Moreover, it has to be converted to ψ(v(η))(v(η)− v(µ)), which
is a peculiar feature of the MDSC model.

5 Implications for Risk and Time Preference

Experiments uncover several properties of choice under risk that are inconsistent with
expected utility, and also several properties of choice over time that are inconsistent with
exponential discounting. There are several nonexpected utility models and nonexponential
discounting models that respectively account for these. Furthermore there are relationships
between choice under risk and over time. Keren and Roelofsma [23] hypothesize that the
findings arise because the future is inherently risky.10 We show below that menu-dependent
self-control, coupled with a temptation to be risk averse and impatient, produces these three
sets of findings.11

10Thus, delaying a sure reward or making an immediate reward uncertain give rise to the same effect on
decisions. See Halevy [20] for a model that formalizes this idea.

11Several of these findings can also be produced by the Convex models (Noor and Takeoka [32], Fudenberg
and Levine [15, 16]) and differences will be noted below.
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Consider an agent whose choices from any menu x maximizes a menu-dependent utility:

C(x) = argmax
µ∈x

{
u(µ) + ψ

(
max
η∈x

v(η)
)
v(µ)

}
. (12)

Throughout we assume that X is a closed interval of money.

5.1 Risk

We adopt the following specification:

Assumption 1 u and v are increasing and concave on X. Moreover, v is more risk averse
than u.12

This assumption generates the following behaviors.

Common Ratio Effect. Subjects in experiments are typically observed to choose $3000
over a 0.8 chance of $4000, while also choosing a 0.2 chance of $4000 over a 0.25 chance
of $3000. This violates the vNM Independence axiom. Letting r denote a non-degenerate
lottery, s a degenerate nonzero lottery, and 0 the degenerate zero lottery, the Common
Ratio Effect is given by

C({r, s}) = {s} and C({αr + (1− α)0, αs+ (1− α)0}) = {αr + (1− α)0}.

If u prefers r to s and v has the opposite preference, then the above choices arise in our
model. Intuitively, by mixing all alternatives with 0, the weight ψ(maxx v) on v reduces,
thus causing a decrease in risk aversion.

Common Consequence Effect. This is the popular form of the Allais Paradox. Subjects
prefer $1m to a lottery that yields a 0.1 chance for $5m, 0.89 chance of $1m and 0.01 chance
of 0, but they prefer 0.1 chance of 5m to a 0.11 chance of 1m. Letting r denote a non-
degenerate lottery, s is a degenerate nonzero lottery, and 0 the degenerate zero lottery, the
Common Consequence Effect is given by

C({αs+ (1− α)s, αr + (1− α)s}) = {αs+ (1− α)s}, and

C({αs+ (1− α)0, αr + (1− α)0}) = {αr + (1− α)0}.

These choices can arise for the same reason as in the Common Ratio Effect.
While the Convex Self-Control model can accommodate several findings described in

this section, it cannot accommodate the Common Consequence Effect since

φ (v(αµ′ + (1− α)η)− v(αµ+ (1− α)η)) = φ (α[v(µ′)− v(µ)]) ,

12The axiom on ex ante preference ≿ that characterizes this is that for any degenerate lottery c and any
lottery µ, {c} ≻ {µ} =⇒ {c} ∼ {c, µ} ≻ {µ}. We omit the straightforward proof.
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that is, the self-control cost of choosing αµ+ (1− α)η over αµ′ + (1− α)η is independent
of η.13

Risk Aversion and Stakes Size. Estimates both from the field and the lab show that risk
aversion tends to increase with stake size (see Holt and Laury [21] and the reference cited
therein). In our model, increase in stake size is associated with a reduction in self-control,
and thus an increase in risk aversion.

5.2 Risk and Time

Let X = ∆∞ and endow it with the product topology. A generic element is denoted
c = (µ0, µ1, ...). The MDSC model can readily be extended to an infinite horizon in
the style of GP [18] where there is temptation by immediate consumption. We omit an
axiomatization of the extension because it involves no new ideas. The following choice
correspondence would be implied by such an extension:

C(x) = argmax
c∈x

{
U(c) + ψ

(
max
c′∈x

V (c′)
)
V (c)

}
,

where

U(c) = U(µ0, µ1, · · · ) =
∞∑
t=0

δtu(µt), and V (c) = V (µ0, µ1, · · · ) =
∞∑
t=0

γtv(µt).

Thus, the agent’s normative and temptation perspectives evaluate a stream c = (µ0, µ1, ...)
by the expected discounted utilities. As in the previous subsection, assume that v is more
risk averse than u. We also assume that the temptation utility exhibits greater impatience
than the normative utility [30, 31].

Assumption 2 γ ≤ δ.

We note below that γ > δ is also consistent with the behaviors we discuss if we place
restrictions on ψ.

It will be convenient to let u(0) = v(0) = 0 for some degenerate lottery 0, which is
naturally interpreted as the reward that yields zero. Below we also abuse notation and use
0 to denote the degenerate stream (0, 0, ...) yielding no reward in every period. For any
stream c define c+0 = c and inductively c+(t+1) = (0, c+t).

13Fudenberg-Levine show that in their intertemporal setting the Common Consequence Effect can arise
if the short-run self is tempted to consume all the winnings of a lottery but chooses to save part of the
winnings of a lottery. It is also assumed that the lotteries are unanticipated. In addition, the model can
accommodate Rabin’s paradox: winnings from small-stakes lotteries are completely consumed but those
from large-stakes lotteries may be saved, and the smoothing consequently reduces risk aversion. Some
of the predictions for risk aversion arising from intertemporal effects run counter to the evidence. For
instance, the model implies a reduction in risk aversion as stake size exceeds a threshold, whereas the
evidence reveals that risk aversion tends to increase with stake size.
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Preference Reversals. A preference reversal is:

C({c+1, d}) = {d} and C({c+(T+1), d+T}) = {c+(T+1)}, (13)

that is, an agent may choose a later reward c+(T+1) over a sooner reward d+T when both are
in the future (T > 0), but may choose the immediate reward d over the later reward c+1.
GP’s model generates preference reversals: if normative and temptation utilities are speci-
fied as above, then preference reversals arise if and only if temptation preference discounts
the future more steeply than normative preference, γ < δ (GP [18] assume specifically that
γ = 0). Intuitively, due to the differing discount rates, normative preferences dominate the
choice of more distant rewards. Thus, if temptation sways choice when the rewards are
close, a reversal will take place as the rewards are delayed. This mechanism can exist also in
our model, but it should be noted that we get preference reversals even if this mechanism is
shut down (by taking γ = δ), in which case they are driven purely by menu-dependence of
self-control. That is, delaying the rewards also reduces the maximum temptation the agent
is faced with, which in turn increases self-control and thus if temptation drives the choice
C({c+1, d}) = {d}, with sufficient delay this temptation will be resisted and a preference
reversal will arise.

More precisely and in more general terms, it is straightforward to show that for any pair
of streams a and b where b is more tempting, and for any delay T , C({a+T , b+T}) = {a+T}
if and only if

δTU(a) + ψ(γTV (b))γTV (a) > δTU(b) + ψ(γTV (b))γTV (b)

=⇒ U(a) + ψ(γTV (b))
(γ
δ

)T

V (a) > U(b) + ψ(γTV (b))
(γ
δ

)T

V (b).

Observe that as T grows, the weight ψ(γTV (b)) on temptation utility reduces. Temptation
utility further loses importance relative to normative utility because it discounts the future

relatively more steeply – this acts via the factor
(
γ
δ

)T
. Thus, even if temptation sways

choice when T = 0, normative preferences begin to dominate choice for large T , thus
causing a preference reversal.

Finally, we observe that the assumption γ ≤ δ is not necessary for our model to generate
preference reversals. For instance, if the weighting function takes the form ψ(l) = lθ, θ ≥ 0,
then preference reversals arise if γθ+1 < δ. Thus, menu-dependent self-control can give
rise to preference reversals even if γ > δ. If θ = 0, then ψ(l) = 1 for all l, and the
above condition for preference reversal is reduced to γ < δ, which corresponds to GP’s
assumption.

The subsequent experimental findings concern interactions between risk and time. The
MDSC model accommodates these findings, whereas GP [18] do not.

Preference Reversals and Risk. It is observed by Keren and Roelofsma [23] and We-
ber and Chapman [38] that preference reversals tend to disappear when all rewards are
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uniformly made probabilistic. This corresponds to observing (13) in conjunction with:

C({(αc+ (1− α)0)+1, αd+ (1− α)0}) = {(αc+ (1− α)0)+1}, and
C({(αc+ (1− α)0)+(T+1), (αd+ (1− α)0)+T}) = {(αc+ (1− α)0)+(T+1)}.

It is clear why our model would exhibit this: Since both of delaying rewards and mixing
rewards with 0 reduce the weight

ψ
(

max
{(αc+(1−α)0)+(T+1),(αd+(1−α)0)+T }

V
)
= ψ(γTαV (d))

on V , choice from menus will tend to be determined by U .

The Allais Paradoxes and Time. Weber and Chapman [38] find that the Common
Consequence Effect tends to disappear when the lotteries are delayed, and Baucells and
Heukamp [6] show that the same is true also for the Common Ratio Effect. In particular,
choices over lotteries were less inconsistent with expected utility theory when the lotteries
were to be played out in the future. This is exhibited in our model because future lotteries
tend to be determined by U , as above.

Risk Attitude and the ‘Moment of Truth’. Some studies suggest that people tend
to be less risk averse towards gambles that are played out in the future than those in the
present. According to Liberman et al [25] subjects focus on rewards when evaluating distant
gambles and on probabilities when evaluating current gambles.14 Loewenstein et al [27] and
Savitsky et al [34] hypothesize that the emotional response to risk is that of aversion and
dread, and thus there is increased risk aversion as the ‘moment of truth’ approaches. In our
model, the agent’s preference over current gambles is determined by a convex combination
of two utilities, one more risk averse than the other, but those over delayed gambles is
determined by the less risk averse utility. Thus our model generates this finding.

5.3 Further Experiments

We showed that menu-dependent self-control, coupled with a temptation to be risk averse
and impatient, is consistent with various experimental findings. However, further experi-
ments are required in order to support or reject the possibility that temptation might serve
as an explanation for the findings. There seem to be at least two avenues to explore:

1- Dynamically inconsistent choice behavior is one possible indication of temptation.
Therefore an avenue to explore is whether such reversals are associated also with dynamic
inconsistency. That is, would subjects’ preferences over lotteries played at time t + 1
depend on whether preferences are elicited at t or t+ 1? The evidence finds that from the
perspective of one point it time, risk preferences reverse with delay, and so it is conceivable
that dynamic inconsistency would be found. If it is indeed found, it may be explored next

14In [25], subjects actually tended to prefer mean-preserving spreads for future gambles.
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whether the agent at time t would seek to commit to her choices. (However, the latter
would presume sophistication on the part of agents).

2- A key implication of the idea of menu-dependent self-control for ex post choice
is the existence of violations of WARP. A sizable experimental literature documents that
choice under risk violates WARP. Much of the literature focusses on establishing the coun-
terparts of violations observed in riskless settings, which seem unrelated to issues of self-
control.15 An avenue to explore is whether the presence of unchosen safe lotteries can cause
an increase in risk aversion.

6 Concluding Comments

Most generalizations of GP’s model (Chatterjee and Krishna [7], Dekel, Lipman and Rus-
tichini [9], Kopylov [24], Stovall [35]) have focused on relaxing Set-Betweenness – which
is clearly a substantive axiom for temptation – while maintaining Independence. It has
not been well understood how exactly Independence ‘works’ – for instance, it has not been
known what is the weakest form of Independence that yields the existence of a vNM temp-
tation preference and whether the full force of Independence is required to get linearity
of self-control costs. This paper gets a handle on such questions, and more broadly it
clarifies the price of adopting the Independence axiom by highlighting that there are sub-
stantive stories about self-control that are inconsistent with Independence. Our MDSC
representation is obtained by relaxing Independence, not Set-Betweenness.

A Appendix: Proof of Theorem 2

For all µ, η ∈ ∆ and α ∈ [0, 1], we use the notation µαη ≡ αµ+ (1− α)η for abbreviation.
Similarly, for all x, y ∈ Z and α ∈ [0, 1], xαy ≡ αx+ (1− α)y.

If there is no µ, η s.t. {µ} ≻ {µ, η}, then the Theorem holds with any constant function
v. Henceforth assume that:

A 1 (Nondegeneracy) There exists µ, η s.t. {µ} ≻ {µ, η}.

Given the compact metric space X, consider the space ca(X) of finite Borel signed
measures on X, normed by the total variation norm. Note that

ca(X) := span(∆).

Denote the space of continuous functions on X by C(X). Since X is compact, ca(X) is
isometrically isomorphic to C(X)∗, the topological dual of (ie, the space of continuous linear

15For instance, the experiments find the attraction effect (an alternative is more likely to be chosen after
the introduction of an inferior version of it) and the compromise effect (an alternative is more likely to be
chosen if it serves as a compromise between two other alternatives).
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functionals on) C(X) normed by the sup-norm (Aliprantis and Border, Corollary 13.15).
Given this duality, the weak ∗ topology σ(C(X)∗, C(X)) on ca(X) induces the topology of
weak convergence on ∆. Thus, when v : ca(X) → R is w∗-continuous linear function, the
restriction v|∆ is continuous in the appropriate sense. The space ca(X) is a locally convex
Hausdorff topological linear space under the weak∗ topology.

Begin with some notation: say that
• µ ≽T η if {µ} ∼ {µ, η} ≻ {η},
• µ ≻T η if {η} ≻ {η, µ}.

Say that µ tempts η if µ ≽T η or µ ≻T η and consider:

A 2 (Strong Temptation Convexity) For any µ, η, µ′, η′ and α ∈ (0, 1), if µ tempts η
and µ′ tempts η′ then ηαη′ does not tempt µαµ′.

The following lemma allows us to adopt this stronger axiom in place of Temptation
Convexity.

Lemma 1 A preference ≿ that satisfies Temptation Independence satisfies Strong Temp-
tation Convexity iff it satisfies Temptation Convexity.

Proof. The ‘only if’ part is immediate. To prove the ‘if’ part, suppose Temptation
Convexity is satisfied.

Case (a): {µ} ≻ {µ, η} and {µ′} ≻ {µ′, η′}.
Take any α ∈ (0, 1). By Temptation Independence,

{µαµ′} ≻ {µαµ′, ηαµ′} and {µαµ′} ≻ {µαµ′, µαη′}

hold. Observe that 1
2
ηαµ′ + 1

2
µαη′ = 1

2
ηαη′ + 1

2
µαµ′. Therefore, by Temptation Convexity,

{1
2
µαµ′+

1

2
µαµ′} ≻ {1

2
µαµ′+

1

2
µαµ′,

1

2
ηαµ′+

1

2
µαη′} = {1

2
µαµ′+

1

2
µαµ′,

1

2
ηαη′+

1

2
µαµ′},

and by Temptation Independence, {µαµ′} ≻ {µαµ′, ηαη′}, as desired.
Case (b): {µ} ∼ {µ, η} ≻ {η} and {µ′} ∼ {µ′, η′} ≻ {η′}.
Same argument as in the previous case.
Case (c): {η} ≻ {η, µ} and {µ′} ∼ {µ′, η′} ≻ {η′}.
Take any α ∈ (0, 1). The result holds trivially if {µαµ′} ∼ {ηαη′}. So first let {µαµ′} ≻

{ηαη′} and suppose by way of contradiction that

{µαµ′} ≻ {µαµ′, ηαη′}.

By Temptation Independence, {η} ≻ {η, µ} implies {ηαη′} ≻ {ηαη′, µαη′}. By our
above result for Case (a),

{(µαµ′)
1

2
(ηαη′)} ≻ {(µαµ′)

1

2
(ηαη′), (ηαη′)

1

2
(µαη′)}
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and by Temptation Independence, {µαµ′} ≻ {µαµ′, µαη′} and in particular, {µ′} ≻
{µ′, η′}, a contradiction.

Similarly, if {ηαη′} ≻ {µαµ′} then suppose by way of contradiction that

{ηαη′} ∼ {ηαη′, µαµ′} ≻ {µαµ′}.

By Temptation and Commitment Independence, {µ′} ∼ {µ′, η′} ≻ {η′} implies {ηαµ′} ∼
{ηαµ′, ηαη′} ≻ {ηαη′}. By the above result for Case (b),

{(ηαµ′)
1

2
(ηαη′)} ∼ {(ηαµ′)

1

2
(ηαη′), (µαµ′)

1

2
(ηαη′)} ≻ {(µαµ′)

1

2
(ηαη′)}

and by Temptation Independence, {ηαµ′} ∼ {ηαµ′, µαµ′} ≻ {µαµ′} and {η} ∼ {η, µ} ≻
{µ}, a contradiction.

Define the set:

T1 = {λ(µ− η) : λ > 0 and µ ≽T η or µ ≻T η}.

Lemma 2 For any µ, η ∈ ∆ and λ > 0 such that {µ} ̸∼ {η},

λ(µ− η) ∈ co(T1) ⇐⇒ µ ≽T η or µ ≻T η.

Proof. Define µ ▷T η if {µ} ∼ {η} and there exist µ1 ≽T η1 and µ2 ≻T η2 and γ ∈ (0, 1)
s.t. µ = µ1γµ2 and η = η1γη2.

Step 1: Show that

co(T1) = {λ(µ− η) : λ > 0 and µ ≽T η or µ ≻T η or µ ▷T η}.

The set inclusion ”⊃” follows immediately from definitions. For the converse, take any
ν ∈ co(T1). Then there exist λi(µi−ηi) ∈ T1 and weights αi, i = 1, .., N, such that µi ≽T ηi
for i = 1, .., n and µi ≻T ηi for i = n+ 1, .., N , and

N∑
i=1

αiλi(µi − ηi) = ν.

By Strong Temptation Convexity, a proof by induction yields that:

µ : =
n∑

i=1

αiλi∑n
j=1 αjλj

µi ≽T

n∑
i=1

αiλi∑n
j=1 αjλj

ηi =: η

µ′ : =
N∑

j=n+1

αiλi∑N
j=n+1 αjλj

µi ≻T

N∑
j=n+1

αiλi∑N
j=n+1 αjλj

ηi =: η′.
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Moreover,

ν = (
n∑

i=1

αiλi)(µ− η) + (
N∑

i=n+1

αiλi)(µ
′ − η′)

= (
N∑
i=1

αiλi)

[
(

∑n
i=1 αiλi∑N
i=1 αiλi

)(µ− η) + (

∑N
i=n+1 αiλi∑N
i=1 αiλi

)(µ′ − η′)

]

= (
N∑
i=1

αiλi)(µγ1µ
′ − ηγ1η

′),

where γ1 =
∑n

i=1 αiλi∑N
i=1 αiλi

∈ [0, 1]. By Strong Temptation Convexity and by definition of ▷T ,

either µγ1µ
′ ≽T ηγ1η

′ or µγ1µ
′ ≻T ηγ1η

′ or µγ1µ
′ ▷T ηγ1η

′ hold. Therefore ν belongs to
the desired set. This completes the proof.

Step 2: Prove the result.
The ‘if’ part follows by definition. For the only if part, take any λ(µ− η) ∈ co(T1) and

note that by Step 1, there exists µ′, η′ ∈ ∆ and λ′ > 0 s.t. λ(µ − η) = λ′(µ′ − η′) and
µ′ ≽T η′ or µ′ ≻T η′ or µ′ ▷T η′. If µ′ ≽T η′ holds, then by Temptation Independence
applied twice we have

λ

λ+ λ′
µ+

λ′

λ+ λ′
η′ =

λ

λ+ λ′
η +

λ′

λ+ λ′
µ′ ≽T

λ

λ+ λ′
η +

λ′

λ+ λ′
η′,

and thus µ ≽T η. A similar argument implies that if µ′ ≻T η
′ then µ ≻T η.

Finally, we show that µ′ ▷T η
′ is not possible. If it is, then by definition {µ′} ∼ {η′},

and in a fashion analogous to the above argument, Commitment Independence applied
twice yields {µ} ∼ {η}, contradicting the assumption that {µ} ̸∼ {η}.

Define:
T = cl(co(T1)),

where cl(co(T1)) is the closure of co(T1) in the weak∗ topology. Say that T is a cone if
λT ⊂ T for all λ ≥ 0.

Lemma 3 T is a weak∗ closed convex cone.

Proof. Since it is the closure of a convex set, T is convex. To see that T is a cone, take

any ν ∈ T and any net να
w∗
→ ν where να ∈ co(T1). For any λ > 0, we have λνα ∈ co(T1)

(by definition of co(T1)) and λνα
w∗
→ λν and thus λν ∈ T . To see that 0 ∈ T observe

that by nondegeneracy there exists µ, η s.t. {η} ≻ {η, µ} and by Temptation Independence
{η}α{µ} ≻ {η, µ}α{µ} for all α. Consequently, α(µ − η) = (µ − ηαµ) ∈ co(T1) for all α
and therefore 0 ∈ T .

Lemma 4 If ν ∈ T then there exists a norm-bounded net να
w∗
→ ν s.t. να ∈ co(T1).
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Proof. Since X is compact, C(X) is separable and ca(X) is isometrically isomorphic to
the topological dual C(X)∗. Thus T is a weak∗ closed convex set in the dual of a separable
normed space. By the Krein-Smulian theorem [29, Cor 2.7.13], T is sequentially weak∗

closed. In particular, T is the sequential weak∗ closure of co(T1). Thus, for any ν ∈ T
there is a sequence νn

w∗
→ ν s.t. νn ∈ co(T1). To see that this sequence is norm-bounded,

note that by definition of weak∗ convergence, νn
w∗
→ ν implies that

∫
X
f dνn →

∫
X
f dν for

any given f ∈ C(X). This implies

sup

{∫
X

f dνn

∣∣∣∣n = 1, 2, ..

}
<∞.

By the Banach-Steinhaus theorem [29, Thm 1.6.9] there exists K < ∞ s.t. ∥νn∥ ≤ K for
each n = 1, 2, ... This completes the proof.

Lemma 5 If {η} ≻ {η, µ} then η − µ ̸∈ T .

Proof. Take any µ∗, η∗ such that {η∗} ≻ {η∗, µ∗}, and suppose by way of contradiction
that ν := η∗ − µ∗ ∈ T .

Step 1: Show that there is a sequence (µn, ηn)
w∗
→ (µ, η) and λ > 0 s.t. 0 ̸= µn − ηn ∈

co(T1) for each n and λ(µ− η) = ν.

As ν ∈ T , by the proof of the previous lemma there exists a sequence νn
w∗
→ ν where

νn ∈ co(T1) and there is K <∞ s.t.

∥νn∥ ≤ K, n = 1, 2, ... (14)

Since ν = η∗ − µ∗ ̸= 0, we can assume wlog that νn ̸= 0 for all n. By the Jordan
decomposition theorem, νn = σ1

n − σ2
n for two mutually singular positive measures σ1

n, σ
2
n ∈

ca(X). Since νn ̸= 0 and νn(X) = 0,16 we see that σ1
n+σ

2
n ̸= 0, σ1

n ̸= σ2
n and λn := σ1

n(X) =
σ2
n(X) > 0. Consequently, we can write

νn = λn(µn − ηn),

for two mutually singular µn, ηn ∈ ∆ and λn > 0. By mutual singularity ∥µn − ηn∥ = 2.
But then

∥νn∥ = ∥λn(µn − ηn)∥ = λn∥(µn − ηn)∥ = 2λn.

By (14), λn is a real sequence in the compact interval [0, K
2
]. Passing to a subsequence

if necessary, we assume wlog that this sequence converges. Moreover, since ∆ is a weak∗

compact subset of ca(X), both µn and ηn have weak∗ convergent subsequences. Wlog we

16To see why νn(X) = 0, note that since each σ ∈ T0 takes the form λ(µ − η), it must be that σ(X) =
λ(µ(X)− η(X)) = λ(1− 1) = 0 for each such σ. Since any σ ∈ T is a limit of measures in co(T1), it must
be that σ(X) = 0.
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may therefore assume that λn, µn and ηn are convergent. Write λn → λ, µn
w∗
→ µ and

ηn
w∗
→ η. Then

νn = λn(µn − ηn)
w∗
→ λ(µ− η).

Since νn
w∗
→ ν in a Hausdorff space, ν = λ(µ − η). Moreover, νn ∈ co(T1) implies

(µn − ηn) =
1
λn
νn ∈ co(T1). This completes the step.

Step 2: Prove the result.

Consider the sequences µn
w∗
→ µ and ηn

w∗
→ η constructed in step 1. First observe that

since λ(µ − η) = ν = η∗ − µ∗ and µ∗ ≻T η∗, arguing as in the proof of Lemma 2 implies

η ≻T µ, that is, {µ} ≻ {µ, η}. But since µn
w∗
→ µ and ηn

w∗
→ η, Semi-Continuity implies

that for all large n, {µn} ≻ {µn, ηn}.17 But by Lemma 2 this contradicts the fact that
µn − ηn ∈ co(T1) for all n.

Lemma 6 There exists a temptation utility. That is, there exists a weak∗ continuous linear
v s.t. for all µ, η ∈ ∆,

{η} ≻ {η, µ} =⇒ v(µ) > v(η)

{µ} ∼ {µ, η} ≻ {η} =⇒ v(µ) ≥ v(η).

Proof. Consider the set

S = {w ∈ ca(X)∗ : w(T ) ≥ 0 and w(T ) ̸= 0}.

That is, S is the set of nonzero weak∗ continuous linear functionals on ca(X) that take
positive values for each ν ∈ T and a strictly positive value for some ν ∈ T .

Step 1: S is nonempty.
By nondegeneracy, there is µ, η s.t. {η} ≻ {η, µ}, and by the previous lemma, η−µ ̸∈ T .

Since {η − µ} is compact and T weak∗ closed and both are convex and disjoint, by a
separating hyperplane theorem [29, Thm 2.2.28] there is a nonzero weak∗ continuous linear
functional w such that

inf{w(ν) : ν ∈ T } > w(η − µ). (15)

We claim that the inf is achieved at exactly 0. Given that 0 ∈ T and w(0) = 0, suppose there
is ν ′ ∈ T s.t. w(ν ′) < 0. Since T is a cone and w is linear, kν ′ ∈ T and w(kν ′) = kw(ν ′) for

17The proof is as follows. First use Semi-Continuity and Binary Set-Betweenness to show that for any
binary menu x there is a singleton equivalent: {ex} ∼ x. Note that by Binary Set-Betweenness, x is
bounded above and below by singleton menus, and thus also by the u-best and u-worst alternatives µ∗ and
µ∗ in ∆. By Semi-Continuity the sets {α : {µ∗αµ∗} ≿ x} and {α : {µ∗αµ∗} ≾ x} are closed subsets of [0, 1].
Given Order, connectedness of [0, 1] implies that the two sets have a nonempty intersection. Now prove
the result: Since {µ} ≻ {e{µ,η}} ∼ {µ, η}, Commitment Independence implies {µ} ≻ {µ 1

2e{µ,η}} ≻ {µ, η}.
Then Semi-Continuity implies that {µn} ≻ {µn, ηn} for all large n.
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each k > 0. But by selecting a large enough k it would follow that the infimum violates
(15), a contradiction. Therefore the infimum is achieved at 0, and for each ν ∈ T ,

w(ν) ≥ 0 > w(η − µ).

Indeed, w ∈ S.

Step 2: Any v ∈ S serves as a temptation utility.
By definition of S, we see that {η} ≻ {η, µ} or {µ} ∼ {µ, η} ≻ {η} implies v(µ) ≥ v(η)

for each v ∈ S. We need to show that {η} ≻ {η, µ} must imply v(µ) > v(η) for any such v.
Suppose it does not. Then there exists µ, η and v such that {η} ≻ {η, µ} and v(µ) = v(η).
But by step 1, there exists µ′, η′ s.t. v(µ′) < v(η′). By Semi-Continuity, for large enough
α it must be that {ηαη′} ≻ {ηαη′, µαµ′}, and thus µαµ′ − ηαη′ ∈ T . But by linearity it
must also be that v(µαµ′ − ηαη′) < 0, contradicting the fact that v ∈ S. This concludes
the proof.

Lemma 7 v|∆ is unique up to a positive affine transformation.

Proof. Suppose v, v′ are two temptation representations and there exists µ, η ∈ ∆ s.t.
v(µ) ≥ v(η) and v′(µ) < v′(η). If {µ} ≻ {η}, by Binary Set Betweenness, we have either
{µ} ≻ {µ, η} or {µ} ∼ {µ, η} ≻ {η}. Since v and v′ are temptation utility functions, the
former implies v(η) > v(µ) and v′(η) > v′(µ), while the latter implies v(µ) ≥ v(η) and
v′(µ) ≥ v′(η), which contradicts the hypothesis. Similarly, we have a contradiction when
{η} ≻ {µ}. Thus, we must have {µ} ∼ {η}.

By nondegeneracy, there is µ′, η′ s.t. {η′} ≻ {η′, µ′}. The temptation representations
must satisfy v(µ′) > v(η′) and v′(µ′) > v′(η′). For small enough α, v(µ′αµ) > v(η′αη) and
v′(µ′αµ) < v′(η′αη). On the other hand, since {η′} ≻ {µ′} and {η} ∼ {µ}, by Commitment
Independence, {η′αη} ≻ {µ′αµ} for all α ∈ (0, 1). Thus, by Binary Set Betweenness,
either {η′αη} ≻ {η′αη, µ′αµ} or {η′αη} ∼ {η′αη, µ′αµ} ≻ {µ′αµ}. The former contradicts
v′(µ′αµ) < v′(η′αη), and the latter contradicts v(µ′αµ) > v(η′αη). It follows that v, v′ are
ordinally equivalent on ∆ and therefore by linearity they are cardinally equivalent on ∆.

B Appendix: Proof of Theorem 3

For all µ, η ∈ ∆ and α ∈ [0, 1], we use the notation µαη ≡ αµ+ (1− α)η for abbreviation.
Similarly, for all x, y ∈ Z and α ∈ [0, 1], xαy ≡ αx+ (1− α)y.

B.1 Preliminary Lemmas

We first establish representations for commitment preference, temptation preference, and
the whole preference ≿, respectively.
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Lemma 8 (i) There exists a continuous linear function u : ∆ → R+ such that

{µ} ≿ {η} ⇐⇒ u(µ) ≥ u(η)

(ii) There exists a continuous function W : Z → R+ that represents ≿ and satisfies
W ({µ}) = u(µ) for all µ ∈ ∆.

(iii) There exists a continuous linear function v : ∆ → R+ such that if {µ} ≻ {η} then

{µ} ≻ {µ, η} ⇐⇒ v(η) > v(µ).

Proof. (i) The first assertion follows from Order, Continuity, Commitment Independence,
and the mixture space theorem.

(ii) Since u is continuous on ∆, there exist a maximal and a minimal lottery µ∆, µ∆ ∈ ∆
with respect to u. Without loss of generality, we can assume u(µ∆) = 1 and u(µ∆) = 0.
From Continuity and Set Betweenness, {µ∆} ≿ x ≿ {µ∆} for all x ∈ Z. By a standard argu-
ment, for all x ∈ Z, there exists a unique number α(x) ∈ [0, 1] such that x ∼ {µ∆α(x)µ∆}.
Define

W (x) ≡ u(µ∆α(x)µ∆) ∈ [0, 1].

Then W represents ≿. Moreover, W ({µ}) = u(µ) for all µ ∈ ∆.
To show continuity of W , let xn → x. Since u(µ∆) = 1 and u(µ∆) = 0, W (x) = α(x).

So we want to show α(xn) → α(x). By contradiction, suppose otherwise. Then, there exists
a neighborhood B(α(x)) of α(x) such that α(xm) /∈ B(α(x)) for infinitely many m. Let
{xm} denote the corresponding subsequence of {xn}. Since xn → x, {xm} also converges to
x. Since {α(xm)} is a sequence in [0, 1], there exists a convergent subsequence {α(xℓ)} with
a limit α ̸= α(x). On the other hand, since xℓ → x and xℓ ∼ {µ∆α(xℓ)µ∆}, Continuity
implies x ∼ {µ∆αµ∆}. Since α(x) is unique, α(x) = α, which is a contradiction.

(iii) By Theorem 2.

Without loss of generality, assume that v(∆) = [0, 1]. By construction, if {µ} ≻ {µ, η},
then v(η) > v(µ). If {µ} ∼ {µ, η} ≻ {η}, then v(µ) ≥ v(η).

Lemma 9 For all ν, ν ′, if v(ν) > v(ν ′) and u(ν) ̸= u(ν ′), then ν ≿T ν
′.

Proof. If u(ν ′) > u(ν), by construction of v, we have {ν ′} ≻ {ν, ν ′}. Thus ν ≿T ν ′. If
u(ν) > u(ν ′), Set Betweenness implies {ν} ≿ {ν, ν ′} ≿ {ν ′}. If {ν} ≻ {ν, ν ′}, we have
v(ν ′) > v(ν), which contradicts the assumption. Thus we must have {ν} ∼ {ν, ν ′} ≻ {ν ′}.
Thus ν ≿T ν

′.

Lemma 10 Assume that µ, η, η′ satisfy {µ} ≻ {µ, η} ≻ {η} and v(η) ≥ v(η′). Then, for
all α ∈ (0, 1),

(i) {µαη′, ηαη′} ≿ {eµηαη′},
(ii) {µαη′} ≻ {µαη′, ηαη′} ≻ {ηαη′}.
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Proof. (i) Step 1: If v(η) > v(η′), then the claim holds. If {η′} ̸∼ {η}, by Lemma 9, η ≿T

η′. Since {µ, η}α{η} ∼ {eµηαη} by Linear Self-Control, the result is implied by Decreasing
Self-Control. Suppose instead that {η′} ∼ {η}. Since u(µ) > u(η), for all β ∈ (0, 1) close to
zero, {µβη′} ≻ {η} and v(µβη′) < v(η) and thus, {µβη′} ≻ {µβη′, η}. That is, η ≿T µβη

′.
Linear Self-Control and Decreasing Self-Control imply that {µ, η}α{µβη′} ≿ {eµηα(µβη′)},
and by Continuity, the desired result holds as β → 0.

Step 2: When v(η) = v(η′), the claim holds. Let η+ and η− be a maximal and a minimal
lottery with respect to v. If v(η′) > v(η−), v(η) > v(η′βη−) for all β ∈ (0, 1). By Step
1, {µα(η′βη−), ηα(η′βη−)} ≿ {eµηα(η′βη−)}. By Continuity, {µαη′, ηαη′} ≿ {eµηαη′} as
β → 1.

If v(η′) = v(η−), v(ηβη+) > v(η′), and, by Continuity, {µ} ≻ {µ, ηβη+} ≻ {ηβη+}
for all β ∈ (0, 1) sufficiently close to one. By Step 1, {µαη′, (ηβη+)αη′} ≿ {e{µ,ηβη+}αη

′}.
Recall the function α(x) defined in the proof of Lemma 8 (ii). By definition,

{e{µ,ηβη+}} ∼ {µ∆α({µ, ηβη+})µ∆}.

Thus, we have {µαη′, (ηβη+)αη′} ≿ {(µ∆α({µ, ηβη+})µ∆)αη
′}. Since α(x) is continuous

as shown in the proof,

{µαη′, ηαη′} ≿ {(µ∆α({µ, η})µ∆)αη
′} ∼ {eµηαη′},

as β → 1.
(ii) By Commitment Independence, Temptation Independence and part (i), {µ} ≻

{µ, η} ≻ {η}
=⇒ {µ} ≻ {eµη} ≻ {η}
=⇒ {µαη′} ≻ {eµηαη′} ≻ {ηαη′}
=⇒ {µαη′} ≻ {µαη′, ηαη′} ≿ {eµηαη′} ≻ {ηαη′}
=⇒ {µαη′} ≻ {µαη′, ηαη′} ≻ {ηαη′}.

Lemma 11 For all α ∈ (0, 1),

{µ} ≻ {µ, η} ≻ {η}, {µ′} ≻ {µ′, η} ≻ {η} =⇒ {µαµ′} ≻ {µαµ′, η} ≻ {η}.

Proof. Assume the hypothesis. Let x = α{µ, η} + (1 − α){µ′, η}. By [17, Lemma 2],
there are lotteries a∗, b∗ ∈ x s.t {a∗, b∗} ∼ x and (a∗, b∗) solves maxa∈x minb∈xW ({a, b})
and (b∗, a∗) solves minb∈x maxa∈xW ({a, b}).

Step 1: Show that x ∼ {µαµ′, η}.
We prove that (a∗, b∗) = (µαµ′, η). Observe that by Commitment Independence, Linear

Self-Control and Decreasing Self-Control,

α{µ}+ (1− α){µ′, η} ≿ α{µ}+ (1− α){eµ′η} ≻ x ≻ α{η}+ (1− α){eµ′η}
∼ α{η}+ (1− α){µ′, η},

α{µ, η}+ (1− α){µ′} ≿ α{eµη}+ (1− α){µ′} ≻ x ≻ α{eµη}+ (1− α){η}
∼ α{µ, η}+ (1− α){η},
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Therefore x can be indifferent only to {µαη}, {ηαµ′}, {µαµ′, η} or {µαη, ηαµ′}. To rule
out the latter, suppose (µαη, ηαµ′) solves the maxmin problem. Then

x ∼ {µαη, ηαµ′} ≾ {µαη, η} ∼ α{eµη}+ (1− α){η} ≺ α{eµη}+ (1− α){eµ′η} ∼ x,

a contradiction. Similarly, if (ηαµ′, µαη) solves the maxmin problem, then

x ∼ {ηαµ′, µαη} ≾ {ηαµ′, η} ∼ α{η}+ (1− α){eµ′η} ≺ α{eµη}+ (1− α){eµ′η} ∼ x,

a contradiction. Thus x ̸∼ {µαη, ηαµ′}. An entirely similar argument establishes that x is
not indifferent to {µαη} or {ηαµ′}. Conclude that x ∼ {µαµ′, η}.

Step 2: Prove the result.
Observe that by Commitment Independence and Linear Self-Control,

x = α{µ, η}+ (1− α){µ′, η} ∼ α{eµη}+ (1− α){eµ′η}.

Applying Step 1 and Commitment Independence proves the result.

Lemma 12 If v(η) = v(η′), for all α ∈ (0, 1),

{µ} ≻ {µ, η} ≻ {η} , {µ′} ≻ {µ′, η′} ≻ {η′} =⇒ {µαµ′} ≻ {µαµ′, ηαη′} ≻ {ηαη′}.

Proof. As a preliminary, we first show the following claim: For all µ, η and α ∈ (0, 1), if
{µαη} ≻ {µαη, η} ≻ {η}, then {µ} ≻ {µ, η} ≻ {η}. Since {µαη} ≻ {µαη, η}, we have
v(η) > v(µαη). Since v is mixture linear, v(η) > v(µ). Moreover, mixture linearity of u
implies u(µ) > u(η). Hence, {µ} ≻ {µ, η}. By Linear Self-Control and the assumption,
{µαη, η} ∼ {eµηαη} ≻ {η}. Hence, we have {µ, η} ∼ {eµη} ≻ {η}, as desired.

Next we show the result. By Lemma 10 (ii), {µαη′} ≻ {µαη′, ηαη′} ≻ {ηαη′} and
{ηαµ′} ≻ {ηαµ′, ηαη′} ≻ {ηαη′}. By Lemma 11,

{(µαη′)1
2
(ηαµ′)} ≻ {(µαη′)1

2
(ηαµ′), ηαη′} ≻ {ηαη′}.

Since (µαη′)1
2
(ηαµ′) = (µαµ′)1

2
(ηαη′),

{(µαµ′)
1

2
(ηαη′)} ≻ {(µαµ′)

1

2
(ηαη′), ηαη′} ≻ {ηαη′}.

By the first claim, {µαµ′} ≻ {µαµ′, ηαη′} ≻ {ηαη′}.

B.2 Construction of ψ on the Self-Control Subdomain

Define the self-control subdomain as

A ≡ {(l, w) ∈ [0, 1]2 : ∃µ, η s.t.v(η) = l, v(η)− v(µ) = w and{µ} ≻ {µ, η} ≻ {η}}.

Let

LA ≡ {l ∈ [0, 1] | (l, w) ∈ A for some w},
A(l) ≡ {w | (l, w) ∈ A}.

If l ∈ LA, A(l) ̸= ∅, and, by definition, supA(l) ≤ l.
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Lemma 13 (i) If (l, w) ∈ A, (αl, αw) ∈ A for all α ∈ (0, 1).
(ii) LA is a non-degenerate interval with inf LA = 0.
(iii) For all l ∈ LA, A(l) is a non-degenerate interval with inf A(l) = 0.
(iv) If supA(l) < l, A(l) is open.
(v) If supA(l) ∈ A(l), supA(l) = l.

Proof. (i) Take (l, w) ∈ A. There exist µ, η such that {µ} ≻ {µ, η} ≻ {η}, l = v(η), w =
v(η)− v(µ). Let ν− be a minimal lottery with respect to v. Since v(η) = l > 0 = v(ν−), by
Lemma 10 (ii), {µαν−} ≻ {µαν−, ηαν−} ≻ {ηαν−} for all α ∈ (0, 1). Since αl = v(ηαν−)
and αw = v(ηαν−)− v(µαν−), (αl, αw) ∈ A as desired.

(ii) Take any l ∈ LA. There exists w such that (l, w) ∈ A. By part (i), (αl, αw) ∈ A for
all α ∈ (0, 1). Hence, αl ∈ LA as desired.

(iii) Take any w ∈ A(l). It suffices to show that αw ∈ A for all α ∈ (0, 1). There exist
µ, η such that {µ} ≻ {µ, η} ≻ {η}, l = v(η) and w = v(η) − v(µ). By Lemma 10 (ii),
{µαη} ≻ {µαη, η} ≻ {η}. Moreover, αw = v(η)− v(µαη). Hence, αw ∈ A(l).

(iv) Since A(l) is an interval such that 0 /∈ A(l) and inf A(l) = 0, it is enough to
show that for all w ∈ A(l), there exists w′ > w such that w′ ∈ A(l). There exist µ, η
such that {µ} ≻ {µ, η} ≻ {η}, v(η) = l and v(η) − v(µ) = w. Continuity implies that
there exists an open neighborhood B(µ) of µ such that {µ′} ≻ {µ′, η} ≻ {η} for all
µ′ ∈ B(µ). Since w ≤ supA(l) < l, we have v(µ) = l − w > 0 = min∆ v. Let ν− satisfy
v(ν−) = min∆ v. Since v(µ) > v(ν−), v(η) > v(µαν−) and µαν− ∈ B(µ) for all α close to
1. Thus w < v(η)− v(µαν−) ∈ A(l) as desired.

(v) By definition, supA(l) ≤ l. Suppose supA(l) < l. By part (iv), A(l) is open.
Since supA(l) ∈ A(l), there exists a small ε > 0 such that supA(l) + ε ∈ A(l), which is a
contradiction.

Define φ : A→ (0, 1] by

φ(l, w) ≡ u(µ)−W ({µ, η}),

s.t. µ, η ∈ ∆ satisfy v(η) = l, v(η) − v(µ) = w and {µ} ≻ {µ, η} ≻ {η}. The following
lemmas ensure that φ is well-defined.

Take any finite subset c = {c1, · · · , cN} ⊂ C. Define

∆(N,c) ≡

{
ν ∈ RN

+

∣∣∣∣∣
N∑
i=1

ν(ci) = 1

}
⊂ ∆, Θ(N,c) ≡

{
θ ∈ RN

∣∣∣∣∣
N∑
i=1

θ(ci) = 0

}
.

For all µ ∈ ∆(N,c) and θ ∈ Θ(N,c), if µ + θ ∈ ∆(N,c), we can view µ + θ as the lottery
obtained by shifting µ toward θ. For all µ ∈ ∆(N,c), say that θ ∈ Θ(N,c) is admissible for
µ if µ + θ ∈ ∆(N,c). Moreover, θ ∈ Θ(N,c) is said to be strictly admissible for µ if µ + θ
belongs to the interior of ∆(N,c).

For all θ ∈ Θ(N,c), let u(θ) and v(θ) denote
∑

i u(ci)θ(ci) and
∑

i v(ci)θ(ci), respectively.
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Lemma 14 Assume that {µ, η} ∼ {ν} and θ ∈ Θ(N,c) is admissible for µ, η, ν. Then,

v(θ) < 0 =⇒ {µ, η}+ θ ≿ {ν}+ θ,

v(θ) > 0 =⇒ {ν}+ θ ≿ {µ, η}+ θ.

Proof. We follow the proof of Ergin and Sarver [13, Lemma 3]. As in their proof, let
A ≡ {µ, η} and B ≡ {ν}. As shown in their proof, there exist p, q ∈ ∆(N,c) and 0 < κ ≤ 1
such that θ = κ(p − q). Define menus A′ and B′ as in their proof. Then, by definition,
qκA′ = A, qκB′ = B, pκA′ = A+ θ, and pκB′ = B + θ.

First assume v(θ) < 0. Then, v(q) > v(p). If {p} ̸∼ {q}, by Lemma 9, q ≿T p. Thus,
by Decreasing Self-Control, qκA′ = A ∼ B = qκB′ implies

A+ θ = pκA′ ≿ pκB′ = B + θ,

as desired. If {p} ∼ {q}, there exists r ∈ ∆ such that {pβr} ̸∼ {q} for all β ∈ (0, 1).
Moreover, for all β sufficiently close to one, v(pβr) < v(q) by continuity. Hence q ≿T pβr
for such β. By Decreasing Self-Control, we have (pβr)κA′ ≿ (pβr)κB′. By Continuity, we
have A + θ = pκA′ ≿ pκB′ = B + θ as β → 1. The symmetric argument can be applied
when v(θ) > 0.

Lemma 15 Assume that {µ, η} ∼ {ν} and θ ∈ Θ(N,c) is strictly admissible for µ, η, ν.
Then,

v(θ) ≤ 0 =⇒ {µ, η}+ θ ≿ {ν}+ θ,

v(θ) ≥ 0 =⇒ {ν}+ θ ≿ {µ, η}+ θ.

Proof. Since µ+θ, η+θ, ν+θ belong to the interior of ∆(N,c), there exists a neighborhood
O(θ) of θ such that µ + θ′, η + θ′, ν + θ′ ∈ ∆(N,c) for all θ

′ ∈ O(θ). Take any θ such that
v(θ) < 0. For all small β > 0, θβθ ∈ O(θ). Since v(θβθ) < 0, by Lemma 14,

{µ, η}+ θβθ ≿ {ν}+ θβθ.

By Continuity, {µ, η}+θ ≿ {ν}+θ as β → 0. Similarly, by taking any θ such that v(θ) > 0,
we can show that {ν}+ θ ≿ {µ, η}+ θ.

Lemma 16 For all µ, µ′ ∈ ∆(N,c) and θ ∈ Θ(N,c) that is strictly admissible for µ, µ′,

W ({µ, µ′}) + u(θ)−W ({µ+ θ, µ′ + θ})
{

≤ 0 if v(θ) ≤ 0
≥ 0 if v(θ) ≥ 0.

Proof. By Set Betweenness, assume that {µ} ≿ {µ, µ′} ≿ {µ′}. Since u is continuous,
there exists α ∈ [0, 1] such that W ({µ, µ′}) = u(µαµ′). Since µαµ′ + θ = (µ+ θ)α(µ′ + θ),
µαµ′ + θ also belongs to the interior of ∆(N,c). If v(θ) ≤ 0, Lemma 15 implies

W ({µ+ θ, µ′ + θ)}) ≥ u(µαµ′ + θ) = u(µαµ′) + u(θ) = W ({µ, µ′}) + u(θ).

The same argument can be applicable when v(θ) ≥ 0.
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Lemma 17 Take all µ, µ′, η, η′ ∈ ∆ with finite supports. Assume that {µ} ≻ {µ, η} ≻ {η}
and {µ′} ≻ {µ′, η′} ≻ {η′}. Then,

v(η) = v(η′), v(µ) = v(µ′) =⇒ u(µ)−W ({µ, η}) = u(µ′)−W ({µ′, η′}).

Proof. Let c ≡ {c1, · · · , cN} ⊂ C be the union of the supports of µ, µ′, η, η′. Hence, these
lotteries belong to ∆(N,c). Take a lottery ν in the interior of ∆(N,c). For all α ∈ (0, 1)
sufficiently close to one, let a ≡ µαν, b ≡ ηαν, a′ ≡ µ′αν, b′ ≡ η′αν ∈ ∆(N,c). Continuity
implies {a} ≻ {a, b} ≻ {b} and {a′} ≻ {a′, b′} ≻ {b′}. Furthermore, v(b) = αv(η) + (1 −
α)v(ν) = αv(η′)+(1−α)v(ν) = v(b′) and v(a) = αv(µ)+(1−α)v(ν) = αv(µ′)+(1−α)v(ν) =
v(a′).

Step 1 : We claim that if θ ≡ a′ − a ∈ Θ(N,c) is strictly admissible for b, then u(a) −
W ({a, b}) = u(a′) −W ({a′, b′}). Since v is mixture linear, v(θ) = v(a′) − v(a) = 0, and
v(b + θ) = v(b) + v(θ) = v(b′). Since u(a) > W ({a, b}) > u(b) and v(θ) = 0, Lemma 16
implies that

u(a+ θ) = u(a) + u(θ) > W ({a, b}) + u(θ) = W ({a+ θ, b+ θ}) > u(b) + u(θ) = u(b+ θ),

that is, {a+ θ} ≻ {a+ θ, b+ θ} ≻ {b+ θ}. Equivalently, {a′} ≻ {a′, b+ θ} ≻ {b+ θ}. Since
v(b + θ) = v(b′), by Lemma 2 of Noor and Takeoka [32], {a′, b′} ∼ {a′, b + θ}. Thus, from
Lemma 16,

W ({a′, b′}) = W ({a+ θ, b+ θ}) = W ({a, b}) + u(θ) = W ({a, b}) + u(a′)− u(a)

⇔ u(a)−W ({a, b}) = u(a′)−W ({a′, b′}).

Since v(b) = v(b′), from Lemma 12, for all β ∈ [0, 1], {aβa′} ≻ {aβa′, bβb′} ≻ {bβb′}.
Notice also that aβa′, bβb′ ∈ ∆(N,c) for all β ∈ [0, 1].

Step 2 : We claim that for all β ∈ [0, 1], there exists a relative open interval O(β)
containing β such that for all β̃ ∈ O(β),

u(aβ̃a′)−W ({aβ̃a′, bβ̃b′}) = u(aβa′)−W ({aβa′, bβb′}). (16)

Since v(b) = v(b′) and v(a) = v(a′), we have, for all β̃ ∈ [0, 1], v(bβ̃b′) = v(bβb′) and
v(aβ̃a′) = v(aβa′). Let θ ≡ aβa′ − aβ̃a′ ∈ Θ(N,c). Notice that

bβ̃b′ + θ = (ηβ̃η′)αν + (β − β̃)(a− a′).

Since (ηβη′)αν is in the interior of ∆(N,c), there exists a relative open interval O(β) con-

taining β such that (ηβ̃η′)αν + (β − β̃)(a − a′) ∈ ∆(N,c) for all β̃ ∈ O(β). That is, for all

β̃ ∈ O(β), θ is strictly admissible for bβ̃b′. Thus, by Step 1, we have (16).
Step 3 : We claim that u(a) −W ({a, b}) = u(a′) −W ({a′, b′}). Let O(β) be an open

interval containing β ∈ [0, 1] guaranteed by Step 2. Since {O(β)|β ∈ [0, 1]} is an open
cover of [0, 1], there exists a finite subcover, denoted by {O(βi)|i = 1, · · · , I}. Without
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loss of generality, assume βi ≤ βi+1. Define β0 = 0 and βI+1 = 1. Since β0 ∈ O(β1) and
βI+1 ∈ O(βI), from Step 2,

u(a′)−W ({a′, b′}) = u(aβ1a′)−W ({aβ1a′, bβ1b′}) =
... = u(aβIa′)−W ({aβIa′, bβIb′}) = u(a)−W ({a, b}).

From Step 3, for all α ∈ (0, 1) sufficiently close to one,

u(µαν)−W ({µαν, ηαν}) = u(µ′αν)−W ({µ′αν, η′αν}).

Continuity ensures that u(µ)−W ({µ, η}) = u(µ′)−W ({µ′, η′}) as α→ 1.

Lemma 18 For all µ, µ′, η, η′ ∈ ∆ such that {µ} ≻ {µ, η} ≻ {η} and {µ′} ≻ {µ′, η′} ≻
{η′},

v(η) = v(η′), v(µ) = v(µ′) =⇒ u(µ)−W ({µ, η}) = u(µ′)−W ({µ′, η′}).

Proof. Define µn = η 1
n
µ, ηn = µ 1

n
η, µ′

n = η′ 1
n
µ′ and η′n = µ′ 1

n
η′. Then, µn → µ, ηn → η,

µ′
n → µ′, and η′n → η′. For all sufficiently large n, by Continuity, {µn} ≻ {µn, ηn} ≻ {ηn}

and {µ′
n} ≻ {µ′

n, η
′
n} ≻ {η′n}. Moreover, v(µn) = v(µ′

n) and v(ηn) = v(η′n).
For all sufficiently large n, let O(µn) be the 1

n
-neighborhood of µn. Since the set of

lotteries with finite supports is dense in ∆, we can find µ+
n , µ

−
n ∈ O(µn) with finite supports

such that v(µ−
n ) < v(µn) < v(µ+

n ). Define

µ̃n ≡ µ+
n

(
v(µn)− v(µ−

n )

v(µ+
n )− v(µ−

n )

)
µ−
n .

Then, v(µ̃n) = v(µn) and µ̃n has a finite support. Moreover, by the triangle inequality,

d(µ̃n, µ) ≤ d(µ̃n, µn) + d(µn, µ) → 0,

as n → ∞. Similarly, we can construct η̃n, µ̃
′
n, and η̃′n for all sufficiently large n. Then,

µ̃n, η̃n, µ̃
′
n, and η̃

′
n satisfy the assumptions of Lemma 17. For all such n, we have u(µ̃n)−

W ({µ̃n, η̃n}) = u(µ̃′
n)−W ({µ̃′

n, η̃
′
n}). Continuity of u andW implies that u(µ)−W ({µ, η}) =

u(µ′)−W ({µ′, η′}), as desired.

Lemma 19 (i) φ is well-defined.
(ii) For any (l, w) ∈ A and α ∈ (0, 1),

φ(l, αw) = αφ(l, w).

(iii) φ(l, ·) is strictly increasing and continuous in the interior of A(l).
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Proof. (i) By Lemma 18, if µ, η, µ′, η′ ∈ ∆ and v(η) = v(η′), v(η) − v(µ) = v(η′) − v(µ′),
{µ} ≻ {µ, η} ≻ {η} and {µ′} ≻ {µ′, η′} ≻ {η′}, then in particular v(µ′) = v(µ) and
v(η′) = v(η), and thus u(µ)−W ({µ, η}) = u(µ′)−W ({µ′, η′}). Thus φ is well-defined.

(ii) Take any (w, l) ∈ A and suppose µ, η are such that v(η) = l, v(η) − v(µ) = w
and {µ} ≻ {µ, η} ≻ {η}. Suppose {µ, η} ∼ {ν} for some ν (assured by the argument of
Lemma 8 (ii)). By Lemma 10 (ii), {µαη} ≻ {µαη, η} ≻ {η}.Moreover, v(η)−v(µαη) = αw.
Now observe that

u(ναη) = W ({µ, η})αu(η) = u(µαη)− αφ(l, w)

W ({µαη, η}) = u(µαη)− φ(l, αw).

Therefore, Linear Self-Control implies the result.
(iii) First we show that φ(l, ·) is strictly increasing. Take any two points w1, w2 in the

interior of A(l) with w1 < w2. Since A(l) is an interval, there exists w̃ in the interior of A
such that w2 < w̃. Let αi ≡ wi

w̃
for i = 1, 2. By part (ii),

φ(l, w1) = α1φ(l, w̃) < α2φ(l, w̃) = φ(l, w2).

Hence φ(l, ·) is strictly increasing.
To show continuity, let wn → w in the interior of A(l). Without loss of generality,

assume that there exists w̃ ∈ A(l) such that wn, w ≤ w̃ for all n. Let αn = wn

w̃
and α = w

w̃
.

By part (ii),
φ(l, wn) = αnφ(l, w̃) → αφ(l, w̃) = φ(l, w)

as desired.

Lemma 20 For all (l, w) ∈ A,
φ(l, w) = ψ(l) · w

for some ψ(l) > 0.

Proof. Let A(l) denote the closure of A(l). By Lemma 13 (iii), A(l) is a nondegener-
ate interval containing 0; let A(l) = [0, wl]. Let φ(l, 0) = infw∈A(l) φ(l, w) and φ(l, wl) =
supw∈A(l) φ(l, w). By Lemma 19 (ii), φ(l, 0) = 0. By using φ(l, 0) and φ(l, wl), we can

extend φ(l, w) to A(l). Since φ(l, ·) is strictly increasing and continuous, this extension,
denoted by φ(l, ·), is a unique continuous and strictly increasing extension. Given continu-
ity, the property in Lemma 19 (ii) is satisfied by φ(l, ·) as well. But then for any (l, w) ∈ A,
we have φ(l, w) = φ(l, w) = φ(l, w

wl
wl) = w

wl
φ(l, wl). Indeed, φ(l, w) = w · ψ(l) where

ψ(l) ≡ 1
wl
φ(l, wl) > 0.

Lemma 20 states that ψ(l) is a function defined on LA.
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B.3 Extension of ψ to [0, 1]

Lemma 21 ψ : LA → R++ is (i) continuous, and (ii) increasing.

Proof. (i) For all l such that (l, w) ∈ A for some w, we will show that ψ is continuous
at l. There exist µ, η such that {µ} ≻ {µ, η} ≻ {η}, l = v(η) and w = v(η) − v(µ). By
Continuity, there exists an open neighborhood B(η) of η such that {µ} ≻ {µ, η′} ≻ {η′}
for all η′ ∈ B(η).

We first show that if l < max∆ v, ψ is continuous at l. Since 0 < l < max∆ v, Continuity
implies that there exist ηi ∈ B(η), i = 1, 2, such that l1 ≡ v(η1) < l < v(η2) ≡ l2. Let
ln → l. We want to show that ψ(ln) → ψ(l). For all sufficiently large n, l1 < ln < l2.
Define

ηn ≡

 η
(

ln−l1
l−l1

)
η1 if l1 < ln ≤ l

η
(

l2−ln

l2−l

)
η2 if l ≤ ln < l2.

Since ln → l, we have ηn → η. Especially, ηn ∈ B(η) for all sufficiently large n, and,
hence, {µ} ≻ {µ, ηn} ≻ {ηn}. Moreover, since v is mixture linear, ln = v(ηn). Let
wn = v(ηn)− v(µ). By Lemma 20,

ψ(ln)wn = φ(ln, wn) = u(µ)−W ({µ, ηn}).

Since W is continuous,

lim
n→∞

ψ(ln) = lim
n→∞

u(µ)−W ({µ, ηn})
wn

=
u(µ)−W ({µ, η})

w
= ψ(l).

If l = max∆ v, apply the above argument with assuming l = l2.
(ii) Take (l, w), (l′, w′) ∈ A s.t. l > l′. Let these correspond to µ, η and µ′, η′. We

have v(η) = l > l′ = v(η′). By Lemma 10 (ii), {µαη′} ≻ {µαη′, ηαη′} ≻ {ηαη′}. Hence,
by Lemma 20, u(µαη′) − W ({µαη′, ηαη′}) = ψ(lαl′) · αw. Moreover, by Lemma 10 (i),
{µαη′, ηαη′} ≿ {eµηαη′}, and, hence,

u(µαη′)− ψ(lαl′) · αw ≥ α[u(µ)− ψ(l) · w] + (1− α)u(η′).

Thus, we have ψ(lαl′) ≤ ψ(l). Since ψ is continuous, ψ(l′) ≤ ψ(l) as α→ 0.

Let l = supLA. Define ψ(0) ≡ inf{ψ(l) | l ∈ LA} and ψ(l) ≡ sup{ψ(l) | l ∈ LA}. By
Lemma 21, ψ : [0, l] → R+ is a unique continuous increasing extension.

Lemma 22 Let {µ} ≻ {µ, η} ∼ {η}. If (v(η), v(η) − v(µ)) ∈ A, then u(η) ≥ u(µ) −
φ(v(η), v(η)− v(µ)).

Proof. There exist µ′, η′ such that {µ′} ≻ {µ′, η′} ≻ {η′}, v(η′) = v(η), and v(η′)−v(µ′) =
v(η) − v(µ). Since φ(v(η), v(η) − v(µ)) = φ(v(η′), v(η′) − v(µ′)) = u(µ′) −W ({µ′, η′}), it
suffices to show that u(µ′)−W ({µ′, η′}) ≥ u(µ)− u(η).
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We will claim that u(µ′)−u(η′) > u(µ)−u(η). Suppose otherwise, that is, u(µ)−u(η) ≥
u(µ′)− u(η′). Let

E ≡ {α ∈ [0, 1] | {µαµ′} ≻ {µαµ′, ηαη′} ≻ {ηαη′}}.

By assumption, 0 ∈ E and 1 /∈ E. Moreover, by Continuity, E is open in [0, 1]. Let
ᾱ ≡ supE ∈ (0, 1]. By Continuity, ᾱ /∈ E, and hence

{µᾱµ′} ≻ {µᾱµ′, ηᾱη′} ∼ {ηᾱη′}. (17)

Since u(µ)−u(η) ≥ u(µ′)−u(η′) > φ(v(η′), v(η′)−v(µ′)), v(η) = v(η′), and v(η′)−v(µ′) =
v(η)− v(µ), we have

u(µαµ′)− u(ηαη′) > φ(v(ηαη′), v(ηαη′)− v(µαµ′)) (18)

for all α ∈ [0, 1]. On the other hand, since ᾱ is a supremum of E, there exists a sequence
{αn} in E converging to ᾱ. We have {µαnµ′} ≻ {µαnµ′, ηαnη′} ≻ {ηαnη′}, and hence

u(µαnµ′)− u(ηαnη′) > φ(v(ηαnη′), v(ηαnη′)− v(µαnµ′))

= u(µαnµ′)−W ({µαnµ′, ηαnη′}).

From Continuity and (18),

u(µᾱµ′)− u(ηᾱη′) > u(µᾱµ′)−W ({µᾱµ′, ηᾱη′}),

that is, W ({µᾱµ′, ηᾱη′}) > u(ηᾱη′), which contradicts (17).
Since v(η′) − v(µ′) = v(ηαη′) − v(µαµ′) for all α ∈ E, by Lemma 19 (i), u(µ′) −

W ({µ′, η′}) = u(µαµ′) −W ({µαµ′, ηαη′}). Thus taking Continuity and the above claims
together,

u(µ′)−W ({µ′, η′})
= u(µᾱµ′)−W ({µᾱµ′, ηᾱη′}) = u(µᾱµ′)− u(ηᾱη′)

= ᾱ(u(µ)− u(η)) + (1− ᾱ)(u(µ′)− u(η′)) ≥ u(µ)− u(η),

as desired.
Let

B ≡ {(l, w) ∈ [0, 1]2 | l = v(η), w = v(η)− v(µ) for some {µ} ≻ {µ, η}},
LB ≡ {l ∈ [0, 1] | (l, w) ∈ B for some w},
B(l) ≡ {w ∈ [0, 1] | (l, w) ∈ B}.

Lemma 23 (i) B is convex.
(ii) If (l, w) ∈ B, (αl + (1− α)l′, αw) ∈ B for all l′ ∈ [0, 1] and α ∈ (0, 1).
(iii) LB is a non-degenerate interval satisfying inf LB = 0 and supLB = 1.
(iv) For all l ∈ LB, B(l) is an interval satisfying inf B(l) = 0.
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Proof. (i) Take (li, wi) ∈ B, i = 1, 2 and α ∈ [0, 1]. There exist µi, ηi such that {µi} ≻
{µi, ηi}, li = v(ηi), and wi = v(ηi)−v(µi). Since we have v(ηi) > v(µi) and u(µi) > u(ηi) for
i = 1, 2, mixture linearity of u and v implies u(µ1αµ2) > u(η1αη2) and v(η1αη2) > v(µ1αµ2),
and hence {µ1αµ2} ≻ {µ1αµ2, η1αη2}. Therefore, α(l1, w1) + (1− α)(l2, w2) ∈ B.

(ii) Take any (l, w) ∈ B. There exist µ, η such that {µ} ≻ {µ, η}, l = v(η) and w =
v(η) − v(µ). For all ν with v(ν) = l′, by Temptation Independence, {µαν} ≻ {µαν, ηαν}
for all α ∈ (0, 1). Hence, (αl + (1− α)l′, αw) = (v(ηαν), v(ηαν)− v(µαν)) ∈ B.

(iii) Take any l ∈ LB. By part (ii), αl ∈ LB and αl + (1− α) ∈ LB for all α ∈ (0, 1) as
desired.

(iv) Take w ∈ B(l). By letting l′ = l, part (ii) implies (l, αw) ∈ B for all α ∈ (0, 1).
That is, αw ∈ B(l).

Define F : B → R+ by

F (l, w) ≡ sup{u(µ)− u(η) | l = v(η), w = v(η)− v(µ) for some {µ} ≻ {µ, η}}.

Lemma 24 F is weakly concave.

Proof. Take (li, wi) ∈ B, i = 1, 2, and α ∈ (0, 1). There exist µn
i , η

n
i such that {µn

i } ≻
{µn

i , η
n
i } , li = v(ηni ), wi = v(ηni )−v(µn

i ), and, u(µ
n
i )−u(ηni ) → F (wi). Since v(η

n
i ) > v(µn

i )
and u(µn

i ) > u(ηni ), we have v(ηn1αη
n
2 ) > v(µn

1αµ
n
2 ) and u(µn

1αµ
n
2 ) > u(ηn1αη

n
2 ). Thus

{µn
1αµ

n
2} ≻ {µn

1αµ
n
2 , η

n
1αη

n
2 }. Since αl1 + (1 − α)l2 = v(ηn1αη

n
2 ) and αw1 + (1 − α)w2 =

v(ηn1αη
n
2 )− v(µn

1αµ
n
2 ),

F (αl1 + (1− α)l2, αw1 + (1− α)w2)

≥ lim sup u(µn
1αµ

n
2 )− u(ηn1αη

n
2 )

= lim supα(u(µn
1 )− u(ηn1 )) + (1− α)(u(µn

2 )− u(ηn2 ))

= αF (l1, w1) + (1− α)F (l2, w2).

By Theorem 10.3 [33, p.85], F (l, ·) : B(l) → R+ can be uniquely extended to the closure
of B(l) in a continuous and concave way.

By Lemma 23 (iii), inf LB = 0 and supLB = 1. Take any (l, w) ∈ B. By Lemma 23 (ii),
the interior of the convex hull of {(0, 0), (0, 1), (l, w)} is a subset of B. Since this convex
set is polyhedral, Theorem 10.3 [33, p.85] ensures that F can be uniquely extended to its
closure in a continuous and concave way. Hence, for all l ∈ LB, F (l, 0) is defined by this
extension and F (·, 0) is continuous and concave.

Denote supA(l) = wl. Notice that wl ≤ l. Since A(l) ⊂ B(l), wl ≤ supB(l).

Lemma 25 Take all l ∈ LA.
(i) F (l, w) > ψ(l)w for all w ∈ A(l).
(ii) If wl /∈ A(l), F (l, wl) = ψ(l)wl.
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Proof. (i) Since (l, w) ∈ A, there exist µ, η such that {µ} ≻ {µ, η} ≻ {η}, l = v(η), and
w = v(η)− v(µ). Then,

F (l, w) ≥ u(µ)− u(η) > u(µ)−W ({µ, η}) = ψ(l)w.

(ii) Since F (l, ·) : B(l) → R+ is continuous, part (i) implies F (l, wl) ≥ ψ(l)wl. By
contradiction, suppose F (l, wl) > ψ(l)wl = sup{φ(l, w)|w ∈ A(l)}. By Lemma 22, for all
w ∈ A(l) and µ, η such that l = v(η), w = v(η) − v(µ) and {µ} ≻ {µ, η} ∼ {η}, we
have φ(l, w) ≥ u(µ) − u(η). Thus there exist sequences wn → w, {µn}∞n=1 and {ηn}∞n=1

such that wn = v(bn) − v(an) ∈ A(l), {µn} ≻ {µn, ηn} ≻ {ηn}, and u(µn) − u(ηn) > c >
sup{φ(l, w)|w ∈ A(l)}, where c > 0 is a constant number. Since {µn}∞n=1 and {ηn}∞n=1 are
sequences in ∆, we can assume µn → µ0 and ηn → η0 without loss of generality. Since

u(µn)− u(ηn) > c > φ(v(ηn), v(ηn)− v(µn)) = u(µn)−W ({µn, ηn}),

continuity implies u(µ0)− u(η0) > u(µ0)−W ({µ0, η0}), that is, W ({µ0, η0}) > u(η0). On
the other hand, since wl = v(η0)− v(µ0) > 0 and u(µ0) > u(η0), we have {µ0} ≻ {µ0, η0}.
Hence {µ0} ≻ {µ0, η0} ≻ {η0}, which contradicts wl /∈ A(l).

Lemma 26 Let l ∈ LB.
(i) F (l, 0) > 0 if and only if there exist µ, η such that u(µ) > u(η) and v(µ) = v(η) = l.
(ii) If F (l, 0) > 0, then l ∈ LA.
(iii) If F (l, 0) > 0, then F (l′, 0) > 0 for all l′ ∈ (0, 1).

Proof. (i) First suppose F (l, 0) > 0. By definition, there exists a sequence wn ∈ B(l) such
that wn → 0 and F (l, wn) > c > 0 for some c. Let {µn}, {ηn} be corresponding sequences
that satisfy {µn} ≻ {µn, ηn}, v(ηn) = l, wn = v(ηn)− v(µn), and u(µn)− u(ηn) > c. Since
{µn} and {ηn} are sequences in ∆, without loss of generality, assume that µn → µ and
ηn → η for some µ, η. Since wn → 0, v(µ) = v(η). Moreover, u(µ)− u(η) ≥ c > 0.

Next suppose that u(µ) > u(η) and v(µ) = v(η) = l. Let ν+ and ν− be a maximal
and a minimal lottery with respect to v. For all sufficiently large n, u(ν− 1

n
µ) > u(ν+ 1

n
η)

and v(ν+ 1
n
η) > v(ν− 1

n
µ). Since {ν− 1

n
µ} ≻ {ν− 1

n
µ, ν+ 1

n
η}, (ln, wn) ≡ (v(ν+ 1

n
η), v(ν+ 1

n
η)−

v(ν− 1
n
µ)) ∈ B. Thus,

F (l, 0) = lim
n→∞

F (ln, wn) ≥ lim
n→∞

u(ν−αµ)− u(ν+αη) = u(µ)− u(η) > 0.

(ii) By part (i), there exist µ, η such that u(µ) > u(η) and v(µ) = v(η) = l. By Set
Betweenness, {µ} ≿ {µ, η} ≿ {η}. If {µ} ≻ {µ, η}, we have v(η) > v(µ), which is a
contradiction. Hence, we have {µ} ∼ {µ, η} ≻ {η}. Let ν− be a minimal lottery with
respect to v. Since v(η) = v(µ) = l > 0 = v(ν−), for all small α, u(ν−αµ) > u(η) and
v(η) > v(ν−αµ), and hence, {ν−αµ} ≻ {ν−αµ, η}. Moreover, by Continuity, for all small
α, {ν−αµ, η} ≻ {η}. Hence, by definition, l ∈ LA.

(iii) By contradiction, suppose F (l′, 0) = 0 for some l′ ∈ (0, 1). Assume l < l′. There
exists l′′ ∈ (0, 1) with l′ < l′′. Then, l′ can be written as a convex combination between l
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and l′′, denoted by αl + (1 − α)l′′. Moreover, since LB is an interval with inf LB = 0 and
supLB = 1, l′′ ∈ LB. Since F (·, 0) is concave and F (·, 0) ≥ 0,

F (l′, 0) = F (αl + (1− α)l′′, 0) ≥ αF (l, 0) + (1− α)F (l′′, 0) > 0,

which is a contradiction. The same argument can be applied when l′ < l.

Lemma 27 Let l ∈ LB.
(i) If F (l, 0) = 0, F (l, w) = u(µ) − u(η) for all µ, η such that {µ} ≻ {µ, η}, l = v(η),

and w = v(η)− v(µ).
(ii) If F (l, 0) = 0, F (l, ·) : B(l) → R+ is linear.

Proof. (i) Take all µ, µ′, η, η′ such that {µ} ≻ {µ, η}, {µ′} ≻ {µ′, η′}, l = v(η) = v(η′) and
w = v(η) − v(µ) = v(η′) − v(µ′). Notice that v(µ) = v(µ′). By Lemma 26 (i) and (iii),
since v(η) = v(η′), we must have u(η) = u(η′). Similarly, since v(µ) = v(µ′), we must have
u(µ) = u(µ′). Hence, u(µ)−u(η) = u(µ′)−u(η′). Therefore, we have F (l, w) = u(µ)−u(η).

(ii) Since F (l, 0) = 0, it is enough to show that F (l, ·) is mixture linear on B(l), that
is, F (l, αw1 +(1−α)w2) = αF (l, w1)+ (1−α)F (l, w2) for all w1, w2 ∈ B(l) and α ∈ (0, 1).
There exist µi, ηi, i = 1, 2, such that {µi} ≻ {µi, ηi}, l = v(ηi) and wi = v(ηi)−v(µi). Since
{µ1αµ2} ≻ {µ1αµ2, η1αη2}, part (i) implies that

F (l, αw1 + (1− α)w2) = u(µ1αµ2)− u(η1αη2) = αF (l, w1) + (1− α)F (l, w2).

Lemma 28 Let l ≡ supLA. If l /∈ LA and l ∈ LB, then ψ(l)w ≥ F (l, w) for all w ∈ B(l).

Proof. By contradiction, suppose that ψ(l)w′ < F (l, w′) for some w′ ∈ B(l). By Lemma 26
(ii), we must have F (l, 0) = 0. By Lemma 27 (ii), F (l, ·) is linear. Thus, ψ(l)w < F (l, w)
for all w ∈ B(l).

Take an increasing sequence ln → l. Notice that ln ∈ LA. For all l ∈ LA, denote
w(l) ≡ supA(l). If w(ln) ∈ A(ln), by Lemma 13 (v), w(ln) = ln. If w(ln) /∈ A(ln), by
Lemma 25 (ii), w(ln) is a unique number satisfying F (ln, w(ln)) = ψ(ln)w(ln). Since the
sequence {w(ln)}∞n=1 belongs to [0, 1], there exists a subsequence {w(lm)}∞m=1 converging to
some point w∗ ∈ [0, 1].

Case 1: w∗ > 0. Take any w ∈ (0, w∗). Since w(lm) → w∗, w < w(lm) for all
sufficiently large m. Since w < w∗ ≤ supB(l), (l, w) ∈ B. Hence, there exist µ, η such that
{µ} ≻ {µ, η}, l = v(η), and w = v(η) − v(µ). Let αm ≡ lm

l
∈ (0, 1). Let µm ≡ µαmν−

and ηm ≡ ηαmν−, where ν− is a minimal lottery with respect to v. Then, lm = v(ηm)
and wm ≡ v(ηm) − v(µm) = αmw < w∗ < w(lm). That is, (lm, wm) ∈ A. Moreover, by
Temptation Independence, {µm} ≻ {µm, ηm}. By Set Betweenness, {µm} ≻ {µm, ηm} ≿
{ηm} for all m.

Consider the following two sub-cases:
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(a) For infinitely many m, {µm} ≻ {µm, ηm} ≻ {ηm}. Then, for all such m, ψ(lm)wm =
u(µm)−W ({µm, ηm}). By passing through a corresponding subsequence, ψ(l)w = u(µ)−
W ({µ, η}). On the other hand, by assumption, ψ(l)w < u(µ) − u(η). Hence, we have
{µ} ≻ {µ, η} ≻ {η}, which contradicts l /∈ LA.

(b) For all sufficiently large m, {µm} ≻ {µm, ηm} ∼ {ηm}. Since (lm, wm) ∈ A, by
Lemma 22, we have ψ(lm)wm ≥ u(µm) − u(ηm). Hence, ψ(l)w ≥ u(µ) − u(η) as m → ∞.
Moreover, by Lemma 27 (i), u(µ) − u(η) = F (l, w). Hence, ψ(l)w ≥ F (l, w), which is a
contradiction.

Case 2: w∗ = 0. Take any w ∈ B(l). Since w > 0 and w(lm) → 0, w(lm) < w
for all sufficiently large m. Let µm, ηm be the sequence constructed as in Case 1. Since
wm ≡ v(ηm)− v(µm) → w and w(lm) → 0, we have w(lm) < wm for all sufficiently large m.
Since F (lm, ·) is concave, by Lemma 25 (ii), ψ(lm)wm ≥ F (lm, wm). Thus, ψ(l)w ≥ F (l, w)
as m→ ∞. This is a contradiction.

If l ≡ supLA = 1, ψ : [0, 1] → R+ has been already defined. If l < 1, we must have
F (l, 0) = 0 because of Lemma 26 (ii). Moreover, in this case, by Lemma 26 (iii), F (l, 0) = 0
for all l ∈ (0, 1). Moreover, by Lemma 27 (ii), F (l, ·) : B(l) → R+ is a linear function. Let
f(l) > 0 be its slope, that is, F (l, w) = f(l)w. Since F is concave, so is f : (0, 1) → R++.
By Theorem 10.3 [33, p.85], f admits a unique continuous concave extension to [0, 1].
Abusing notation, denote this extension by f . By Lemma 28, f(l)w = F (l, w) ≤ ψ(l)w,
that is, ψ(l) ≥ f(l). Take any continuous increasing function g : [l, 1] → R+ such that
g(l) = ψ(l) and g(l) ≥ f(l) for all l ∈ [l, 1]. Now define ψ : [0, 1] → R+ by

ψ(l) ≡
{
ψ(l) if l ∈ [0, l],

g(l) if l ∈ (l, 1].

By construction, ψ is a continuous increasing extension of ψ to [0, 1].

B.4 Establishing the Representation

Lemma 29 If {µ} ≻ {µ, η} ∼ {η}, then ψ(v(η))(v(η)− v(µ)) ≥ u(µ)− u(η).

Proof. Denote l = v(η) and w = v(η)− v(µ). By assumption, l ∈ LB. Let l ≡ supLA.
Case 0: If l ∈ LA and w ∈ A(l), by Lemma 22, ψ(l)w = ψ(l)w ≥ u(µ)−u(η) as desired.
Case 1: l ∈ (0, l). We have l ∈ LA. If wl ∈ A(l), we have wl = l, and, hence,

w ∈ A(l) = (0, l]. Hence, Case 0 can be applied. If wl /∈ A(l), by Lemma 25 (ii), we have
ψ(l)w = ψ(l)w ≥ u(µ)− u(η).

Case 2: l = l. If l ∈ LA, LA is not an open interval. Thus we must have l = 1. That is,
LA = (0, 1]. The same argument as in Case 1 can be applied. If l /∈ LA, by Lemma 28, we
have ψ(l)w = ψ(l)w ≥ u(µ)− u(η).

Case 3: l ∈ (l, 1]. By construction, we have ψ(l)w ≥ f(l)w = F (l, w) = u(µ)− u(η) as
desired.
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Lemma 30 For all µ, η,

W ({µ, η}) = max
ν∈{µ,η}

{
u(ν)− ψ

(
max
{µ,η}

v
)(

max
{µ,η}

v − v(ν)

)}
.

Proof. Without loss of generality, assume {µ} ≿ {η}. By Set Betweenness, {µ} ≿ {µ, η} ≿
{η}. There are four cases:

Case (i): {µ} ≻ {µ, η} ≻ {η}. In this case, v(η) > v(µ). By definition of φ and
Lemma 20,

W ({µ, η}) = u(µ)− φ(v(η), v(η)− v(µ))

= u(µ)− ψ(v(η))(v(η)− v(µ)) > u(η).

Thus W ({µ, η}) can be expressed as the desired form.
Case (ii): {µ} ≻ {µ, η} ∼ {η}. We have v(η) > v(µ). By Lemma 29,

W ({µ, η}) = u(η) ≥ u(µ)− ψ(v(η))(v(η)− v(µ)),

as desired.
Case (iii): {µ} ∼ {µ, η} ≻ {η}. By construction of v, v(µ) ≥ v(η). Since ψ(v(µ))(v(µ)−

v(η)) ≥ 0, we have

W ({µ, η}) = u(µ) > u(η)− ψ(v(µ))(v(µ)− v(η)).

Thus, W ({µ, η}) is represented by the desired form.
Case (iv): {µ} ∼ {µ, η} ∼ {η}. If v(η) ≥ v(µ), W ({µ, η}) = u(η) ≥ u(µ) −

ψ(v(η))(v(η)− v(µ)). If v(µ) ≥ v(η), we have W ({µ, η}) = u(µ) ≥ u(η)− ψ(v(µ))(v(µ)−
v(η)). In either case, W ({µ, η}) is represented by the desired form.

By using all binary menus {µ, η}, define c : ∆× v(∆) → R+ by

c
(
µ,max

{µ,η}
v
)
≡ ψ

(
max
{µ,η}

v
)(

max
{µ,η}

v − v(µ)

)
.

Since ψ is continuous and weakly increasing, c(µ, ·) is weakly increasing for all µ and c is
continuous. Since ≿ satisfies Set Betweenness, by Lemma 5 of Noor and Takeoka [32], the
representation can be extended to the set of all finite menus. That is, for all finite menus
x ∈ Z,

W (x) = max
ν∈x

{
u(ν)− c

(
ν,max

x
v
)}

= max
ν∈x

{
u(ν)− ψ

(
max

x
v
)(

max
x

v − v(ν)
)}

.

Finally, by Continuity and Lemma 6 of Noor and Takeoka [32], the representation can be
extended to Z as desired.
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C Appendix: Proof of Corollary 1

Define u, v : ∆ → [0, 1] and ψ : LA → R++ as in the proof of Theorem 3. By the same
argument as in Lemma 21 (ii) together with assuming {µ, η}α{ν} ∼ {eµη}α{ν}, we can
show the next lemma. A proof is omitted.

Lemma 31 ψ : LA → R++ is constant, that is, for all l, l′ ∈ LA, ψ(l) = ψ(l′).

Recall the function F : B → R+, defined as in the proof of Theorem 3. Let l ≡ supLA.
By abusing notation, let ψ be a unique constant extension of ψ to [0, l]. Define ψ : [0, 1] →
R++ as a unique extension of ψ that is constant on [0, 1]. If l = 1, ψ = ψ : [0, 1] → R++.
If l < 1, we must have F (l, 0) = 0 because of Lemma 26 (ii). Moreover, in this case, by
Lemma 26 (iii), F (l, 0) = 0 for all l ∈ (0, 1). Moreover, by Lemma 27 (ii), F (l, ·) : B(l) →
R+ is a linear function. Let f(l) > 0 be its slope, that is, F (l, w) = f(l)w. Since F is
concave, so is f : (0, 1) → R++. By Theorem 10.3 [33, p.85], f admits a unique continuous
concave extension to [0, 1]. Abusing notation, denote this extension by f . By Lemma 28,
f(l)w = F (l, w) ≤ ψw, that is, ψ ≥ f(l). By Lemma 25 (i), f(l) > ψ for all l < l. Since
f is concave, we must have ψ ≥ f(l) for all l ∈ (l, 1]. That is, this constant function
ψ : [0, 1] → R++ satisfies

ψ

{
= ψ if w ∈ [0, l],

≥ f(l) if w ∈ (l, 1].

By Lemmas 29, 30 and the subsequent argument, the components (u, v, ψ) is a MDSC
representation of ≿.

D Appendix: Proof of Theorem 4

Since u and u′ represent the same commitment preference, they must be ordinally equiva-
lent. Moreover, since both are also linear and continuous, there exist constants αu > 0 and
βu such that u′ = αuu+ βu.

In case of temptation utility functions, Theorem 2 ensures that there exist constants
αv > 0 and βv such that v′ = αvv + βv.

Let W : Z → R and W ′ : Z → R be the representations associated with (u, v, ψ) and
(u′, v′, ψ′), respectively. Now we show that following lemma:

Lemma 32 For all x, W ′(x) = αuW (x) + βu.

Proof. As shown in Lemma 8 (ii), there exists a unique function α : Z → [0, 1] such that
x ∼ {µ∆α(x)µ∆} for all x,where µ∆ and µ∆ are respectively the best and worst lotteries
in ∆ according to commitment preference. Thus, for all x,

W ′(x) = u′(µ∆α(x)µ∆) = αuu(µ
∆α(x)µ∆) + βu = αuW (x) + βu,

as was to be shown.
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Now take any l ∈ L. By definition, there exists µ, η such that v(η) = l and {µ} ≻
{µ, η} ≻ {η}. By Lemma 32 and the representations,

W ′({µ, η}) = αuW ({µ, η}) + βu

⇒ u′(µ)− ψ′(v′(η))(v′(η)− v′(µ)) = αu(u(µ)− ψ(v(η))(v(η)− v(µ))) + βu

⇒ αuu(µ) + βu − αvψ
′(αvl + βv)(v(η)− v(µ)) = αu(u(µ)− ψ(v(η))(v(η)− v(µ))) + βu.

Thus, we have ψ′(αvl + βv) =
αu

αv
ψ(l) as desired.

E Appendix: Proof of Theorem 5

E.1 Sufficiency

By hypothesis, ≿ admits a MDSC representation (u, v, ψ). We show that C must have
the desired representation. To ease notation, let wx(µ) := u(µ) − c(µ,maxx v) := u(µ) −
ψ(maxx v)(maxx v − v(µ)).

Lemma 33 If µ ∈ argmax{µ,η}w{µ,η} and η ∈ argmax{µ,η} v then µ ∈ C({µ, η}).

Proof. First we show that {η} ≻ {µ} is not possible. Consider two cases: If {η} ≿
{µ, η} ≻ {µ}, then the representation implies u(η)− c(η, v(η)) > u(µ) ≥ u(µ)− c(µ, v(η)),
contradicting the definition of µ. If {η} ≻ {η, µ} ∼ {µ}, but then the representation implies
η ̸∈ argmax{µ,η} v, contradicting the definition of η. Conclude that {µ} ≿ {η} must hold.

Assume {µ} ≻ {η}. First of all, if v(η) = v(µ), the representation implies {µ} ∼
{µ, η} ≻ {η}, and hence, by Sophistication, µ ∈ C({µ, η}), as desired. From now on,
assume v(η) > v(µ).

By assumption, u(µ) + ψ(v(η))v(µ) ≥ u(η) + ψ(v(η))v(η). If u(µ) + ψ(v(η))v(µ) >
u(η) + ψ(v(η))v(η), the representation implies {µ, η} ≻ {η}, and hence, by Sophistication,
µ ∈ C({µ, η}).

Now consider the case that u(µ) + ψ(v(η))v(µ) = u(η) + ψ(v(η))v(η). Let ν∗ ∈
argmax∆(u + ψ(v(η))v) and ν∗ ∈ min∆(u + ψ(v(η))v). If µ /∈ argmax∆(u + ψ(v(η))v),
for all α ∈ (0, 1), u(µαν∗) + ψ(v(η))v(µαν∗) > u(η) + ψ(v(η))v(η). Moreover, for all α
sufficiently close to one, v(η) > v(µαν∗). Thus, by the representation, {µαν∗, η} ≻ {η} for
all such α. Sophistication in turn yields µαν∗ ∈ C({µαν∗, η}). By upper hemicontinuity of
C, µ ∈ C({µ, η}) as α→ 1.

If µ ∈ argmax∆(u+ψ(v(η))v), let νβ ≡ µβν∗ for β ∈ (0, 1). Since u(µ)+ψ(v(η))v(µ) =
u(η)+ψ(v(η))v(η), we have u(η)+ψ(v(η))v(η) > u(νβ)+ψ(v(η))v(νβ) for all β. Moreover,
since v(η) > v(µ), for all β sufficiently close to one, v(η) > v(νβ). Fix such a β arbitrarily.
Then, for all α ∈ (0, 1), u(µ) +ψ(v(η))v(µ) > u(ηανβ) +ψ(v(η))v(ηανβ). Moreover, for all
α sufficiently close to one, v(ηανβ) > v(µ). Since ψ is non-decreasing,

u(µ)− ψ(v(ηανβ))(v(ηανβ)− v(µ))

≥ u(µ)− ψ(v(η))(v(ηανβ)− v(µ))

> u(ηανβ),

45



and thus, the representation implies {µ, ηανβ} ≻ {ηανβ}, and Sophistication in turn yields
µ ∈ C({µ, ηανβ}). By upper hemicontinuity of C, µ ∈ C({µ, η}) as α→ 1.

If {µ} ∼ {η}, then together with v(η) ≥ v(µ) it must be that u(η) ≥ u(µ)− c(µ, v(η)).
However, by definition of µ the reverse inequality also holds, and thus u(η) = u(µ) −
c(µ, v(η)). This in turn implies that c(µ, v(η)) = 0 and so v(η) = v(µ). Consider the
lotteries µ′, η′ s.t. {µ′} ∼ {µ′, η′} ≻ {η′} guaranteed by nondegeneracy∗. Then {µαµ′} ∼
{µαµ′, ηαη′} ≻ {ηαη′} for all α, and by Sophistication, C({µαµ′, ηαη′}) = {µαµ′} for all
α. By upper hemicontinuity of C, µ ∈ C({µ, η}), as desired.

Lemma 34 Result.

Proof. Take any nonsingleton menu x.
Step 1: Show argmaxxwx ⊂ C(x).
Let µ ∈ argmaxxwx. Take any ν ∈ C(x) and η ∈ argmaxx v. By the previous lemma,

µ ∈ C({µ, η}). Given that w{µ,ν,η}(ν) = wx(ν) ≤ wx(µ) = w{µ,ν,η}(µ) and v(η) ≥ v(ν), the
representation implies

{µ, η} ∼ {µ, ν, η} ∼ x.

Observe that {µ, η} temptation-dominates ν: Since η ∈ argmaxx v, {η} ≻ {ν, η} is
ruled out. If {ν, η} ≻ {ν}, then we have {η} ∼ {ν, η} ≻ {ν} and so η weakly tempts ν.
The remaining case is where {ν} ≿ {ν, η} ≿ {η}. Here for all α ∈ (0, 1),

{ναµ∗} ≻ {ναµ∗, ηαη∗}.

In particular, η is temptation-ranked weakly higher than ν. Thus {µ, η} temptation-
dominates ν.

Thus, by Sophistication, {µ, ν, η} ∼ {µ, η} implies C({µ, ν, η}) ̸= {ν}. If µ ∈ C({µ, ν, η}),
then given that {µ, ν, η} ∼ x and ν ∈ C(x), Weak WARP implies that µ ∈ C(x), as desired.
If on the other hand η ∈ C({µ, ν, η}), then a similar argument yields η ∈ C(x). However,
given we established at the start of the proof that µ ∈ C({µ, η}), Weak WARP therefore
implies µ ∈ C(x), as desired.

Step 2: Show C(x) ⊂ argmaxxwx.
Let ν ∈ C(x). Take any µ ∈ argmaxxwx and η ∈ argmaxx v. Then by the representa-

tion
x ∼ {µ, η} ∼ {µ, ν, η}.

Since clearly µ ∈ argmax{µ,ν,η}w{µ,ν,η}, Step 1 implies that µ ∈ C({µ, ν, η}). By Weak
WARP, ν ∈ C({µ, ν, η}) also holds. Therefore C({µ, ν, η}) ̸= {µ}, and so Sophistication
implies {ν, η} ≿ {µ, ν, η}. Also, since µ ∈ argmax{µ,ν,η}w{µ,ν,η}, the representation implies
{µ, ν, η} ≿ {ν, η}. Therefore, we have determined that

{µ, ν, η} ∼ {ν, η},

and µ, ν ∈ C({µ, ν, η}). Note that by transitivity, x ∼ {ν, η}, and so Weak WARP also
implies ν ∈ C({ν, η}).
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Next we show that W ({ν, η}) = u(ν)− c(ν, v(η)). Consider four cases:
1. {η} ≻ {ν} : Then v(η) ≥ v(ν) and the representation implies {η} ∼ {η, ν} ≻ {ν},

which by Sophistication implies ν ̸∈ C({ν, η}), a contradiction.
2. {ν} ≿ {ν, η} ≻ {η}: Then the representation implies W ({ν, η}) = u(ν)− c(ν, v(η)).
3. {ν} ≻ {ν, η} ∼ {η}: Then by Sophistication, η ∈ C({ν, η}), and we also know from

before that ν ∈ C({ν, η}). Therefore we have {ν} ≻ {ν, η} and C({ν, η}) = {ν, η}. By ex
post Decreasing Self-Control, C({ν, ναη}) = {ν} for all α ∈ (0, 1), which by Sophistication
implies {ν, ναη} ≻ {ναη}. By the representation, we therefore see that W ({ν, ναη}) =
u(ν) − c(ν, v(ναη)) for all α, and thus by continuity of the representation, we see that
W ({ν, η}) = u(ν)− c(ν, v(η)).

4. {ν} ∼ {ν, η} ∼ {η}: Then by nondegeneracy∗ there are µ∗, η∗ s.t. {ναµ∗} ≻
{ναµ∗, ηαη∗} ≿ {ηαη∗} for all α. As in the previous cases, it follows thatW ({ναµ∗, ηαη∗}) =
u(ναµ∗)−c(ναµ∗, v(ηαη∗)) for all α and thus by continuity of the representation,W ({ν, η}) =
u(ν)− c(ν, v(η)).

This establishes thatW ({ν, η}) = u(ν)−c(ν, v(η)). To conclude the proof, observe that
by the representation, {µ, ν, η} ∼ {ν, η} implies

u(µ)− c(µ, v(η)) = u(ν)− c(ν, v(η)).

Since µ ∈ argmaxxwx, it follows that ν ∈ argmaxxwx, as desired.

E.2 Necessity

Lemma 35 Weak WARP is necessary.

Proof. Suppose µ, η ∈ x ∩ y, x ∼ y, µ ∈ C(x) and η ∈ C(y) but µ ̸∈ C(y). Then

u(µ)− c(µ,max
x

v) = W (x) = W (y) = u(η)− c(η,max
y
v) > u(µ)− c(µ,max

y
v),

and in particular, c(µ,maxx v) < c(µ,maxy v) and maxx v < maxy v. Then

u(η)− c(η,max
x

v) > u(η)− c(η,max
y
v) = u(µ)− c(µ,max

x
v),

where the equality is observed earlier. But then it must be that µ ̸∈ C(x), a contradiction.

Lemma 36 ex post Decreasing Self-Control is necessary.

Proof. Suppose {µ} ≻ {µ, η}. Since µ ∈ C({µ, η}), u(µ) − ψ(v(η))(v(η) − v(µ)) ≥ u(η).
Mixing both sides of the equality with u(µ) yields

u(ηαµ)
≤ α [u(µ)− ψ(v(η))(v(η)− v(µ))] + (1− α)u(µ)
= u(µ)− αψ(v(η))(v(η)− v(µ))
= u(µ)− ψ(v(η))(v(ηαµ)− v(µ))
< u(µ)− ψ(v(ηαµ))(v(ηαµ)− v(µ)). Thus C({µ, µαη}) = {µ} for all α ∈ (0, 1).
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Lemma 37 Sophistication is necessary.

Proof. For any ν ∈ x,

W (x) ≥ u(ν)− c(ν,max
x

v) ≥ u(ν)− c(ν, max
x∪{µ}

v).

Therefore,W (x∪{µ}) > W (x) ≥ u(ν)−c(ν,maxx∪{µ} v) for all ν ∈ x, from which it follows
that the choice from x ∪ {µ} cannot be in x. Thus, C(x ∪ {µ}) = {µ}. For the converse,
suppose C(x ∪ {µ}) = {µ}. Since v(µ) ≤ v(η), we have that for all ν ∈ x

W (x ∪ {µ}) = u(µ)− c(µ, max
x∪{µ}

v) > u(ν)− c(ν, max
x∪{µ}

v) = u(ν)− c(ν,max
x

v),

and in particular, W (x ∪ {µ}) > W (x), as desired.
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