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Abstract

A robust �nding in experiments on time preference is the magnitude ef-
fect: subjects tend to be more patient towards larger rewards. Using a cal-
ibration theorem, we argue against standard curvature-based explanations
for the �nding. We axiomatize a model of preferences over dated rewards
that generalizes the standard exponential discounting model by permitting
the discount factor to depend on the reward being discounted. The model
is shown to behaviorally subsume the hyperbolic discounting model as a
special case. When embedded in a sequential bargaining game the model
gives rise to multiple stationary subgame perfect equilibria. There may ex-
ist equilibria in which the �rst mover gets a smaller share despite also being
the more patient player.
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1. Introduction

Most existing models of intertemporal choice hypothesize that agents evaluate
time and money separately when making intertemporal trade-o¤s. Such models
posit that preferences % over dated rewards (alternatives of the form (m; t) that
specify a reward $m to be received at time t) admit a representation of the form:

U(m; t) = D(t)u(m);

where time t is evaluated according to the discount function D(t) and money m
according to the instantaneous utility index u(m). We refer to this model as the
Separable Discounted Utility (SDU) model. Exponential discounting is the special
case where D(t) = �t for a discount factor � 2 (0; 1). Hyperbolic discounting
(Ainslie [1], Loewenstein and Prelec [6]) is the special case where D(t) = 1

1+t
.

Motivation. A highly robust �nding in the experimental literature is that esti-
mated discount functions exhibit a magnitude e¤ect : subjects appear to exhibit
greater patience toward larger rewards. For instance, Thaler [10] �nds that sub-
jects were on average indi¤erent between $15 now and $60 in a year, $250 now and
$350 in a year, and $3000 now and $4000 in a year, suggesting a (yearly) discount
factor of 0.25, 0.71 and 0.75 respectively (see [4] for a review of the evidence). Ob-
serve that the magnitude e¤ect is a property of how money (as opposed to utility)
is discounted. Researchers since Loewenstein and Prelec [6] have argued that it
may simply be a re�ection of the curvature of utility for money.1 Indeed, Loewen-
stein and Prelec [6] explain the magnitude e¤ect in terms of a u that satis�es a
�subproportionality�property.
However, observed money-discount functions exhibit very extreme magnitude

e¤ects, giving rise to extreme money-discounting of small m, such as the fact that
a $60 reward is discounted by a factor of 0:25 in the evidence cited above. This
suggests that the curvature of u required to accommodate the evidence may be
extreme. In Appendix A we present a simple calibration theorem that expresses

1To see this formally, suppose an agent reveals that $ (m; t) received now is as good as re-
ceiving (m; t). Under the SDU model,  (m; t) satis�es u( (m; t)) = D(t)u(m), and consequently
the money-discount function is given by

�(m; t) :=
 (m; t)

m
=
u�1(D(t)u(m))

m
:

Clearly, if u is not linear, � will generically be magnitude-dependent.
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that this is indeed the case.2 To illustrate, suppose that subjects in experiments
respect the SDU model with concave u extended to consumption streams. Then
the above cited evidence implies the following: if a subject�s next-year wealth
is increased by $60, then the agent will reject an opportunity for investing any
amount $x today that pays $4x next year. Thus, for instance, the agents in the
noted evidence would not pay $3000 now for $12; 000 in a year.3 Such behavior is
arguably implausible, which leads us to consider a model of the magnitude e¤ect
that does not explain it in terms of curvature of utility.

This Paper. There are several reasons why it may be intuitive that subjects
are inherently more patient toward larger rewards. If discounting arises due to
diminished visibility of the future (Pigou [8]), agents may �nd it optimal to exert
greater e¤ort thinking about and paying attention to larger future rewards. Al-
ternatively, impatience may be a temptation, and an agent may be more inclined
to exert self-control when dealing with larger stakes. Interpreting the magnitude
e¤ect as re�ecting a property of underlying discount functions, we introduce and
study the Magnitude E¤ect Discounting (MED) model :

U(m; t) = �(m)t � u(m);

where the discount factor �(m) 2 (0; 1) is an increasing function of rewards. Thus,
the more desirable a reward, the more patient is the agent towards it. The MED
model is a nonseparable generalization of the standard exponential discounting
model that allows for the discount factor to depend on the magnitude of the
reward.
We explore how the behavioral properties of the MED model relate to those

of hyperbolic discounting. Hyperbolic discounting relaxes exponential discounting
while maintaining magnitude-independent discounting. We �nd that any property
of preferences % that is explicable by this is also explicable by relaxing magnitude-
independent impatience while maintaining exponential discounting. Formally, the
MED model behaviorally subsumes the hyperbolic discounting model. To illus-
trate, consider the behavioral pattern known as preference reversals, which express

2We are grateful to Yusufcan Masatlioglu and a referee for suggesting that we prove a cali-
bration theorem. The result we present in the Appendix holds for whatever given time path of
wealth levels the agent anticipates, and in particular does not rely on assumptions about choices
at di¤erent wealth levels as in Rabin [9].

3Note that the agent rejects investing at 400% rate of return although (by the magnitude
e¤ect) he exhibits substantial patience toward a $12,000 reward: while his observed money-
discount factor for $4000 is 0.75 it would be even higher for $12,000.
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lower impatience in more distant trade-o¤s (see Section 3). Such behavior has re-
ceived much attention in economics and is commonly attributed to hyperbolic
discounting �indeed it seems unrelated to the magnitude e¤ect. Yet such behav-
ior is characteristic of the MED model. Intuitively, while an agent may prefer a
small immediate reward to a larger later reward simply due to impatience, push-
ing both rewards into the future will make the larger later reward more relatively
attractive since it will be discounted at a lower rate than the smaller earlier re-
ward. Thus with su¢ cient delay, the larger later reward will be preferred, giving
rise to a preference reversal and causing the agent to appear more impatient in
closer trade-o¤s and less impatient in distant ones.
We also consider an application of the MED model that embeds it in a se-

quential bargaining game. Under the SDU model, there is a unique stationary
subgame perfect equilibrium and a �rst mover advantage. In contrast, the MED
model gives rise to multiple stationary subgame perfect equilibria, and there may
exist equilibria in which the �rst mover gets a smaller share despite also being the
more patient player. The intuition is that the e¤ective degree of impatience of a
player is now dependent on what o¤er he expects to receive from the other player
in the next period. Therefore, even if one player is more patient than the other
for any given future reward, expectations of low o¤ers may make him e¤ectively
more impatient than the other.

Related Literature. Various theoretical studies have generalized the standard
exponential discounting model in di¤erent ways in order to accommodate the
experimental �ndings on intertemporal choice. Loewenstein and Prelec [6] and
Harvey [5] axiomatize the hyperbolic discounting model to accommodate prefer-
ence reversals and dynamic inconsistency. Ok and Masatlioglu [7] generalize the
SDU model to accommodate evidence of intransitivity. A common feature of these
studies is that they maintain the separability between the evaluation of time and
money. Motivated by the evidence of the magnitude e¤ect, this paper departs
precisely from this feature. There are few papers in the theoretical literature that
study the magnitude e¤ect. As noted earlier, Loewenstein and Prelec [6] explain
the magnitude e¤ect in terms of the curvature of utility. Recently, Baucells and
Heukamp [2] consider a model of preferences over �probabilistic dated rewards�
that encodes time is the form of probability. An important aspect of the model is
the fact that the rate at which time is exchanged with probability can depend on
the outcome �this feature can accommodate greater patience toward larger re-
wards. With the probability dimension shut down, their model has a more general
structure than ours: w(�(m)t)u(m), where w is an increasing continuous function.
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Beside this, there is no overlap between the set of formal results presented in the
papers. Their paper seeks to enrich expected discounted utility in order to capture
experimental �ndings on time and risk, while ours is focused on the implications
of the magnitude e¤ect for intertemporal choice behavior.

The remainder of the paper is organized as follows. Section 2 studies the
foundations of the MED model. Section 3 demonstrates the intimate connection
between the MED model and preference reversals, and establishes the relationship
with the hyperbolic discounting model. Section 4 considers an application to
sequential bargaining theory. Section 5 o¤ers concluding remarks. All proofs are
relegated to appendices.

2. The Magnitude E¤ect Discounting Model

In this section we present the axiomatic underpinnings of the MED model. Time
is continuous and given by T = R+, with generic elements t; t0. The set of all
possible rewards is M = R+, with generic elements m;m0; s; l. Both T and M
are endowed with the usual topology. The set of dated rewards is X =M� T ,
and is endowed with the product topology. The primitive is a preference relation
% over X. Such preference data forms the basis for the majority of experiments
on time preference.

2.1. Axioms and De�nitions

We impose standard regularity properties on %.

De�nition 2.1 (Regularity). A preference % over X is regular if it satis�es:
1- Order: % is complete and transitive.
2- Continuity: For each (m; t), the sets f(m0; t0) : (m0; t0) % (m; t)g and

f(m0; t0) : (m; t) % (m0; t0)g are closed.
3- Impatience:
(i) For all m > 0 and t < t0; (0; t) � (0; t0) and (m; t) � (m; t0).
(ii) For each m;m0 such that m0 > m > 0, there is t such that (m; 0) � (m0; t).
4-Monotonicity: For all t, if s < l then (l; t) � (s; t).

Order and Continuity are standard. Impatience states that earlier receipt of
a m > 0 reward is always better, the receipt of the 0 reward is a matter of
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indi¤erence, and moreover any reward can be made arbitrarily unattractive with
su¢ cient delay. Monotonicity states that more is better at any t.
The axiomatization of the exponential discounting model by Fishburn and

Rubinstein [3, Thm 3] imposes a Stationarity axiom:4 for all s; l; � ; t,

(s; 0) � (l; �) =) (s; t) � (l; t+ �):

Recall that Impatience states that a dated reward loses its attractiveness with
delay. According to Stationarity, if (s; 0) � (l; �), then both the rewards lose
attractiveness at the same rate as they are delayed by a common number of periods
t. This embodies what may be referred to as date-independent impatience: each
given reward regardless of its date of receipt loses the same total attractiveness
when delayed by an additional t periods.
However, Stationarity implies a lot more than date-independent impatience.

For instance, it implies the following property as well: if (s; 0) � (l; �) and (s0; 0) �
(l0; �) then

(s; t) � (l; T ) =) (s0; t) � (l0; T ): (2.1)

This property is an implication of what may be referred to asmagnitude-independent
impatience: the agent discounts both small and large rewards the same way. To
illustrate, suppose the agent exhibits (800; 0) � (1000; 1) and (5; 0) � (10; 1),
that is, a 1 week delay induces indi¤erence in both the low-magnitude pair and
high-magnitude pair of rewards. The above property requires that if both the
$800 and $5 rewards are pushed into the future by t periods, the $1000 and $10
rewards must be pushed into the future by the same number of periods T in order
to maintain indi¤erence. Evidently, the way the agent trades-o¤ money and time
when dealing with large rewards ($800 and $1000) is precisely the same as when
dealing with small rewards ($5 and $10).
We seek to weaken Stationarity in a way that retains the notion of date-

independent impatience but expunges any form of magnitude-independence. The
following axiom restricts the nature of the dependence of impatience on delay in
the desired manner, but without placing any restriction on how impatience may
depend on the rewards.

De�nition 2.2 (Weak Stationarity). A preference % over X exhibits Weak
Stationarity if for any 0 < s � l, any � ; T (that may depend on s; l) and any

4To be precise, Fishburn and Rubinstein [3, Thm 3] use a slightly stronger version that states
[(s; t) � (l; t + �) =) (s; t0) � (l; t0 + �)]. However, our Impatience axiom is slightly stronger,
and under it the two version of Stationarity are equivalent.
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t; � > 0,

(s; 0) � (l; �) and (s; t) � (l; T + �) =) (s; �t) � (l; �T + �).

To illustrate, suppose that time is discrete and that an agent exhibits:

(80; 0) � (100; �) and (80; 1) � (100; 3 + �):

That is, while (80; 0) and (100; �) initially have the same value for the agent, the
total loss of attractiveness due to a 1 period delay in the immediate $80 reward
equals that of a 3 period delay in the later $100 reward. If the rate of loss of
attractiveness of any given reward is constant, then the loss due to another k
period delay in the $80 reward must equal the loss due to another 3k periods
delay in the $100 reward:

(80; k) � (100; 3k + �):

This is the content of Weak Stationarity.5 It requires that the rate at which any
given reward loses attractiveness with delay be constant.
Note that the axiom expunges the magnitude-independence property (2.1)

implied by Stationarity, since it permits T to depend on the rewards s; l. Also,
the axiom also weakens Stationarity by allowing T 6= t.
Finally, we de�ne the Magnitude E¤ect Discounting representation.

De�nition 2.3 (MED Representation). AMagnitude E¤ect Discounting (MED)
representation of a preference % is a representation U : X ! R+ such that, for
all (m; t) 2 X;

U(m; t) = �(m)t � u(m),
where u : M ! R+ is a strictly increasing continuous utility index satisfying
u(0) = 0, and � :M! (0; 1) is a weakly increasing magnitude-dependent discount
factor that is continuous onMnf0g.

2.2. Representation Results

The main result of this section is a representation theorem for regular prefer-
ences that satisfy only Weak Stationarity. The result generalizes the exponential
discounting model (Fishburn and Rubinstein [3]).

5We will see in the next section that Weak Stationarity is also consistent with a knife-edge
case of date-dependent impatience (Theorem 3.1).
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Theorem 2.4. A preference % over X satis�es Regularity and Weak Stationarity
if and only if it admits an MED representation.

Therefore, by relaxing Stationarity to Weak Stationarity, we get a represen-
tation with a potentially magnitude-dependent exponential discount function. A
notable aspect of the representation theorem is that the discount function in the
MED representation must necessarily exhibit �greater patience towards larger re-
wards�, a property re�ected in the fact that �(�) is nondecreasing in any MED
representation. The behavioral expression is that the MED model implies the
following property: for any s; l; � such that (s; 0) � (l; �), and any t; T ,

(s; t) � (l; T + �) =) T � t.

To see that this re�ects greater patience towards larger rewards, suppose (80; 0) �
(100; 2). If the $80 reward is delayed by t periods, and if the agent is more patient
toward larger rewards, the $100 reward must require a delay by more than t
periods in order to restore indi¤erence; for instance, (80; 1) � (100; 3 + 2). It is
because the agent is more patient toward larger rewards that more periods of delay
are required in order to match the loss of attractiveness in the smaller reward.
This property of the MED model follows from a theorem presented shortly (see
footnote 6).
Thus without any explicit restriction on how impatience may depend on re-

wards, the model gives rise to a very particular kind of magnitude-dependence.
The proof of the theorem reveals that, while Weak Stationarity helps give rise
to a representation U(m; t) = �(m)t � u(m) with some �(�), it is Monotonicity
that then implies that �(�) must be weakly increasing. To see this, suppose by
way of contradiction that �(s) > �(l) for some s < l. Monotonicity requires that
�(l)t � u(l) > �(s)t � u(s) for all t, and thus for all t,

u(l)

u(s)
>

�
�(s)

�(l)

�t
:

However, since �(s)
�(l)

> 1, this inequality cannot hold for all t, a contradiction.
For completeness, we identify the uniqueness properties of the MED repre-

sentation. Identify any MED representation with the tuple (u; �) that de�nes
it.
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Theorem 2.5. If (u; �) and (bu;b�) are two MED representations for some prefer-
ence % over X, then there exists �; � > 0 such that bu(�) = �u(�)� and b�(�) = �(�)�

onM nf0g. Indeed, ln �(s)
ln �(l)

= lnb�(s)
lnb�(l) for all s; l; and moreover,

(s; 0) � (l; �) and (s; t) � (l; T + �) =) T

t
=
ln �(s)

ln �(l)
:

The uniqueness properties of the SDU model extend to the MED model in
large part � the exception being that the discount factor �(0) for the 0 reward
is unrestricted by preferences. The reason is that in the MED representation,
�(0)u(0) = 0 regardless of the value of �(0). Although the discount factor �(�)
is not unique, the result tells us that the ratio of the log of the discount factor
for di¤erent rewards is uniquely pinned down by preferences, that is, this ratio
is constant regardless of the particular MED representation chosen. In the last
expression, the result shows how this ratio can be calculated directly from prefer-
ences.6

We conclude by pointing out how characterizations of special cases of the
MED model can be obtained as simple corollaries of Theorem 2.5. As an exam-
ple, consider the following proposition: A preference % over X admits an MED
representation (u; �) for which there exists � 2 (0; 1) and � > 0 such that for all
m,

�(m) = �
1
m� ;

if and only if % satis�es regularity, Weak Stationarity, and for all s; l,

(s; 0) � (l; �) and (s; t) � (l; T + �) =) T

t
=

�
l

s

��
:

This can be proved as follows. Note that ln �(s)
ln �(l)

=
�
l
s

��
and thus �(s)s

�
= �(l)l

�

for all s; l. By regularity (speci�cally Lemma B.1(a) in the appendix), �xing
l = M and varying � tells us that in particular, �(m)m

�
is constant for all m.

Denote this constant by � 2 (0; 1) and deduce that �(m) = �
1
m� .

2.3. General Outcomes

If outcomes are not necessarily monetary, then an intuitive formulation of the
model would involve the functional form

U(m; t) = �(u(m))t � u(m);
6Note that �(s) � �(l) implies ln �(s)

ln �(l) � 1 and thus T � t.
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where the discount factor is an increasing function of the utility of an outcome.
Thus, for instance, if outcomes are lotteries or bundles, then the agent is less
inclined to discount more attractive lotteries or bundles, where attractiveness is
determined by u. An attractive feature of this formulation is that, for instance,
risk attitude remains independent of time:

(p; 0) % (q; 0)() (p; t) % (q; t);

for any pair of lotteries p; q and all t. In particular, risk preferences are indepen-
dent of the magnitude e¤ect.

2.4. Non-Concavity

Suppose u is concave. Then, as a dated reward (m; t) increases in magnitude, the
agent experiences a reduction in the marginal utility from m. However, this will
also be accompanied with a reduction in the agent�s impatience, as the increased
magnitude also makes the reward more visible to him. Indeed, the magnitude
e¤ect naturally gives rise to possibly nondecreasing marginal utility for future
rewards even if immediate rewards are subject to diminishing marginal utility. In
Appendix D we con�rm that nonconcavity always arises with su¢ cient delay.
Nonconcavity with respect to money does not necessarily generate undesirable

behavior here. For instance, in a risk setting it does not imply that the agent could
be risk loving toward distant lotteries �as we observed above, when properly for-
mulated the model produces date-independent risk attitudes. Non-concavity may
give rise to non-convex upper contour sets.7 However, in Appendix D we identify
necessary and su¢ cient restrictions on the representation for the preference to be
convex, and thus con�rm that nonconcavity with respect to money does not neces-
sitate nonconvexity �intuitively, the factors a¤ecting marginal utility for money
also impact the marginal disutility of waiting, and under suitable restrictions both
combine to produce convex upper contour sets. For instance, the MED model

U(m; t) = �
t
m� � u(m);

where the utility of money is CRRA u(m) = m�, � 2 (0; 1), describes a convex
preference i¤ � � 1

2
, while U(m; t) remains nonconcave in m for large t regardless

of �.
7We are grateful to an anonymous referee for �rst bringing our attention to the possibility

of non-convex upper contour sets in the model.
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3. MED and Hyperbolic Discounting

Magnitude e¤ect discounting and hyperbolic discounting describe distinct psycho-
logical stories, but it remains to study how distinct are the behaviors generated
by either of these stories. This is pursued next.
The main result of this section is an observational equivalence result.

Theorem 3.1. Consider a regular preference % overX that violates Stationarity.
Then % admits an MED representation if and only if there exists a strictly in-
creasing continuous utility function u :M! R+ satisfying u(0) = 0, an arbitrary
'(0), and a continuous function ' : Mnf0g ! (0; 1) that is either constant or
satis�es '(s)

'(l)
� u(s)

u(l)
for all s < l and, moreover, % is represented by the Magnitude-

Dependent Hyperbolic Discounting (MDHD) representation de�ned by:

U(m; t) =
1

1 + '(m)t
� u(m):

The result establishes that the MED model can replicate any behavior ex-
plicable by the MDHD model. The MDHD representation departs from both
the date-independence and magnitude-independence of impatience embodied in
the exponential discounting representation. The result shows that behaviorally
there is just as much explanatory power obtained by departing from magnitude-
independence only, at least in the domain of dated rewards.
When ' is constant, the MDHD model reduces to the Hyperbolic Discounting

(HD) model introduced by Ainslie [1] and axiomatized by Loewenstein and Prelec
[6]:

U(m; t) =
1

1 + �t
� u(m), � > 0.

While it is obvious from the representation that the HD model is a special case
of the SDU model, what is less obvious from an inspection of functional forms is
that the HD class is wholly contained in the MED class �this is an immediate
corollary of the above result. Thus, all choice patterns that are explicable by the
HD model are also explicable by the MED model �this includes the behaviors
known as preference reversals and dynamic inconsistency, which have attracted
considerable attention in economics.8 Preference reversals can be de�ned by the
following property: for some s � l and t; d � 0;

8An example of a preference reversal is: (100;now) � (150; 6 months) and (100;1 yr) � (150;1
yr 6 months):That is, there is greater patience underlying money-time trade-o¤s when rewards
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(i) (s; t) - (l; t+ d) =) (s; t0) - (l; t0 + d) for all t0 > t.
(ii) (s; 0) % (l; d) and (s; t) � (l; t+ d) =) (s; t0) � (l; t0 + d) for all t0 > t.

That is, delaying a pair of rewards can lead to no more than one reversal in
preference. The MED model exhibits this property for all s � l and t; d � 0.9 See
the concluding section of this paper for further comments.
The next result clari�es the relationship between the MED, HD and the SDU

model, where the latter is formally de�ned by the representation

U(m; t) = D(t)u(m)

for a preference % over X where u : M ! R+ is a strictly increasing continu-
ous utility function with u(0) = 0, and D : T ! (0; 1) is a continuous strictly
decreasing discount function with D(0) = 1 and limt!1D(t) = 0.

Theorem 3.2. For a preference % overX that violates Stationarity, the following
statements are equivalent:
(a) % admits an SDU representation and satis�es Weak Stationarity.
(b) % admits an HD representation.
(c) % admits an MED representation (u; �) where u(�) < 1 and �(�) = u(�)� on

M nf0g for � > 0.

The equivalence of (a) and (b) reveals that not only is the HD class contained
in both the SDU and MED classes, it is also the only one that lies in both classes.
That is, the HD class is precisely the intersection of the MED and SDU classes.
In the literature, the connection between the HD model and a variant of Weak

Stationarity has already been noted by Loewenstein and Prelec [6] and Harvey
[5]. Speci�cally, these authors impose a variant of Weak Stationarity on the SDU
model and obtain the HD model. We conclude with an alternative axiomatiza-
tion of the HD model that does not explicitly presume the existence of an SDU
representation for %.
are pushed into the future by a common number of periods. Dynamic inconsistency is a dynamic
version of preference reversals: (100, 1yr) �0 (150;1yr 6 months) and (100, now) �1 (150;6
months), where �0 denotes the preference today and �1 denotes the preference after 1 yr. It is
clear that if preferences are time-invariant (that is, preferences over X at each point in time are
identical), then preference reversals implies dynamic inconsistency.

9This can be shown by noting simply that (s; t) % (l; t+d)() �(s)t �u(s) � �(l)t+d �u(l)()�
�(s)
�(l)

�t
� �(l)d�u(l)

u(s) . Since �(s)
�(l) � 1, preferences reverse only in favor of the larger reward, if at

all.
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Theorem 3.3. A preference % over X admits an HD representation if and only
if it is regular and there exists � � 0 such that for all s; l; � ; t; T it satis�es

(s; 0) � (l; �) and (s; t) � (l; T + �) =) T

t
= 1 + ��:

4. Application: Sequential Bargaining

Consider a Stahl-Rubinstein bargaining game with alternating o¤ers involving
two players A and B, where player A is the �rst mover. Time is discrete and the
horizon in�nite. The size of the cake is 1, and if no agreement is reached then
each player gets 0. A division proposed by any player is denoted (x; 1�x) where x
denotes the share for player A and 1� x denotes the share for player B. At every
point in time, the preference of player i = A;B is denoted %i, and we assume that
the agent is sophisticated in the sense of knowing future preferences. We assume
further that %i admits a linear (or risk neutral) MED representation:10

U(m; t) = �i(m)
t �m.

It is known that if each agent follows an SDU model Di(t) �m and is sophisticated,
then the game gives rise to a unique stationary subgame perfect equilibrium [7]. In
contrast we �nd that uniqueness is lost under magnitude-dependent impatience.
Moreover, being the �rst mover while also being more patient does not guarantee
a larger share of the cake.
To state these results, de�ne:

Di(x) = 1� �i(x)x;

for x 2 [0; 1] and i = A;B. If (say) player B expects to receive x in period t + 1
then DB(x) is the largest share of the cake that player A can extract in period t.
Write DBDA(x) for DB(DA(x)). If player A is expects to receive x in period t+2,
then DBDA(x) is the most player A can receive in period t if player B extracts
the most he can in period t + 1. The function DBDA(�) is continuous, strictly
increasing and satis�es DBDA(0) > 0 and DBDA(1) < 1.

10To justify the �risk neutrality�terminology, imagine that the model is a special case of one
where rewards are lotteries, and where the utility of a dated lottery (p; t) is �i(EV (p))t �EV (p).
It is clear that (EV (p); t) �i (p; t) and thus the �date t certainty equivalent�of (p; t) is EV (p).
See the remarks in Section 2.3.
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Theorem 4.1. Suppose %A and %B admit linear MED representations (u; �A)
and (u; �B) resp. Then a bargaining game of alternating o¤ers with players%A and
%B has a (possibly nonunique) stationary subgame perfect equilibrium. Moreover,
even if �A � �B, there may exist such an equilibrium in which the �rst mover gets
less than 1

2
. Speci�cally:

(i) For every �xed point x� of DBDA(�) there exists a stationary subgame
perfect equilibrium, the outcome of which is that player A proposes (x�; 1 � x�)
in period 0, and player B immediately accepts this o¤er.
(ii) The set of �xed points ofDBDA(�) is nonempty and possibly a nonsingleton

set.
(iii) If DBDA(

1
2
) < 1

2
, then there exists an equilibrium in which player A�s

payo¤ is x� < 1
2
. The condition can hold even if �A � �B.

Statement (i) is familiar from the standard analysis of the bargaining game.
Statement (ii) concerns existence and multiplicity of stationary subgame perfect
equilibria. Technically, multiplicity is possible since �i(x)x may be a nonconcave
function of x, despite the agent�s risk neutrality. Statement (iii) states a su¢ cient
condition for the existence of equilibria in which the �rst mover gets strictly less
than half the share of the cake. This condition can be satis�ed even if player A is
more patient than player B.11 For a concrete example, suppose �A(x) = �B(x) =
0:9x0:5. Then DBDA(�) has three �xed points at 0:24; 0:6 and 0:9 approximately.
To see the intuition for the results, recall that in the standard bargaining

game (with the exponential discounting model) the relatively more patient player
receives a higher share in equilibrium. With the MED model, the relative patience
of the players is endogenous. The smaller the share of the cake player A expects
to receive in the future, the more impatient he becomes relative to player B, and
conversely. This feature allows for the possibility of more than one equilibrium.
Indeed, it also allows for the possibility that player B gets more than half the
share although player A is the �rst mover and the more �patient�player. Thus we
see that when impatience is magnitude-dependent, then a given player�s payo¤
does not depend crucially on whether s/he is the �rst mover or the more patient
player, but rather on the beliefs that each player holds about the other�s strategy.
11This interpretation of the restriction �A � �B can be justi�ed by the following (straightfor-

ward) proposition: if %A and %B admit linear MED representations (u; �A) and (u; �B) resp,
then �A � �B if and only if for all s < l and t;

(s; 0) %A (l; t) =) (s; 0) %B (l; t);

that is, whenever %A rejects waiting for a larger reward, then so does %B :

14



Finally, we look at the payo¤s in the limit of �nite horizon bargaining games.
Let [DBDA]

0 (x) = x and inductively for each k > 0 de�ne [DBDA]
k (x) =

DBDA([DBDA]
k�1 (x)). For any sequence fAng1n=0 refer to the subsequence corre-

sponding to odd n (resp. even n) as the odd subsequence (resp. even subsequence).

Theorem 4.2. In the bargaining game of alternating o¤ers with �nite horizon n,
the �rst mover, player A, has a unique subgame perfect equilibrium payo¤ given
by:

An =

(
[DBDA]

n�1
2 (1) if n is odd

[DBDA]
n�2
2 (DB(1)) if n is even.

The odd subsequence of fAng1n=0 converges to the greatest �xed point of DBDA(�)
and the even subsequence of fAng1n=0 converges to the least �xed point ofDBDA(�).

5. Concluding Remarks

The theoretical literature on time-preference has focused on exploring how impa-
tience depends on delay. In particular, the idea that impatience decreases with
delay (as embodied by hyperbolic discounting) has received much attention. This
paper explores the dependence of impatience on magnitude. We showed that
magnitude-dependent impatience can behaviorally subsume particular models of
delay-dependent impatience, speci�cally the HD model.
To see intuitively how the MED model subsumes the HD model, consider the

thought experiment in Thaler [10] that illustrates preference reversals: an apple
today is generally preferred to two apples tomorrow, but two apples after a year
and a day are generally preferred to an apple after a year. In the HD model, the
preference for the immediate apple is explained by a desire for immediate grati-
�cation, which is irrelevant for the preference for the distant two apples. In the
MED model, the preference for the immediate apple over tomorrow�s two apples
just re�ects the agent�s impatience �earlier rewards are always more attractive.
The preference for the distant two apples arises due to greater patience toward
larger rewards: since two apples are more attractive than one, the agent pays
relatively more attention to the larger reward, and this e¤ect begins to dominate
in distant intertemporal trade-o¤s, thereby creating a preference reversal. Thus
behaviors attributable to the existence of a desire for immediate grati�cation can
also arise from a less viscerally-charged process that involves a tendency to pay
more attention to larger rewards.
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Under the immediate grati�cation story, observing preference reversals for
small stakes implies the existence of preference reversals for large stakes. In con-
trast, the magnitude-dependent impatience story allows for the possibility that
preference reversals disappear for large stakes � for instance, think of an MED
model where �(�) is strictly increasing for rewards over an interval [0;m�] and
then constant for anym � m�. These observations have implications for inferences
made from experimental �ndings. Due to practical considerations, experiments on
preference reversals have predominantly used small stakes. It is the assumption
of magnitude-independent impatience that leads researchers to infer that �ndings
in these experiments would hold also for large stakes. This potentially leads to
an exaggerated sense of relevance of the �ndings for behavior in the market.12 If
the mechanism generating the results is in part magnitude-dependent impatience,
then it is possible that the results are relevant mainly for the �small�decisions
that economic agents make.

A. Appendix: Calibration Result

For each dated reward (m; t), let  (m; t) (the �present equivalent�of (m; t)) denote
the amount received immediately such that

( (m; t); 0) � (m; t):

The money-discount function is de�ned by

'(m; t) :=
 (m; t)

m
:

Suppose that the agent respects the SDU model de�ned for consumption streams
(c0;c1; :::):

U(c0;c1; :::) =
X

D(t)u(ct):

Note that present equivalents must then satisfy the restriction

u(w0 +  (m))� u(w0) = D(t)[u(wt +m)� u(wt)]; (A.1)

where wt refers to the agent�s base consumption in period t.

12Similarly, it would lead to an exaggerated view of how impatient people are, given that
impatience decreases with magnitudes.
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Proposition A.1. If u is concave then for any t;m; " > 0,

u(w0) +D(t)u(wt +m) � u(w0 � ") +D(t)u(wt +m+
"

'(m; t)
)

Proof. To ease notation, write  (m; t) as  (m) and let � := D(t). Given the
assumption in the proposition and this notation, we can write (A.1) as:

u(w0 +  (m))� u(w) = �[u(w +m)� u(w)]:

By concavity, for any m; " > 0,

u(w0)� u(w0 � ")

"
� u(w0 +  (m))� u(w0))

 (m)
:

Therefore,
u(w0)� u(w0 � ") � "

 (m)
[u(w0 +  (m))� u(w0))]

= "�
 (m)

[u(wt +m)� u(wt)] by (A.1)

= � m"
 (m)

[u(wt+m)�u(wt)]
m

� � m"
 (m)

[u(wt+m+
m"
 (m)

)�u(wt+m)]
m"
 (m)

by concavity

= �[u(wt +m+ m"
 (m)

)� u(wt +m)]

= �[u(wt +m+
"

'(m;t)
)� u(wt +m)] by de�nition of '(m; t). This completes

the proof.

The result states that if time t base consumption is increased by $m, then
�xing consumption in all other periods, the agent would not forgo any " today
that yields "

'(m;t)
at time t. The evidence cited in the Introduction gives an

example where '(60; 1yr) = 0:25. Therefore, if next yr consumption is higher by
$60, then the agent would not forgo any " today for 4" next year. Note that the
magnitude e¤ect implies that for amounts smaller than $60 the discount factor '
would be even lower. Thus, even more extreme quantitative results will be gained
for smaller rewards.

B. Appendix: Preliminary Lemmas

Lemma B.1. If % is regular then
(a) For every l; t and d there exists s � l such that (s; t) � (l; t+d). Moreover,

for every s � l and t there exists d such that (s; t) � (l; t+ d).
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(b) For any s � l and � such that (s; 0) � (l; �), and for every t0 � � there
exists t such that (s; t) � (l; t0):
(c) For any continuous increasing u :M! R, the preference % admits a rep-

resentation U :M�T ! R such that U(�; t) is continuous and strictly increasing,
U(m; �) is continuous and strictly decreasing if m > 0 and constant if m = 0, and
U(m; 0) = u(m):
(d) For each (m; t) there exists a unique  (m; t) (the �present equivalent�of

(m; t)) satisfying
( (m; t); 0) � (m; t):

Moreover,  (0; �) = 0,  (m; �) is strictly decreasing for anym > 0, limt!1  (m; t) =
0 for all m, and  (m; �) is continuous.
(e) If (s; 0) � (l; �) and (s; t) � (l; T + �), then T + � � t:

Proof. Part (a) follows from Impatience, Monotonicity and Continuity; we omit
the proof. The t in part (b) exists by Impatience, Monotonicity and Continuity:
By Monotonicity, (s; t0) - (l; t0). By Impatience and the fact that (s; 0) � (l; �)
and t0 � � , it follows that (s; 0) % (l; t0). Thus, by Continuity, there is t such that
(s; t) � (l; t0); as desired.
Part (c) is established in [3, Thm 1]. Turn to part (d). Part (a) establishes the

existence of present equivalents, and Impatience implies that  (m; �) is strictly
decreasing for any m > 0. To see that limt!1  (m; t) = 0 for all m, suppose not.
Then there exists m and s > 0 such that (s; 0) � ( (m; t); 0) � (m; t) for all t.
But this contradicts Impatience. Finally, to see that  (m; �) must be continuous,
take any strictly increasing homeomorphism and consider the representation U
delivered in part (c). Since u( (m; t)) = U(m; t) and in particular,  (m; t) =
u�1(U(m; t)), continuity of u�1 implies that of  (m; �):
Part (e) note that if T + � < t then (s; T + �) � (l; T + �) by Impatience,

which then violates Monotonicity.

Lemma B.2. If a preference % is regular then there exists a function �(s; l; t)
that satis�es

(s; 0) � (l; �) =) (s; t) � (l;�(s; l; t) + �),

for every s; l and t. Moreover, �(s; l; �) is strictly increasing and continuous.

Proof. The existence of a function �(s; l; t) de�ned for every s; l and t by

(s; 0) � (l; �) =) (s; t) � (l;�(s; l; t) + �),
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follows from Impatience and Continuity. To see that � is strictly increasing in
t, note that as t increases, Impatience implies that (s; t) becomes less desirable.
Thus in order to maintain indi¤erence with (l;�(s; l; t) + �), there should also be
an increase in �(s; l; t).
To see that � is continuous in t, note that Lemma B.1(b) shows that for any

s � l and � such that (s; 0) � (l; �), and for every t0 � � there exists t such that

�(s; l; t) + � = t0:

Now observe that if � is not continuous, then given that �(s; l; �) is strictly in-
creasing, the image of R+ in �(s; l; �) for any s; l cannot be an interval. However,
the above displayed result shows that for any k � 0, there exists t� such that
�(s; l; t�) = k, a contradiction.

Lemma B.3. If a regular preference % satis�es Weak Stationarity then for any
s; l there exists asl > 0 s.t. for all t;

�(s; l; t) = aslt.

Proof. By Weak Stationarity, �(s; l; �t) = ��(s; l; t). Observe that �(s; l; 1) =
1
t
�(s; l; t) and thus by letting asl := �(s; l; 1) we have �(s; l; t) = aslt. Since
�(s; l; �) is strictly increasing (by previous lemma), it must be that asl > 0.
Lemma B.4. If a preference % admits an SDU representation then there exists
a function F (� ; t) that is strictly increasing and continuous, and for each s; l; �
and all t, F (� ; t) satis�es

(s; 0) � (l; �) =) (s; t) � (l; F (� ; t) + �).

Moreover, for any � ; t,
F (� ; t) + � = F (t; �) + t:

Proof. We need to show that � depends on s; l only through the � that satis�es
(s; 0) � (l; �). Take any � ; s; s0; l; l0 such that (s; 0) � (l; �) and (s0; 0) � (l0; �).
Then for any t; t0, the SDU representation implies (s; t) � (l; t0) () (s0; t) �
(l0; t0). In particular, �(s; l; t)+� = t0 = �(s0; l0; t)+�) and so �(s; l; t) = �(s0; l0; t).
Therefore, we can write �(s; l; t) = F (� ; t) where � is such that (s; 0) � (l; �).
To establish the second part of the lemma, take any t; � and de�ne s; l;M by

(s; 0) � (M; �) and (l; 0) � (M; t). By the SDU representation, (s; t) � (l; �) and
in particular

(M;F (� ; t) + �) � (s; t) � (l; �) � (M;F (t; �) + t):

Since M > 0, Impatience implies F (� ; t) + � = F (t; �) + t; as desired.
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C. Appendix: Proof of Theorems 2.4 and 2.5

Proof of �=)�: To see that Weak Stationarity is necessary, note that for s > 0,
(s; 0) � (l; �) and (s; t) � (l;�(s; l; t) + �) imply l > 0 and

��l =
u(s)

u(l)
=
�
�+�(s;l;t)
l

�ts
;

and thus �(s; l; t) = as;lt where as;l = ln �s
ln �l

> 0. Thus, �(s; l; t) is a linear function
of t, or equivalently, Weak Stationarity holds. Verifying the necessity of all other
axioms is routine.

Proof of �(=�: Begin with some observations. By Lemmas B.2 and B.3, we
know that for each s � l and t, (s; t) � (l; H(s; l; t)) where

H(s; l; t) = a(s; l)t+ �(s; l);

and where �(s; l) is de�ned by

(s; 0) � (l; �(s; l)):

Impatience and Continuity ensure that �(s; l) always exists. We claim that a(M; �)
is weakly increasing:

M � s < l =) a(M; s) � a(M; l):

This follows from Monotonicity. Suppose by contradiction that a(M; s) > a(M; l).
Since M � s < l, Monotonicity and Impatience imply �(M; s) < �(M; l). But
then there exists t� such that a(M; s)t�+�(M; s) = a(M; l)t�+�(M; l) = T , which
implies (l; T ) � (M; t�) � (s; T ), while Monotonicity requires that (s; T ) 6� (l; T ),
a contradiction.
Next we show that a(M; �) is continuous for all m � M > 0. We do this

by �rst showing that H(M; �; t) is continuous on [M;1). Take any sequence
M � mn ! m, and suppose by way of contradiction that H(M;mn; t) does
not converge to H(M;m; t). Then there is " > 0 such that either there ex-
ists a subsequence s.t. (mn(i); H(M;mn(i); t)) % (mn(i); H(M;m; t) � ") or one
s.t. (mn(i); H(M;mn(i); t)) - (mn(i); H(M;m; t) + "). In either case, we can as-
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sume wlog that the subsequence is convergent, since H(M;mn(i); t) is bounded.13

Taking limits, we then either have (m;H(M;m; t)) % (m;H(M;m; t) � ") or
(m;H(M;m; t)) - (m;H(M;m; t) + "). But either cases violate Impatience, a
contradiction. Thus H(M; �; t) is continuous. Note also that �(M; �) = H(M; �; 0)
is continuous. So, to conclude, sinceH(M;m; t) = a(M;m)t+�(M;m), continuity
of H(M; �; t) and �(M; �) implies that of a(M; �), as desired.
We now turn to establishing the existence of the desired representation. Fix

� 2 (0; 1) and de�ne u onMnf0g by

u(m) =

(
��(m;M) �M if m �M

��
�(M;m)
a(M;m) �M if m �M

; for all m > 0:

Given the properties of present equivalents  in Lemma B.1(d), and the fact
that by de�nition  �1M (�) = �(�;M), we see that �(�;M) is well-de�ned, strictly
decreasing and continuous and satis�es limm!0 �(m;M) = 1. Therefore, on
(0;M ], the function u is strictly increasing, continuous and satis�es u(M) = M ,
and moreover, satis�es limm!0 u(m) = 0. Thus the restriction of u to (0;M ]
can be extended continuously to [0;M ] by setting u(0) = 0. As observed above,
a(M; �) is weakly increasing and continuous. As �(M; �) is strictly decreasing and
continuous, we see that u is strictly increasing and continuous on [M;1). Put
together, we we have a strictly increasing and continuous u overM = R+.14
Given this u, denote the corresponding representation for % by U , which is

guaranteed by Lemma B.1(c). De�ne D :M�T ! R+ such that for all (m; t) 2
Mnf0g � T ,

U(m; t) = D(m; t)u(m),

and D(0; t) is arbitrary. We show that D has the desired form. By de�nition of
u, letting m =  (M; t), we have that for any t, U(M; t) = u( (M; t)) = �t �M .
Since u(M) =M > 0, it follows that

D(M; t) = �t:

13To see this, suppose H(M;mn; t) is not bounded above. Then there is a subsequence where
H(M;mn(i); t) > H(M;m; t) tends to in�nity and m�" � mn(i) � m+" for some " < m. Then
by Monotonicity and Impatience,

(m� ";H(M;m; t)) - (mn(i);H(M;m; t)) - (mn(i);H(M;mn(i); t)) - (m+ ";H(M;mn(i); t)):

However, by Impatience, (m � ";H(M;m; t)) - (m + ";H(M;mn(i); t)) cannot hold as
H(M;mn(i); t) tends to in�nity, a contradiction. Thus, H(M;mn; t) is bounded.
14This relies also on the fact that a(M;M) = 1, which follows from (M; t) � (M; t) for all t.
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By de�nition, for any 0 < m � M , u(m)
u(M)

= �� , where the argument (m;M) in
� is suppressed here and below to ease notation (and similarly for a below). By
Lemma B.3, we also have u(m)

u(M)
= ��+at

D(m;t)
. These last two equalities put together

imply that for all 0 < m �M and t,

D(m; t) =
��+at

��
= �tm;

where �m := �a. Note that in general a depends on m and M , and M is �xed in
the entire construction. Hence �m is indeed a function of m. Since 0 < a < 1,
we have �m 2 (0; 1).
Next we show that the representation has the desired form also for m � M .

By de�nition of u, u(M)
u(m)

= �
�
a . Given Lemma B.3, we also have u(M)

u(m)
= D(m;t)

�
t��
a
.

Thus for all m �M and t,

D(m; t) = �
�
a � �

t��
a = �tm;

where �m := �
1
a . Since 0 < a <1, we have �m 2 (0; 1).

Finally, we check that �m is weakly increasing inm. Suppose by way of contra-
diction that �s > �l for some s < l. Monotonicity requires that �tl � u(l) > �ts � u(s)
for all t, and thus for all t,

u(l)

u(s)
>

�
�s
�l

�t
:

However, since �s
�l
> 1, this inequality cannot hold for all t, a contradiction. With

this, we have established that D has the desired form and properties.

Proof of uniqueness: Consider two MED representations (u; �) and (u0; �0). In
the proof of necessity of Weak Stationarity, we saw that for any s; l the scalar
a > 0 delivered by Reversal must satisfy ln �s

ln �l
= a = ln �0s

ln �0l
. De�ne � := ln �0M

ln �M
so that

�0M = ��M . Then, for anym > 0, ln �m
ln �M

= ln �0m
ln �0M

and so � ln �m = ln �
0
m. Thus, �

0(�) =
�(�)� onM nf0g. Next we show that only monomial transformations of utility u
preserve the representation. Since u and u0 are increasing and u(0) = u0(0) = 0
there is an increasing transformation g with g(0) = 0 such that u0 = g(u). We see
that

��tmg(u(m)) = �0tmu
0(m) = U 0(m; t) = u0( (m; t))

= g(u( (m; t))) = g(U(m; t)) = g(��tmu(m)); that is, for all m; t,

��tmg(u(m)) = g(��tmu(m)):
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Observe that for every z 2 (0; 1] and r 2 [0; u(M)] there is t and m s.t. u(m) = r
and ��tm = z. Therefore, for every z 2 (0; 1] and r 2 [0; u(M)],

z�g(r) = g(zr):

For any r 2 [0; u(M)], taking z = r
u(M)

yields g(r) = g(zu(M)) = z�g(u(M)) =
r�

u(M)�
u0(M). Setting � = u0(M)

u(M)
> 0 it follows that for any m, u0(m) = g(u(m)) =

�u(m)�. This completes the proof for uniqueness.
To prove the last part of the theorem take any s < l. For some � we have

(s; 0) � (l; �), which is equivalent to u(s)
u(l)

= ��l , and for t = 1, we know by Weak
Stationarity that there is as;l > 0 such that for all t, (s; t) � (l; as;lt+ �), that is,
�tsu(s) = �

as;lt+�

l u(l). But then

��l =
u(s)

u(l)
=

�
�
as;l
l

�s

�t
��l ;

implying �as;ll = �s, and thus as;l =
ln �(s)
ln �(l)

.

D. Appendix: Non-Concavity and Convexity

Write the MED representation as

U(m; t) = e��(m)t � u(m);

for some decreasing function �(�) > 0. Refer to the representation as twice di¤er-
entiable if u and � are twice di¤erentiable.

Proposition D.1. Suppose that a preference % over X admits a twice di¤er-
entiable MED representation (u; ��) with �(�) strictly decreasing. Then for any
m > 0 it must be that @2U(m;t)

@m2 > 0 for all large t.

Proof. It may be veri�ed that @2U(m;t)
@m2 =

��0(m)te��(m)t
�
2u0(m) +

u00(m)

�0(m)t
+ u(m)

�
�00(m)

�0(m)
� �0(m)t

��
:

Since �0(m) < 0, it is evident from the expression in the parenthesis that @
2U(m;t)
@m2 >

0 for large t and given m > 0.
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Proposition D.2. Suppose that a preference % over X admits a twice di¤er-
entiable MED representation (u; ��) with u concave and �(�) strictly decreasing.
Then % has convex upper contour sets if and only if for all m > 0,�

2�0(m)

�(m)
� �00(m)

�0(m)

�
� 0 and

�
2�0(m)

�(m)
+
u0(m)

u(m)
� u00(m)

u0(m)

�
� 0:

Proof. Fix some utility level K and determine that on the indi¤erence curve
de�ned by e��(m)t � u(m) = K it must be that t = 1

�(m)
ln u(m)

K
and thus:15

@t

@m
= ��

0(m)

�(m)2
ln
u(m)

K
+

u0(m)

�(m)u(m)
> 0

and
@2t

@m2
= ��

00(m)

�(m)2
ln
u(m)

K
+
2�0(m)2

�(m)3
ln
u(m)

K

��
0(m)

�(m)2
u0(m)

u(m)
� u0(m)

�(m)u(m)

�
�0(m)

�(m)
+
u0(m)

u(m)
� u00(m)

u0(m)

�
=

�0(m)

�(m)2

�
2�0(m)

�(m)
� �00(m)

�0(m)

�
ln
u(m)

K
� u0(m)

�(m)u(m)

�
2�0(m)

�(m)
+
u0(m)

u(m)
� u00(m)

u0(m)

�
;

where u and � are assumed to be twice di¤erentiable. Restricting attention to
concave u, we see that convex upper contour sets ( @

2t
@m2 � 0) obtain if and only if

the conditions in the statement of the lemma hold. Su¢ ciency is obvious (recall
that �0(m) � 0). Necessity is established readily using the fact that ln u(m)

K
� 0

can be made arbitarily large or small by varying K over [0; u(m)].

E. Appendix: Proof of Theorems 3.1-3.3

Proof of Theorem 3.1: To prove the su¢ ciency part, take a continuous increas-
ing transformation g : u(M)! R+ de�ned by g(0) = 0 and, for all r 2 u(M)nf0g;

g(r) =

�
1

� ln r

� 1
�

:

This transforms an MED representation �(m)tv(m) into the MDHD representa-
tion:

15Note that u(m)K � 1 on any indi¤erence curve.
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g(�(m)tv(m)) =
1

�t ln �(m)� ln v(m) =
1

1 + t ln �(m)
ln v(m)

1

� ln v(m) :=
1

1 + '(m)t
�u(m);

where '(m) := ln �(m)
ln v(m)

, u(m) := 1
� ln v(m) for m > 0 and u(0) := limm!0 u(m) =

0. Observe that since % is regular by hypothesis, it satis�es Monotonicity. In
particular, for any s < l, 1

1+'(l)t
� u(l) > 1

1+'(s)t
� u(s) which is equivalent to

t ['(l)u(s)� '(s)u(l)] < u(l)� u(s):

However, this holds for all t i¤ '(l)u(s)� '(s)u(l) � 0 i¤ ' is constant or '(s)
'(l)

�
u(s)
u(l)
.
Conversely, if an MDHD representation is given, then an appropriate MED

representation obtains by applying the increasing transformation h(r) = e�r
�1
.

Proofs of Theorems 3.2 and 3.3: We prove more general results by not
requiring that Stationarity necessarily be violated. To accommodate this, in what
follows we extend the de�nition of the HD model as follows:

(m; t) 7�!
"
lim
r!�

1

(1 + rt)
1
r

#
� u(m)

for some � � 0. Note that when � = 0 the model reduces to the exponential
discounting model. Consider the axiom stated in Theorem 3.3.

Axiom 1. For each s; l; � and all t,

(s; 0) � (l; �) =) (s; t) � (l; (1 + ��)t+ �).

Theorems 3.2 and 3.3 follow from the Lemmas proved next.

Lemma E.1. A preference % over X satis�es regularity and Axiom 1 if and only
if there exists an MED representation (u; �) such that 0 � u(�) < 1 and �(�) is
either constant or �(�) = u(�)� onM nf0g for � > 0.

Proof. The existence of an MED representation (v; �) follows from the fact that
Axiom 1 is stronger than Weak Stationarity. For any m > 0 and corresponding
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� =
ln

v(m)
v(M)

ln �(M)
, we have v(m) = �(M)�v(M) and by Theorem 2.5, ln �(m)

ln �(M)
= (1+��) =

1+�
ln

v(m)
v(M)

ln �(M)
: Rearranging yields �(�) = �(M)

v(M)�
v(�)�. If � = 0 then �(�) is a constant.

If � > 0 then use the uniqueness properties of the MED representation to replace

the v with u(�) = �(M)
1
�

v(M)
v(�) so that �(�) = u(�)�. Note that 0 � u(�) < 1.

Conversely, if �(�) is constant then the axiom holds with � = 0. Otherwise,

given the representation, note that for any s; l we have � =
ln
u(s)
u(l)

ln �(l)
and Theorem

2.5 tells us that the t; T in the statement of that Theorem must satisfy T
t
= ln �(s)

ln �(l)
.

Thus,
T
t
= 1

ln �(l)
ln �(s) = 1

ln �(l)
lnu(s)� = 1

ln �(l)
lnu(l)�

�
u(s)
u(l)

��
= 1

ln �(l)
[lnu(l)� + � ln u(s)

u(l)
] = 1

ln �(l)
[ln �(l) + � ln u(s)

u(l)
] = 1 + �� , as desired.

Lemma E.2. A preference % over X satis�es regularity and Axiom 1 if and only
if it admits an HD representation (u; �) where � is as in Axiom 1.

Proof. By Lemma E.1, the hypothesis is equivalent to the existence of a MED
representation (u; �) such that 0 � u(�) < 1 and for the � � 0 in Axiom 1,
�(�) = u(�)� onM nf0g. First show that this representation implies the existence
of a desired HD representation.
If � = 0 then the claim is trivial. So suppose that � > 0. Note that the MED

representation is U(m; t) = u(�)1+�t, and u(M) is an interval in [0; 1) containing 0.
Take a continuous increasing transformation g : u(M)! R+ de�ned by g(0) = 0
and, for all r 2 u(M)nf0g; g(r) =

�
1

� ln r
� 1
� . Then V (m; t) := g(U(m; t)) =

g(u(m)1+�t) =
�

1
�(1+�t) lnu(m)

� 1
�
= 1

(1+�t)
1
�
v(m) where v(m) =

�
1

� lnu(m)

� 1
�
for

m > 0 and v(0) = limm!0 v(m) = 0. Thus we have established the existence of
an HD representation.
For the converse, consider the nontrivial case � > 0, suppose there is an HD

representation V (m; t) = 1

(1+�t)
1
�
v(m), and then apply the increasing transforma-

tion h(r) = e�r
��
to obtain the desired MED representation.

Lemma E.3. A regular preference % over X satis�es Axiom 1 if and only if it is
an SDU model that respects Weak Stationarity.

Proof. =): The previous Lemmas establish that regularity and Axiom 1 imply
the existence of HD and MED representations. The HD representation is a spe-
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cial case of the SDU representation, and the MED representation implies Weak
Stationarity.
(=: By Lemma B.4, the SDU model implies that there exists F (� ; t) that for

each s; l; � and all t satis�es

(s; 0) � (l; �) =) (s; t) � (l; F (� ; t) + �).

By Weak Stationarity, F (�;t)
t

is constant for each � . Thus, we can write F (� ; t) =
b(�)t for some function b. By Theorem 2.5, b(�) � 1. By Lemma B.4, the SDU
model implies also that

b(�)t+ � = F (� ; t) + � = F (t; �) + t = b(t)� + t:

Fixing t = t� > 0, we have that b(�) = 1 + �� , where � = b(t�)�1
t� � 0. Thus

Axiom 1 is satis�ed.

F. Appendix: Proof of Theorems 4.1 and 4.2

Proof of Theorem 4.1(i): As in the standard analysis of the bargaining game, for
any (x�; y�) that solves:

(1� x�; 0) �B (1� y�; 1) and (y�; 0) �A (x
�; 1); (F.1)

there exists such an equilibrium in which player A proposes an agreement (x�; 1�
x�) whenever it is her turn to make an o¤er, and accepts an o¤er (y; 1 � y) of
player B if and only if y � y�; player B always proposes (y�; 1� y�), and accepts
only those o¤ers (x; 1 � x) with 1 � x � 1 � x�. The outcome is that player A
proposes (x�; 1� x�) in period 0, and player B immediately accepts this o¤er.
To see that the equilibrium outcome x� is a �xed point of DBDA, note that

the problem (F.1) is equivalent to �nding (x�; y�) that solves

1� x� = �B(1� y�)(1� y�) and y� = �A(x
�)x�:

For any x let y(x) satisfy y(x) = �A(x)x. Let

F (x) = 1� x� �B(1� y(x))(1� y(x)) = DBDA(x)� x:

Clearly, (F.1) is satis�ed i¤ F (x) = 0 i¤ x is a �xed point of DBDA.
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Proof of Theorem 4.1(ii): As in the proof of (i), x is a �xed point i¤F (x) = 0.
Note that F is continuous and satis�es F (0) = uB(1) � �B(1)uB(1) > 0 and
F (1) = ��B(1 � y(1))uB(1 � y(x)) < 0. Therefore by the intermediate value
theorem there is z with F (z) = 0.
For an example of a case where F (z) = 0 for more than one z, suppose u is

linear and �A(�) = � 2 (0; 1). As in part (iii) proved below, suppose (F.2) holds:

�B(1�
1

2
�) >

1
2

1� 1
2
�
:

This ensures that F (1
2
) < 0 so that F (z) = 0 for some z < 1

2
. To get another

solution that is larger that 1
2
we show that it is possible that F (3

4
) > 0. This is

equivalent to

�B(1�
3

4
�) <

1
4

1� 3
4
�
:

Observe that 1� 3
4
� < 1� 1

2
� and

1
4

1� 3
4
�
<

1
2

1� 1
2
�
. Thus the two displayed inequalities

can be satis�ed by �B that is increasing.

Proof of Theorem 4.1(iii): Since F (0) > 0, by the intermediate value theorem
a su¢ cient condition for the existence of x� < 1

2
s.t. F (x�) = 0 is that F (1

2
) < 0.

Given linear MED representations, compute that F (1
2
) < 0 i¤DBDA(

1
2
) < 1

2
i¤

�B(1�
1

2
�A(

1

2
)) >

1
2

1� 1
2
�A(

1
2
)
: (F.2)

Note that 1 � �A(
1
2
)1
2
> 1

2
. Condition (F.2) depends on the value of �A(�) at

1
2
and of �B(�) at 1 � �A(

1
2
)1
2
> 1

2
. Thus it can hold even if �A � �B. For in-

stance, taking �A = �B = � we can choose �(1
2
) arbitrarily and set �(1� �(1

2
)1
2
) >

maxf
1
2

1��( 1
2
) 1
2

; �(1
2
)g. For a speci�c example, let �A(x) = �B(x) = 0:5+0:45x. Then

F (0:31) ' 0.

Proof of Theorem 4.2: Denote the greatest �xed point of DBDA(�) by g. Since
DBDA(�) is strictly increasing and DBDA(1) < 1, we see that g < DBDA(x) < x
on (g; 1]. Indeed, [DBDA]

n(1) converges to some point f � g. By continuity,
f = limn!1[DBDA]

n(1) = limn!1[DBDA]([DBDA]
n�1(1))

= [DBDA](limn!1[DBDA]
n�1(1)) = [DBDA](f). Thus f is a �xed point

of DBDA(�). Evidently then, f = g. This establishes that the odd subsequence
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of fAng converges to g. By a similar argument, the sequence f[DADB]
n (1)g

converges to the greatest �xed point of DADB(�).
Observe that

[DBDA]
n (DB(1)) = DB ([DADB]

n(1)) :

Therefore the even subsequence of fAng is fDB ([DADB]
n(1))g. We just noted

that [DADB]
n(1) converges to the greatest �xed point of DADB(�). Denoting this

greatest �xed point by h we therefore see that the even subsequence of fAng
converges to DB (h). To complete the proof, we need to show that DB (h) is in
fact the least �xed point of DBDA(�). Denote this least �xed point by l.
First observe that DB (h) is a �xed point of DBDA(�): since DADB(h) = h it

follows thatDB (DADB(h)) = DB(h) and in particular, [DBDA](DB(h)) = DB(h),
as desired. By an identical argument, it follows that DA (l) is a �xed point of
DADB(�). To establish that DB (h) = l, note that by de�nition of l and h,

l � DB (h) and DA (l) � h.

Since DB (�) is strictly decreasing, DA (l) � h and the de�nition of l implies
l = DBDA (l) � DB(h), that is, l � DB (h). But l � DB (h) also holds, and thus
we have proved that DB (h) = l.
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