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Abstract

A probability measure over a multi-dimensional state space is an Intuitive Belief if it is
an aggregation of pairwise associations. Associations are shown to correspond to an analog of
pointwise mutual information, and a separability property in beliefs is shown to characterize the
model. Associations are optimized so as to match the data, given by an objective probability
distribution over observed states. The resulting beliefs exhibit inductive inference, generically
placing positive probability on states that they have not observed. The model accommodates
the classic belief biases documented in Psychology and explains correlation neglect, experience
effects, the disposition effect and empirical patterns in overconfidence.
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1 Introduction
Consider a researcher that is reading a paper and suddenly gets the feeling that something is not
quite right in the results, but is unable to articulate why. Only subsequent thought determines
whether her feeling is incorrect or whether it is in fact a flash of brilliance. This example illustrates
the intuitive process: it is an automatic form of information processing that takes place beyond our
awareness, the results of which we become aware of only through a feeling (Simon 1995, Betch 2007).

Real-world investors claim to often be empowered by their gut-level assessments when making
decisions (Salas et al 2010, Hensman and Sadler-Smith 2011, Huang and Pearce 2015, Huang 2018).
Anecdotally, investors speak of the importance of having a “feel for the market”, and investors may
not pursue an opportunity if they are “not feeling it”. The idea that decisions may be based on a
feeling without articulated reasons is also reminiscent of the conviction of Keynes (1936, pp 161-162)
that investors are driven by a “spontaneous urge to action”, which he referred to as “animal spirits”.
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A role for intuition in choice under complexity may arise as a natural consequence of the fact that
economic environments are too complex to be fully navigated with analytical reasoning alone.

This paper models the intuitive process and its formation. A key motivation is that there is now
a large literature on the disparate deviations from rational behavior, and it is desirable to have a
small number of models that unify as much of the evidence as possible. If a range of non-rational
behaviors is in fact a product of intuitive reasoning, then a theory of intuition may serve such a
purpose.

Our theory conceptualizes the phenomenon of intuition in terms of the phenomenon of associa-
tions (Tversky and Kahneman 1974, Betch 2007, Morewedge and Kahneman 2010).1 An association
is the brain’s natural tendency to form connections between observations in the world.2 Associa-
tions are, for instance, at play in memory retrieval cues (such as when a song on the radio evokes
a memory), default thinking patterns (such as systematically interpreting things negatively) and
phobias (such as when the sight of a spider evokes fear). Associations are acquired from the environ-
ment through the process of associative learning, and are continually strengthened or weakened by
experience through factors such as frequency, repetition, similarity and salience (see Wasserman and
Miller 1997 for a review of the psychology literature). Thus, an investor’s gut response to news will
be driven by associations she has formed between different variables through her experience in the
environment. Similarly, a researcher’s gut reactions when reading a paper arise from the connections
formed through prior education and research that are triggered by the paper.

Restricting attention to the context of beliefs over a multi-dimensional state space, we model
intuitive beliefs as being constructed from a network of associations. Our modelling inspiration
comes from AI. Artificial neural networks are models of thinking, and machine learning is a model
of how thinking patterns are learnt from the environment. We model beliefs as a stochastic neural
network that is “trained” by the environment: associations are weights in a network, aggregated
to produce a belief, and associations are determined in an environment so as to try to match an
objective probability distribution.

More formally, we take as our primitive a probability measure p over some finite product set Ω =∏
i=1,..,N Ωi, consisting of multi-dimensional states of the world with generic element x = (x1, .., xN ).

Intuitive Beliefs take the following form for any state x = (x1, .., xN ) ∈ Ω,

p(x1, .., xN ) =
1

Z
exp

∑
i<j

a(xi, xj) +
∑
i

b(xi)

 .
In assessing the likelihood of state x = (x1, .., xN ), the model sums the associations a(xi, xj) between
each pair xi, xj in distinct dimension i, j, and the background association b(xi) between each xi and
unmodelled background information. The model and our notion of training of beliefs (outlined
shortly) is directly inspired by the Boltzmann machine (Hinton and Sejnowski 1983, Ackley et
al 1985), an energy-based stochastic neural network used in AI. However, the functional form is
also reminscent of the density of a multivariate Gaussian distribution, which aggregates pairwise
relationships defined indirectly via the covariance matrix. In studying the structure of Intuitive

1Betch (2007) defines intuition in the following terms: “Intuition is a process of thinking. The input to this process
is mostly provided by knowledge...primarily acquired via associative learning. The input is processed automatically
and without conscious awareness. The output of the process is a feeling that can serve as a basis for judgments
and decisions”. Morewedge and Kahneman (2010) posit that intuitive judgements are made through automatic,
non-deliberative “System 1” processing, which makes use of heuristics and associative memory.

2Associationism, a philosophical school with early expositors such as David Hume, recognized the creation of
associations as the most basic function of the mind and sought to reduce all mental life to associations. It served as
the foundation of behavioral psychology in the early 20th century until it gave way to the cognitive revolution in the
mid 20th century. In its particular manifestation as conscious memory, assocations have been modelled as networks in
cognitive psychology using spreading activation networks (Collins and Loftus 1975, Anderson 1983). More advanced
modelling of associative memory was taken up in the study of artificial neural networks in AI (for instance Hopfield
1982), which also had an influence in psychology (Kahana 2020).
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Beliefs, we establish an expression for a and b in terms of p (Theorem 1), provide a characterization
result for the model (Theorem 2), and delineate its uniqueness properties (Theorem 3).

To model how Intuitive Beliefs are formed, we suppose that there is an objective probability
distribution q over Ω, and that the agent’s experience involves observing some subset of states
φ 6= D ⊂ Ω. The agent’s experience is therefore given by the conditional distribution q(�|D) over
D. We posit that associations are optimized by the intuitive process to best match the agent’s
experience. More formally we say that Intuitive Beliefs p are trained by q and D if they solve

minp′∈∆IB(Ω)KL(q(�|D)||p′(�|D)),

where ∆IB(Ω) denotes the set of Intuitive Beliefs and KL(�) denotes KL-divergence. Notably, we
permit Intuitive Beliefs to be formed over all of Ω even though the agent only observes φ 6= D ⊂ Ω.
Under various richness conditions on D, we characterize the set of trained beliefs (Theorem 4). We
find that trained Intuitive Beliefs generically possess an inductive inference property, defined by
D ⊂ supp(p). That is, even though the agent only observes states in D, she may nevertheless place
strictly positive probability on states outside D.

In one application of the training problem, we consider an extended environment where the
limited observations D arise not due to constraints in the data available in the environment, but
rather cognitive constraints on how many dimensions of a state the agent can perceive at a time. In
this context, we show that trained Intuitive Beliefs take the following reduced form,

p(x) =
1

Z

∏
i<j

q(xixj)

q(xi)q(xj)

×∏
i∈Γ

q(xi), (1)

that is, beliefs aggregate objective marginals q(xi) and a particular measure of correlation q(xixj)
q(xi)q(xj)

(known as pointwise mutual information in Information theory). While Theorem 1 provides the
general empirical meaning of a and b in terms of p in the abstract, the above reduced form provides
the empirical meaning of a and b in terms of the empirical distribution q within which the agent is
operating.

Finally, we show that our model of trained Intuitive Beliefs can accommodate a range of disparate
empirical findings. In fact, most of these findings are generated by trained Intuitive Beliefs without
any new assumptions:

• The model endogenously produces correlation neglect. Subjects in experiments appear unable
to understand the set of payoffs generated by two correlated assets, nor reconstruct a true
sequence of signals from one with a simple known bias (Eyster and Weiszacker 2016, Enke and
Zimmerman 2013), behaving as if they allow for more possibilities than are logically implied
by the correlation structure offered to them. The intuitive inference property noted above
directly gives rise to this: the observed states shape the associations, and the aggregation
of these associations by intuitive process generates a belief in new states, even if they are
objectively impossible.

• While the inductive inference property can lead to a positive belief about impossible states, it
can also lead to an exaggerated belief about the likelihood of states that have small objective
probability. As a result, the model produces patterns observed in the overconfidence literature
(Moore and Healy 2008) in Psychology and the disposition effect (Shefrin and Statman 1985)
studied in Behavioral Finance.

• The model endogenously produces experience effects, whereby experience affects behavior even
where it is not objectively relevant (Malmendier and Nagel 2016, Bordalo et al 2019). Observe
that the reduced form (1) involves marginal beliefs q(xixj). Since these are computed using
all y−ij , it follows that the agent’s experience with states y 6= x enters into her belief about
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x. So, for instance, a doctor may prescribe a treatment to a patient not just on the basis of
adequate data on how the treatment has fared for this particular patient in the past, but also
on the basis of her experience with the treatment on other patients.

• The model can explain classic belief biases studied in Psychology that reveal that subjects’
judgments under uncertainty bear little semblance to the Bayesian model (Tversky and Kah-
neman 1974, Benjamin 2019). Unlike the preceding, this requires a substantive hypothesis:
the agent’s intuition about probabilities is shaped entirely by the sampling distribution. That
is, we do not presume that the agent engages in any probabilitistic reasoning, but rather con-
structs beliefs based on associations shaped by the sampling distribution. The model gives rise
to the Law of Small Numbers, Non-Belief in the Law of Large Numbers, the Gambler’s fallacy
and the Hot Hand Effect. In contrast to the literature that accommodates such findings by
assuming non-Bayesian updating, we show that the experimental findings can be viewed as
properties of the prior alone, and do not require a deviation from Bayesian updating.

Related literature: This paper intersects with several strands of literature.
Gilboa and Schmeidler (2003) and Billot et al (2005) study case-based beliefs, where a (presum-

ably consciously deliberating) agent employs a subjective assessment of “similarity” between cases
to convert a database of past observed cases into a belief over the possible outcomes of a current
case. Argenziano and Gilboa (2019) take inspiration from classification tasks in AI to model the
formation of the similarity function. Our model shares the inductive inference and experience effects
properties with them, albeit formulated differently. See the discussion in Sections 4.1 and 5.3.

Within the literature on belief biases (see Benjamin 2019 for a review), Gennaioli and Shleifer
(2010) modify Bayes Rule to capture the idea that learning an event may invite only particular
“representative” states to come to the agent’s mind, and Mullainathan (2002) and Bodoh-Creed
(2020) explicitly incorporate properties of associative memory (such as the fact that a memory is
easier to recall the more frequently it is recalled) in to a dynamic model. These models share with
us the view that associations play a role in beliefs, but while we study the role of associations in
construction of the prior (and invoke Bayesian updating where needed), these models study the role
of associations in giving rise to Non-Bayesian updating (with an arbitrary prior).

Bordalo et al (2019) model associative recall in a choice context rather than beliefs. Past obser-
vations are stored in the agent’s memory, and a new observation leads to (stochastic) recall of past
observations by means of a similarity function. The recalled observations define a “norm” (which
acts as a reference point), and the agent maximizes a norm-dependent utility. The model gives
rise to experience effects, since experience determines memory and thus the norm and subsequent
choice. In our model, q similarly determines beliefs, but experience effects arise also in a different
form: for any event E ⊂ Ω, Bayesian-conditional Intuitive Beliefs p(�|E) can depend on the objective
probability q of states outside E.

The preceding models are not based on neural networks. Spiegler (2016) provides a model of
belief formation inspired by Bayesian networks (which are very different from the energy-based neural
network that we use): beliefs are derived from some objective distribution q over a multi-dimensional
state space Ω and “causal structure” (modelled as a directed acyclic graph). The agent rationally uses
her causal structure, but is bounded in that she naively assumes the truth of her causal structure,
which may well be wrong. Beliefs in this model combine q and the causal structure by means of the
chain rule, and take the form of some product of conditional uni-dimensional marginals of q. As is
clear from (1), the two models are orthogonal to each other: Intuitive Beliefs constitute a normalized
product of uni-dimensional marginals and pointwise mutual information. The applications of the
two models are also different.

The remainder of this paper proceeds as follows. Section 2 presents our model. Section 3
explores the empirical content of Intuitive Beliefs in the abstract while Section 4 explores it for
Intuitive Beliefs trained by an environment. Section 5 presents applications. All proofs are collected
in the Appendix.
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2 Model

2.1 Primitives
For 1 < N < ∞, the set Γ = {1, ..., N} of sources or elements of uncertainty is a finite subset
of N+ with generic elements i, j, k, ... For each source of uncertainty i ∈ Γ, the finite abstract set
Ωi = {xi, yi, zi...} consists of all possible elementary states of source i, and is referred to as the
elementary state space for source i. The (full) state space is the product space given by

Ω :=
∏
i∈Γ

Ωi,

with generic element x = (x1, ..., xN ). An event in the full state space is, as usual, an element of
some algebra on Ω:

φ 6= Σ ⊂ 2Ω,

with generic elements E,F,G. For any I ⊂ Γ, we adopt the notation ΩI :=
∏
i∈I Ωi and Ω−I :=∏

i/∈I Ωi. Similarly, a state xIz−I specifies xI ∈ ΩI and z−I ∈ Ω−I .
To illustrate the setup, consider the quarterly earnings announcements of a set of companies Γ =

{1, .., N}. The possible earnings of company i are given by Ωi = {xi, yi, ..}. A state x = (x1, ..., xN )
is a vector of earnings announcements. The event that companies I ⊂ Γ announce earnings xI ∈ ΩI
is given by E = {xIz−I ∈ Ω : z−I ∈ Ω−I}.

Beliefs p over Ω are given by a standard probability measure over (Ω,Σ), and constitutes the
primitive of our model. We treat beliefs as observable behavioral objects since they can be derived
from betting preferences (Savage 1954) and indeed are routinely elicited in experiments (Schotter
and Trevino 2014). It should be acknowledged that experiments routinely show that subjects’ beliefs
are non-probabilistic in that they violate additivity and do not even monotonically assign a higher
probability to larger events (Tversky and Kahneman 1974). Nevertheless, we restrict attention to
probability measures in this paper as part of a systematic development of our theory. An earlier
version of this paper (Noor 2019) presented a non-probabilistic version of the model.

2.2 Abstract Intuitive Beliefs
An association is a psychological connection between observations. We distinguish between two
kinds of associations: the connection between any pair of elementary states xi and xj , and that
between an elementary state xi and (unmodelled) background information.

Definition 1 An associative network (a, b) on Ω is defined by
(i) an association function that assigns to each distinct i, j ∈ Γ and xi, xj ∈ ∪k∈ΓΩk a symmetric3

associative weight a(xi, xj) ∈ R ∪ {−∞}, which we write as a(xixj),
(ii) a background association function b that assigns b(xi) ∈ R ∪ {−∞} to each xi ∈ ∪k∈ΓΩk.

Associations are pairwise and undirected in the model, and serve as the building blocks for
beliefs over multi-dimensional states x ∈ Ω in the model. The fact that associations are undirected is
without loss of generality, as directedness lacks empirical meaning in this static setting. Associations
can take on positive or negative real-values, or a value of −∞. The meaning of positive or negative
associations will be explored in the sequel. The interpretation of a(xixj) = −∞ is that the occurrence
of xi is maximally associated with the non-occurrence of xj , and vice versa (due to symmetry). A
state of the world involving such xixj will be viewed as impossible by our agent.

Consider a state x = (x1, .., xN ) ∈ Ω. Imagine that the intuitive consideration of x triggers
the subjective feeling a(xixj) of connection of between each pair xi, xj and the feeling b(xi) of

3That is, a(xixj) = a(xjxi).
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connection between each xi and background information. The total associative energy generated
by these associations triggered by state x = (x1, .., xN ) is given by their additive aggregation∑
i<j a(xixj) +

∑
i∈Γ b(xi). We model the intuitive belief p(x) as a normalized exponential function

of this associative energy.

Definition 2 Beliefs p over Ω are Intuitive Beliefs (IB) if there exists an associative network (a, b)
and a real number Z > 0 such that for any x ∈ Ω,

p(x) =
1

Z
exp

∑
i<j

a(xixj) +
∑
i∈Γ

b(xi)

 .
The set of all Intuitive Beliefs over Ω is denoted ∆IB(Ω).

The exponential function has no meaning beyond implying that p(x) can be described alterna-
tively as multiplicatively aggregating subjective building blocks: p(x) = 1

Z

∏
i<j ξ(xixj)×

∏
i∈Γ ζ(xi),

where ξ(xixj) = exp[a(xixj)] and ζ(xi) = exp[b(xi)]. It is worth noting that statistical independence
between dimensions i and j corresponds to a zero association a(xixj) = 0 between any xi and xj .
To illustrate, suppose we partition the dimensions Γ into two nonempty sets G1, G2 and suppose
that there is zero association across the dimensions in these sets, that is, a(xixj) = 0 for any x ∈ Ω
and i ∈ G1 and j ∈ G2. Then it is straightforward to show that

p(x) = p(xG1
)p(xG2

)

where p(xGk) := p(xGkΩG−k) denotes the marginal probability of the state taking values xGk on the
dimensions Gk, for k = 1, 2.

The functional form is familiar from other literatures. When elementary states Ωi consist of real
numbers, the model subsumes the density of the multivariate Gaussian distribution:

f(x) =
1√

2πN |Λ|
exp[−(x− µ)TΛ−1(x− µ)]

with variance-covariance matrix Λ. Indeed, just as the Gaussian distribution describes probabilities
that are built from a variance-covariance matrix, Intuitive Beliefs are Gaussian in spirit in that they
envisages likelihoods as arising from pairwise relationships between variables.4

The functional form is also related to the Boltzmann machine (Hinton and Sejnowski 1983,
Ackley et al 1985), which belongs to the class of energy-based stochastic neural networks inspired
by the Ising model of ferromagnetisim in Statistical Physics (Hopfield 1982). Imagine that Γ is a
set of nodes, and each node i ∈ Γ can take values in Ωi (in typical AI applications, a node is either
“on” or “off”, captured by Ωi = {0, 1} or Ωi = {−1, 1}). A state x = (x1, .., xN ) ∈ Ω is therefore a
configuration of the nodes in the network. Just as the respective spins of atoms interact to create
energy, at each configuration x ∈ Ω, each node i ∈ Γ produces “energy” b(xi) and each pair of nodes
produces “energy” a(xixj). The value −

∑
i<j a(xixj) +

∑
i∈Γ b(xi) is known as the energy of the

network (the negative quantity is a convention that comes from Physics). In energy-based networks,
the configuration x = (x1, .., xN ) evolves dynamically because activation xi ∈ Ωi of each node i ∈ Γ
is presumed to depend on the total energy in the network. The steady state of the network is a steady
state probability distribution over configurations. The Boltzmann machine posits that activation
of any particular node is a logistic function of energy, and the resulting steady state distribution
corresponds exactly to the Boltzmann-Gibbs distribution we used to define Intuitive Beliefs.

4To illustrate, when N = 2, the bi-variate Gaussian distribution has density p(x1x2) =
1
Z
exp [a(x1x2) + b(x1) + b(x2)] where the associative network (a, b) is defined by

a(x1x2) =
2ρ

2(1− ρ2)

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
and b(xi) = −

1

2(1− ρ2)

(
xi − µi
σi

)2

,

where µi and σi are the mean and standard deviation of xi, i = 1, 2, and ρσ1σ2 is the covariance between x1 and x2.
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2.3 Trained Intuitive Beliefs
We have modelled a belief as a probability measure that is constructed from building blocks, given
by an underlying network of associations. We now augment the model with the natural hypothesis
that associations are shaped by the environment. This extends the abstract model to include the
formation of Intuitive Beliefs.

Begin by recalling that, for any probability measures p, q over Ω, the notion of KL-divergence is
defined by

KL(q||p) :=
∑
x∈Ω

q(x)ln
q(x)

p(x)
,

with the convention that 0 × ln[ 0
p(x) ] = 0.5 For any subset of states φ 6= D ⊂ Ω, define the D-

conditional distributions in the usual way by p(x|D) = p(x)∑
y∈D p(y) and q(x|D) = q(x)∑

y∈D q(y) for all
x ∈ D.

While the primitives of the abstract model was a belief p over Ω, we now consider instead the
primitives consisting of (a) an objective distribution q over Ω, and (b) a subset of objectively-possible
states φ 6= D ⊂ supp(q) that the agent has in fact observed. Using these primitives, we endogenously
derive an Intuitive Belief p:

Definition 3 Intuitive Beliefs p over Ω are trained by q over Ω if p solves

minp∈∆IB
KL( q(�|D) || p(�|D) ).

That is, while the agent experiences only the conditional distribution q(�|D) over a subset of
states, φ 6= D ⊂ Ω, the intuitive process seeks an Intuitive Belief p over the full state space Ω that
has a conditional p(�|D) that matches q(�|D) as closely as possible on D, in the sense of minimizing
KL-divergence. Observe that training utilizes only the conditional distribution q(�|D) over D and
not q over Ω per se. When D = Ω, training corresponds to a standard machine learning problem for
the Boltzmann machine where q over Ω describes the training data.

2.4 Perspective
Limited Intelligence. A key distinction between intuitive reasoning and deliberative reasoning is
that the former lacks the rigor and logical sophistication of the latter. This is amply demonstrated
by anecdotal examples of common reactions to the Monty Hall problem but also, most notably, the
central exploration of the Heuristics and Biases program in Psychology is precisely to document how
the intuitive assessments of likelihood are flawed (Tversky and Kahneman 1974). In what sense does
our model of Intuitive Beliefs exhibit limited intelligence?

Intelligence can be gauged by one’s capacity to recognize or learn patterns in the data. We
observe that Intuitive Beliefs always satisfy the following property: for any given x ∈ Ω,

p(xixj) > 0 for all i, j ∈ Γ =⇒ p(x) > 0, (2)

that is, if each xixj is deemed possible, then x must also be deemed possible. This arises from the
additive nature of pairwise associations, where a(xixj) = −∞ or b(xi) = −∞ for some i, j ∈ Γ
forces p(x) = 0. While property (2) can be possessed by a prior in any rational model, what makes
it peculiar here is that Intuitive Beliefs possess this property regardless of the data q(�|D). That is,
Intuitive Beliefs exhibit limited intelligence because they cannot learn a pattern in the data whereby

5The Kullback-Leibler (KL) divergence or relative entropy is used ubiquitously in information theory. It is well
known that KL-divergence is non-negative and strictly convex. Although it fails the triangle inequality, it is pervasively
used as a notion of distance between distributions. Our theory is not necessarily tied to KL-divergence. Our sharpest
result on training (Theorem 3) can be established with any notion of distance d ≥ 0 that satisfies d(p, q) = 0 ⇐⇒
p = q.
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each xixj is objectively possible but their joint realization x = (x1, .., xN ) is not. It is as if Intuitive
Beliefs are based on a simplistic kind of intuitive reasoning, one that is incapable of comprehending
full vectors x = (x1, .., xN ), and where observations of each pair xixj causes it to admit the possibility
of their joint occurrence. We will see in Section 5 how this form of limited intelligence enables the
model to explain empirical evidence.

Higher Intelligence. We show now how higher degrees of intelligence can be achieved in the
model without departing from the pairwise nature of associations. The discussion also clarifies that
Intuitive Beliefs correspond to a special case of the Boltzmann machine.

The nodes in the Intuitive Belief model correspond to what are known as visible nodes in the
AI literature, that is, nodes whose values correspond to observable variables (elementary states).
However, in addition to visible nodes, neural networks in AI pervasively and instrumentally make
use of hidden nodes, that is, nodes whose values are completely internal to the network, in contrast
to visible nodes which form the network’s interface with the environment. To illustrate, suppose
that Γ = {1, .., N} describe the visible nodes as before, but now also suppose that there are hidden
nodes G = {N + 1, .., N +H} and each hidden node h ∈ G can take values in some space Ωh. (One
can interpret {Ωi}i∈Γ as the objective elementary state spaces and {Ωh}h∈G as subjective ones). In
the Boltzmann machine, there exists an associative network (a, b) on Ω×

∏
h∈G Ωh, so that there are

associations connecting all nodes, visible or hidden. It will aid our exposition to consider a “Restricted
Boltzmann machine with a single layer of hidden nodes”, which is a parsimonious special case where
connections are 0 between all visible nodes, and similarly between all hidden nodes: a(xixj) = 0
for all xixj where i, j ∈ Γ or i, j ∈ G. While the probability of a state (x1, .., xN ; yN+1, ..., yN+H)
describing both visible and hidden nodes takes the Boltzmann-Gibbs form as before,

p(x1, .., xN ; yN+1, ..., yN+H) =
1

Z
exp

 ∑
i≤N<h

a(xiyh) +
∑
i∈Γ

b(xi) +
∑
h∈G

b(yh)

 ,
the Restricted Boltzmann machine is defined by the marginal distribution over the visible nodes:

p(x1, .., xN ) =
1

Z

∑
(yN+1,..,yN+H)∈

∏
h∈G Ωh

exp

 ∑
i≤N<h

a(xiyh) +
∑
i∈Γ

b(xi) +
∑
h∈G

b(yh)

 .
Given the flexibility afforded by hidden nodes, this network can be trained to learn a wide range
of patterns in the data, and subsequently recognize patterns when given new but partial data and
accomplish a range of tasks.

3 Results: Abstract Intuitive Beliefs
In this section we explore the empirical meaning of associations in the set up where we observe the
agent’s beliefs p only, abstracting from the environment. We make the simplifying assumption that
beliefs have full support : p(x) > 0 for all x ∈ Ω. It is easy to see that Intuitive Beliefs p have full
support if and only if p is represented by a real-valued network (a, b).

3.1 Identification
Take any probability measure p ∈ ∆(Ω) (not necessarily an Intuitive Belief) with full support
and let KI be the cardinality of ΩI for any subset of dimensions φ 6= I ⊂ Γ. Since Ω has a
product structure, KI =

∏
i∈I Ki. We begin with the simple observation that the marginal belief
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p(xI) =
∑
z−I∈Ω−I

p(xIz−I) on xI ∈ ΩI can in fact be viewed as a normalized mean of p(xIz−I)
averaged over all z−I ∈ Ω−I :

p(xI) =
1

ZI

∑
z−I∈Ω−I

1

K−I
p(xIz−I)

with a normalizing constant ZI (which is easily shown to equal 1
K−I

). It is trivial to show that this
can equivalently be written as p(xI) = 1

ZI

∑
z∈Ω

1
K p(xIz−I) where we sum across all z ∈ Ω instead,

and divide by the cardinality K of Ω. Define a geometric marginal (geo-marginal for short) similarly
by the normalized geometric mean of p(xIz−I) over all z−I ∈ Ω−I :

pg(xI) :=
1

ZI

∏
z∈Ω

p(xIz−I)
1

K−I xI ∈ ΩI .

We show in Appendix A that geo-marginals are attractive mathematical objects since their properties
mirror those of arithmetic marginals. We also show that marginals and geo-marginals coincide under
statistical independence (that is, p(x) =

∏
i∈Γ p(xi) for all x ∈ Ω).

Next, recall the measure of correlation ϕ(xi, xj) between two variables known as pointwise mutual
information (PMI) familiar from information theory:

ϕ(xi, xj) = ln
p(xixj)

p(xi)p(xj)
.

If p exhibits statistical independence then p(xixj)
p(xi)p(xj)

= 1 and there is no correlation, ϕ(xi, xj) = 0.
Positive and negative correlations are defined accordingly. For any xi, xj ∈ ∪k∈ΓΩk, define geometric
PMI (geo-PMI for short) by

ag(xixj) = ln
pg(xixj)

pg(xi)pg(xj)
,

where marginals have been replaced with geo-marginals in the definition of PMI. Since marginals
and geo-marginals coincide under statistical independence, if p exhibits statistical independence then
ag(xixj) = 0, as in the arithmetic case.

We are now ready to state our first result. In the context of Intuitive Beliefs, the notion of an
associative network can be given empirical expression in terms of geo-marginals and geo-PMI:

Theorem 1 A belief p with full support is an Intuitive Belief if and only if it is represented by an
associative network (ag, bg) over Ω where, for all xi, xj ∈ ∪k∈ΓΩk,

ag(xixj) = ln
pg(xixj)

pg(xi)pg(xj)
and bg(xi) = lnpg(xi).

A proof outline is provided in Section 3.4. The Theorem tells us that the notion of association
can be understood as a notion of correlation, and background association as a notion of marginal.
Treating these as behavioral definitions, we can give meaning to a positive (resp. negative) asso-
ciation between xi and xj as pg(xixj)

pg(xi)pg(xj)
> 1 (resp. < 1). More generally, the Theorem tells us

that the model lends itself to the same kind of analysis as in standard models in Economics, where
components of the representation can be measured empirically and be used to compare across indi-
viduals (such as risk aversion in Expected Utility theory). For instance, it can be used to compare if
one agent has a stronger association ag(xixj) than another. It can also be used to estimate (ag, bg)
for an agent on the basis of data p on a limited sample D ⊂ Ω, allowing us to predict the agent’s
beliefs about states that are out-of-sample (just as risk aversion estimated in the lab can be taken
as an estimate for the population and can be used for to suggest parameter values in macro-finance
models).
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It is instructive to note that inserting this network into the representation yields a reduced form
of the model: for all x ∈ Ω,

p(x) =
1

Z
×

∏
i<j

pg(xixj)

pg(xi)pg(xj)

×∏
i∈Γ

pg(xi). (3)

Thus, Intuitive Beliefs are constructed from its uni- and bi-dimensional geo-marginals, and more
specifically, they combine uni-dimensional marginals with correlation (geo-PMI).

3.2 Characterization
Associations are the building blocks of Intuitive Beliefs. In this section we explore the observable
expression of the separability between these building blocks that is presumed in the model. Al-
though updating of beliefs is not the focus of this paper, our characterization result lends itself to
better interpretation in a dynamic setup where the prior belief is an Intuitive Belief and subsequent
posteriors are its Bayesian conditionals. A purely static characterization can be found in Appendix
E.2.

For any full support belief p over Ω, a family of conditional beliefs {p(�|E)}E∈Σ over Ω is Bayesian
if, for each event E ∈ Σ, the conditional belief satisfies p(x|E) = p(x)∑

y∈E p(x) for all x ∈ E. Denoting
the cardinality of any event E ∈ Σ by K(E) and taking any set of dimensions φ 6= I ⊂ Γ, the
conditional geo-marginal pg(xI |E) is naturally defined by taking a normalized geometric mean of
p(xIz−I |E) over all z−I that appear in E:

pg(xI |E) :=
1

ZI(E)

∏
z∈E

p(xIz−I |E)
1

K(E) xI ∈ ΩI .

This in turn allows us to define conditional geo-PMIs pg(xixj |E)
pg(xi|E)pg(xj |E) . It is readily determined that a

Bayesian family of Intuitive Beliefs can be described by conditional versions of (3) using conditional
geo-PMI.6

When some states are ruled out by an event E, the prior association pg(xixj)
pg(xi)pg(xj)

between xi and

xj is revised to a new value pg(xixj |E)
pg(xi|E)pg(xj |E) . We identify a restriction that the model implies for this

revision. Consider more specifically any event E ∈ Σ that is i, j-unrestricted in that it only restricts
elementary states outside dimensions i, j: there exists a restriction φ 6= Sk ⊂ Ωk for all k 6= i, j such
that

E = Ωij ×
∏

i,j 6=k∈Γ

Sk. (4)

The following property permits such an event to cause the association pg(xixj)
pg(xi)pg(xj)

to move to a

different value pg(xixj |E)
pg(xi|E)pg(xj |E) , but requires that the relative associations on dimension i, j do not

change.

6For completeness, we state this formally, relegating the proof to the appendix:

Proposition 1 If {p(�|E)}E∈Σ over Ω is a Bayesian family of conditional beliefs derived from a full support Intuitive
Belief p then for each E ∈ Σ and x ∈ E,

p(x|E) =
1

Z(E)
×

∏
i<j

pg(xixj |E)

pg(xi|E)pg(xj |E)

×∏
i∈Γ

pg(xi|E).
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Definition 4 The Bayesian family of conditional beliefs {p(�|E)}E∈Σ over Ω derived from a full
support prior p satisfies Relative Associative Separability (RAS) if for any distinct i, j ∈ Γ and any
(xi, xj), (yi, yj) ∈ Ωij, the ratio

pg(xixj |E)

pg(xi|E)pg(xj |E)
/

pg(yiyj |E)

pg(yi|E)pg(yj |E)

is the same across all i, j-unrestricted events E ∈ Σ.

As a statement of how the realization of elementary states outside i, j impact beliefs along
dimensions i, j, RAS is a separability property: in determining the belief p(x), for any distinct i, j
and k, the xi, xj association is aggregated with the xi, xk associations and the xjxk in a separable
way. We find that this property characterizes Intuitive Beliefs.

Theorem 2 A Bayesian family of conditional beliefs {p(�|E)}E∈Σ over Ω derived from a full support
prior p satisfies RAS if and only if p is an Intuitive Belief.

A proof outline is provided below in Section 3.4. Note that when N = 2, any probability measure
satisfies RAS trivially and thus, by the Theorem, can be written as an Intuitive Belief. A direct
demonstration is that ifN = 2 then the model takes the form p(xixj) = 1

Z exp [a(xixj) + b(xi) + b(xj)],
and any p can be replicated by an appropriately chosen a while setting b = 0. Intuitive Beliefs have
peculiar content only when N > 2.

3.3 Uniqueness Theorem
Having characterized the class of beliefs that admit an Intuitive Belief representation, we now char-
acterize the class of all representations of a given Intuitive Belief in the following uniqueness theorem.
(We are not aware of similar results in the AI literature, where the network (a, b) and p that define a
Boltzmann machine are both treated as observable). Say that z ∈ Ω is a reference state if p(z) > 0
and for any xi ∈ Ωi,

p(xi) > 0 =⇒ p(xizi) > 0,

that is, z occurs with positive probability and if we replace zi with any xi that has a positive
marginal then the new state xizi also has positive probability. The existence of a reference state
implies some richness in the support of p. For instance, a belief p with binary support {x, y} where
x, y are non-overlapping (in the sense that xi 6= yi for each i) does not admit any reference state.
When there exist overlapping states, then the representation has sharp uniqueness properties.

Theorem 3 (i) Intuitive Beliefs p are represented by (a, b) if and only if there they are represented
by (α, β) where β = 0 and, for all x ∈ Ω and distinct i, j ∈ Γ,

α(xixj) = a(xixj) +
1

N − 1
[b(xi) + b(xj)].

(ii) Suppose there exists a reference state. Then Intuitive Beliefs p are represented by (a, 0) and
(α, 0) iff for each i, j ∈ Γ and xi ∈ Ωi there exist scalars γj(xi) and ki satisfying

∑
i 6=j∈Γ γj(xi) = ki,

such that for any x ∈ Ω and distinct i, j ∈ Γ,

α(xixj) = a(xixj) + γj(xi) + γi(xj). (5)

The first claim shows that background associations can in fact be normalized to b = 0.7 The
second shows how any two such b-normalized representations (a, 0) and (α, 0) must be related (as-
suming the existence of a reference state, which holds trivially if we were to assume that beliefs

7Therefore, strictly speaking, background associations are irrelevant for the representation. They remain useful,
however. The reduced form (3) is easier to interpret with the notion of background associations, and the canonical
representation in Theorem 1 is harder to interpret if a is adjusted so as to absorb b, in which case it is no longer
defined by geo-PMI. Furthermore, while not explored here, background associations can be employed in a dynamic
extension of the model to model Non-Bayesian updating, by making them a function b(�|E) of the event that an agent
learns (see the earlier version of this paper, Noor 2019).
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have full support). The relationship is described by a “budget” ki for every dimension i ∈ Γ, from
which one can allocate a portion γj(xi) to each j distinct from i, in a manner that balances the
budget:

∑
i6=j∈Γ γj(xi) = ki. For any representation (a, 0), shifting a(xixj) by γj(xi) + γi(xj) as in

(5) generates a new representation (α, 0). Conversely, any two representations must be related by
such budget-balanced shifts.

The non-uniqueness of the representation gives rise to the foundational challenge of finding a
unique canonical representation. This is in fact the contribution of Theorem 1. It is interesting
to note that the uniqueness issue changes when Intuitive Beliefs are determined endogeneously
through the training problem (Definition 3). As we will see in Section 4, Trained Intuitive Beliefs
are a function of q, and that function serves as a unique canonical representation in terms of q.

3.4 Proof Outline for Theorems 1 and 2
The proof of Theorem 1 is based on studying various normalizations of the model that are permitted
by Theorem 3. Assume that p has full support so that every state is a reference state. Of particular
interest are “z-normalized representations” (Lemma 9) where we fix any reference state z ∈ Ω and
normalize the representation so that a(zizj) = b(zi) = 0 for all distinct i, j ∈ Γ and a(xizj) = 0 for all
xi. A key result is that such representations can be identified using p by the relationships a(xixj) =
p(xixjz−ij)p(z)
p(xiz−i)p(xjz−j)

and b(xi) = p(xiz−i)
p(z) . These normalized representations are not adequate canonical

representations because the choice of the reference state z ∈ Ω is arbitrary. The construction of
the canonical representation comes from observing that the ratio p(xixjz−ij)p(z)

p(xiz−i)p(xjz−j)
is independent of

z−ij in the model. Thus, the geometric mean of any set of z-normalized representations is still a
representation for p. The canonical representation is obtained from the geometric mean of all the
z-normalized representations, where z is varied over all of Ω. While each normalized representation
yields the same p, the canonical representation stands out as readily interpretable, and derives value
from the fact that geo-marginals are attractive mathematical objects.

The proof of sufficiency of Theorem 2 uses RAS to build an expression for p(x) for any given
x ∈ Ω by starting with E = Ωi × Ωj × {z−ij} for some fixed z ∈ Ω and inductively changing z−ij
one dimension at a time (z−ij , xkz−ijk, xkxlz−ijkl, ....) until we reach x−ij , invoking RAS each step
of the way. We obtain p(x) in its reduced form (3), and that in turn implies that p has an Intuitive
Belief representation. The proof of necessity of RAS is based on the observation above that the ratio
p(xixjz−ij)p(z)
p(xiz−i)p(xjz−j)

is independent of z−ij . For any i, j-unrestricted event E, take a geometric mean of
p(xixjz−ij)p(z)
p(xiz−i)p(xjz−j)

across all z ∈ E and invoke the noted independence property to conclude that ratios
of such terms (where p(z) drops out) do not depend on E. This yields RAS.

4 Results: Trained Intuitive Beliefs
In this section we explore the training problem (Definition 3) to establish properties of Trained
Intuitive Beliefs.

4.1 Characterization and Inductive Inference
Say that a pair of elementary states xixj appear in D if there exists a state of the form xixjz−ij ∈ D.
While training of beliefs p determines the agent’s associations between xixj that appear in D, it
does not restrict associations between pairs of elementary states that do not appear in D. To remove
this source of non-uniqueness, our uniqueness result will focus on solutions p to the training problem
that are minimal in that they satisfy p(x) = 0 for any x ∈ Ω that is not entirely composed of xixj
that appear in D, that is, p(x) = 0 if there is i, j ∈ Γ s.t. xixj does not appear in D. Thus, the
agent’s intuitive process is viewed as creating connections only for those xixj for there is evidence: it
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treats as impossible any pairs of elementary states that have never been observed, and consequently
any state x that contains them. In the context of a conscious deliberating agent, minimality might
correspond to a sort of prudence. But in our context of non-conscious intuitive processes, it could
be interpreted as an inability to imagine possibilities too far beyond the realm of experience.

Our results will utilize some richness conditions, the first of which is:

Assumption 1 There exists z ∈ D such that x ∈ D =⇒ xiz−i ∈ D for all i ∈ Γ.

That is, D contains some state z and its one-dimensional deviations xiz−i defined by each x ∈ D
and i ∈ Γ. In the extended environment of Section 4.3, this state has a concrete interpretation as
“no news”, and xiz−i has the interpretation of “only xi is observed”, in which case assumption 1
states that for any state x ∈ D that may be revealed to the agent and for each i ∈ Γ, there is a state
xiz−i ∈ D that reveals the ith dimension alone.

We now state our main result.

Theorem 4 For any objective distribution q over Ω and any φ 6= D ⊂ supp(q) which satisfies
assumption 1, the following hold:

(i) (Characterization) An Intuitive Belief p is trained by q if and only if for all distinct i, j ∈ Γ,

p(xixj |D) = q(xixj |D), xi, xj ∈ ∪k∈ΓΩk.

(ii) (Inductive Inference) For any solution p,

D ⊂ ΩD ⊂ supp(p),

where
ΩD := {x ∈ Ω : ∀i, j ∈ Γ there exists z s.t. xixjz−ij ∈ D}.

(iii) (Minimal Support) If p is a minimal solution, then

supp(p) = ΩD.

The first claim is that a solution p to the training problem exists if and only if it correctly matches
q in terms of the two-dimensional marginals conditional on the observed states D. Indeed, it is very
convenient that although p and q are defined over multi-dimensional vectors x ∈ Ω, they are closest
only when their conditional two-dimensional marginals match. Theorem 4(i) is an extension to our
setting of a central result for Boltzmann machines in the AI literature (see Hinton and Sejnowski
1983, Ackley et al 1985) where training is defined for D = Ω.8

The second claim in the Theorem states that the support of any solution p is weakly larger
than D. It is natural that the support of p must include observed states D (indeed, KL divergence
takes an infinite value if q(x) > 0 and p(x) = 0). However, the Theorem further claims that the
support of p extends at least to the set ΩD that consists of all states x ∈ Ω which are composed
entirely of elementary states xixj that appear in D. The reason was expressed in the property (2)
of Intuitive Beliefs observed earlier where, for any x ∈ Ω, if each xixj is deemed possible, then so is
x. In particular, if the observations in D establish the possibility of each xixj , then Intuitive Beliefs
entertain p(x) > 0 despite never observing x. The third claim in the Theorem establishes that the
support of any minimal solution p is exactly ΩD.

8In the machine learning problem applied to the Boltzmann machine (corresponding to taking D = Ω in our
definition of training), the noted result in AI states that p is a minimizer if and only if p(xixj) = q(xixj) for all
xi, xj ∈ ∪k∈ΓΩk. This is the basis of a standard training algorithm (“gradient descent”) which, roughly speaking,
follows these steps: starting with any weights in the network, the ith iteration of the algorithm adjusts each weight
in the network in accordance with the distance between the two-dimensional marginals (more precisely, the partial
derivative of KL-divergence wrt the weight), and the algorithm terminates when the marginals are within a pre-
specified threshold.
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The fact that the agent may place strictly positive probability p(x) > 0 on a state x outside D
is a key property and we refer to it as intuitive inductive inference. To illustrate, if based on her
observations D, the agent has formed an association between “animal” and “alibinism” and between
“animal” and “swans” then the agent intuitively comes to believe in the existence of an albino swan
even if she has never seen one: if D = {(animal, dog, alibino), (animal, swan,¬alibino)} then she
assigns strictly positive probability to the state (animal, swan, albino) even though this state does
not lie in her observations D. Some of our applications in the sequel exploit the inductive inference
property.

It is worth recalling that case-based beliefs (Gilboa and Schmeidler 2003, Billot et al 2005)
also exhibit inductive inference, though it is formulated differently: if the agent has seen a case
(dog, albino), then the agent may believe in (swan, albino) because there exists a subjective “sim-
ilarity function” relating dogs and swans. In the case-based model, the similarity function does
not specify the source of the similarity. In contrast, in our model, there is an explicit chain of
states connecting swan with albino (namely, one in which swan, animal appears and another in
which animal, albino appears) using the agent’s observations. Also, the notions of similarity and
associations are not identical. Associations are a general notion of psychological connection (which
are influenced by similarity, frequency of co-occurrence, repetition, salience, etc) but our particular
model of belief formation uses frequency of co-occurrence (under q(�|D)) to determine the strength
of association. It may be that dog and swan are considered sufficiently dissimilar that the case-based
agent assigns a low probability to seeing an albino swan, but depending on how often our agent has
seen albinos she may assign a high probability of finding an albino swan.

The proof of Theorem 4 proceeds as follows. While it is known that KL-divergence is a strictly
convex function in its second argument, the space of Intuitive Beliefs is not generally convex, and
so the first order conditions are generally not sufficient for a solution. We instead identify a convex
Euclidean subspace A that serves as a space of normalized representations for Intuitive Beliefs that
respect the minimality property.9 For any a ∈ A and Intuitive Belief pa that it represents, we say
that the “distance” between q and a is gD(a) := KL(q(�|D)||pa(�|D)). We prove that this function
is convex in a, and so, the first order conditions are sufficient. These first order conditions imply
the characterization result in Theorem 4. For the uniqueness result (Proposition 2) below, we show
that, under assumption 2, gD(a) is strictly convex in a, and therefore the minimizer a ∈ A of g(a),
if it exists, must be unique.

4.2 Uniqueness and Existence
If we strengthen assumption 1 to include two-dimensional deviations xixjz−ij then we obtain:

Assumption 2 There exists z ∈ D such that x ∈ D =⇒ xiz−i ∈ D and xixjz−ij ∈ D for all
i, j ∈ Γ.

Under this strengthening, we obtain:

Proposition 2 (Uniqueness) Under assumption 2, the training problem admits at most one minimal
solution.

Without imposing minimality, there may be many solutions that assign arbitrary associations to
xixj that do not appear in D. Proposition 2 guarantees that, under the noted richness condition
on D, there is no more than one minimal solution. While uniqueness is a convenient property for
applications, we note that a multiplicity of solutions is also interesting in that it provides a basis for
different agents forming different intuitions despite identical experiences.

9Assumption 1 yields the “reference state” used in Theorem 3, thereby permitting us to exploit our results on
normalized representations in Appendix C.1.
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The preceding results notwithstanding, the existence of a solution to the training problem is
generally not ensured due to the limited number of parameters in our model.10 There are at least
two routes one can take to ensure existence. One route, which we leave to future research, is to
extend Intuitive Beliefs to includes hidden nodes as in Section 2.4. Indeed, in AI, hidden nodes
provide free parameters that help guarantee the existence in the problem of training the Boltzmann
machine. The second route, which we illustrate next, is to find restrictions on D that are sufficient
for the existence of a solution.

Consider the following richness condition – stronger than assumptions 1 and 2 – where D contains
a state z and some set of its one- and two-dimensional deviations only.

Assumption 3 D is not a singleton and there exists z ∈ D such that each x ∈ D takes the form
xiz−i or xixjz−ij for some i, j ∈ Γ and (xi, xj) ∈ Ωi × Ωj.

Under this restriction on D we can show that:

Proposition 3 (Existence) For any objective distribution q over Ω and any φ 6= D ⊂ supp(q) which
satisfies assumption 3, there exists a unique minimal solution p. This solution p satisfies

p(�|D) = q(�|D),

and has a reduced form s.t. for each x ∈ supp(p) = ΩD,

p(x) =
1

Z
×

∏
i<j

q(xixjz−ij)

q(xiz−i)q(xjz−j)

× [∏
i∈Γ

q(xiz−i)

]
.

Thus, assumption 3 is a sufficient condition for existence and uniqueness (among minimal solu-
tions). In this solution, the agent’s belief p over Ω is such that it exactly matches q on the subdomain
D. Moreover, we can provide a reduced form of the model in terms of q, which reveals that the
trained network satisfies

a(xixj) = ln
q(xixjz−ij)

q(xiz−i)q(xjz−j)
and b(xi) = lnq(xiz−i),

for any (xi, xj) such that (xiz−i), (xjz−j) ∈ D, and take a value −∞ otherwise. It is instructive
to compare with Section 3.1 where our primitive consisted of a given Intuitive Belief p and we
obtained a means of identifying a network in terms of p. Here our primitive is defined by the agent’s
environment – a distribution q and a set of observed states D – and the theory implies the formation
of an Intuitive Belief defined by a network that is identified in terms of q and D.

4.3 Application: Extended Environment
The notion of training requires the intuitive process to match the conditional objective likelihood
of states x ∈ D. However, given that cognition is bounded, it is plausible to hypothesize that the
intuitive process is unable to assimilate all dimensions of an observed state simultaneously. Rather
it assimilates only a few of its dimensions at a time. That is, instead of thinking of D as a constraint
on objective data, let us think of it as arising from some cognitive constraint on the agent.

To model this, extend the environment so that not only is there a state x ∈ Ω that appears in the
environment, but there is a (subjective) “news source” that reports only the elementary states on a

10For instance, when D = Ω, the first order conditions define a system of nonlinear equations that is generically
over-identified: there are

∏
i<j [KiKj ] +

N(N−1)
2

equations (generated by the first order conditions defined for each
distinct xi, xj ∈ ∪k∈ΓΩk, and the fact that marginals along any i, j must sum to 1). We can normalize b = 0 (by the
uniqueness result proved in Theorem 3) and so p is determined by a network (a, 0) that has

∑
i<j [KiKj ] parameters.
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random subset of dimensions. For any dimension i, use z∗i to denote “no news about dimension i”.
For any I ⊂ Γ, let xIz∗−I denote “elementary states on I are revealed to be xI but there is no news
on the remaining dimensions”. Use z∗ = (z∗1 , .., z

∗
N ) to denote no news in all dimensions. Therefore,

we are in an extended environment where the elementary news space is Ω∗i = Ωi ∪{z∗i }, and the full
news space is:

Ω∗ =
∏
i∈Γ

Ω∗i .

Note that Ω ⊂ Ω∗.
Fix a probability distribution q over states Ω as before. The extended probability distribution q∗

over news Ω∗ is derived as follows: The probability of receiving news on any dimension i is σ ∈ (0, 1)
and this is independent of the state. Then the probability of receiving news (xIz

∗
−I) ∈ Ω∗ is

q∗(xIz
∗
−I) = σ#I(1− σ)N−#Iq(xI),

where #I is the cardinality of I ⊂ Γ and where we adopt the convention that q(xφ) = 1.
Next we specify the subset D∗ ⊂ Ω∗ of news the agent in fact receives. We assume that D∗

consists only of news of the form z∗, (xiz
∗
−i) and (xixjz

∗
−ij) where up to two dimensions are revealed

at a time:

D∗ := {(xixjz∗−ij) ∈ Ω∗ : i, j ∈ Γ, xk ∈ Ω∗k for k = i, j, and q(xixj) > 0}.

This corresponds to assumption 3. While this assumption will generate a parsimonious model that
will be exploited below in applications (Section 5), it is interesting to note that the idea of attending
to up to two dimensions at a time is somewhat reminiscent of findings in experiments using eye
tracking data that show that subjects primarily engage in binary comparisons in a multi-alternative
choice context (Russo and Rosen 1975, Krajbich and Rangel 2011).

In this setting we obtain the following corollary of Proposition 3.

Proposition 4 In the extended environment, assuming that D is not a singleton, the following
holds:

(i) There exists a unique minimal Intuitive Belief p over Ω∗ that is trained by q∗.
(ii) The trained Intuitive Belief p satisfies p(�|D) = q(�|D).
(iii) The reduced form of a minimal trained Intuitive Belief conditional on Ω ⊂ Ω∗ is given by:

for any x ∈ supp(p) = ΩD∗ ∩ Ω,

p(x|Ω) =
1

Z

∏
i<j

q(xixj)

q(xi)q(xj)

×∏
i∈Γ

q(xi).

Relative to Proposition 3, the novelty is in the third claim. While the news source was con-
structed to operationalize the notion of “training by low-dimensional observations”, the key interest
in applications is understanding the structure of p conditioned on the objective state space Ω ⊂ Ω∗.
By the inductive inference property (Theorem 4), this conditional p(�|Ω) has support ΩD∗ ∩Ω. The
Proposition characterizes this belief. It is as if the trained associative network imbibes objective PMI
q(xixj)
q(xi)q(xj)

and objective marginals q(xi). This yields a sharp representation of beliefs in terms of q
with the added benefit that it eschews the need to specify D in applications.

5 Applications
We now present applications of Trained Intuitive Beliefs. The first two applications (correlation
neglect and overestimation of small probabilities) arise from the inductive inference property and
the second two (experience effects and classic belief biases) are not related to beliefs about unobserved
states.
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5.1 Inductive Inference and Correlation Neglect
Recent literature has documented that people behave as if they do not understand what is objectively
ruled out by the correlations embodied in assets, signals, etc. See Eyster and Weizsäcker (2016) and
Enke and Zimmerman (2013) for experimental evidence as well as Brunnermeier (2009) for research
suggesting that the 2008 financial crisis can be attributed to such “correlation neglect”. We show
that correlation neglect arises naturally as a property of trained Intuitive Beliefs: it is an expression
of inductive inference.

To illustrate, suppose there are three states S = {s′, s′′, s′′′} and three assets a1, a2, a3 that can
each have either a high h or low l payoff as defined in the following matrix.

asset\state s′ s′′ s′′′

a1 h h l
a2 h l h
a3 l h h

Denote the probability distribution over S by π. Then we obtain an induced distribution q on
outcome profiles Ω = {h, l}3 (given by the columns of the matrix), defined by

q(x1, x2, x3) = π({s ∈ S : ai(s) = xi for i = 1, 2, 3}).

For instance, the outcome profile (h, h, l) has probability q(h, h, l) = π(s1). Clearly, the support of
q is supp(q) = {(h1, h2, l3), (h1, l2, h3), (l1, h2, h3)}.

Correlation neglect occurs when supp(q) ⊂ supp(p), that is, the agent behaves as if she admits as
possible something that is impossible given the correlation structure (see Eyster and Weizsäcker 2016
and Ellis and Piccione 2017 for models with this feature). To see that this arises in trained Intuitive
Beliefs, consider the model characterized in Proposition 3. Taking D = supp(q), each x ∈ D serves
as a state z that satisfies assumption 3. Therefore, by Proposition 3, supp(q) = D ⊂ supp(p), and
in particular the support of the unique minimal trained p is

supp(q) ∪ {(h1, h2, h3), (h1, l2, l3), (l1, l2, h3), (l1, h2, l3)}.

Thus, supp(q) ⊂ supp(p), as was to be shown. The reason that the agent perceives, say, (h1, h2, h3)
as possible is that the agent sees that assets 1 and 2 can have the pairwise realization (h1, h2) and
assets 2 and 3 can similarly yield (h2, h3). Due to the intuitive aggregation of pairwise associations,
her intuition connects these and admits (h1, h2, h3) as a possibility.

5.2 Inductive Inference and Small Probabilities
The psychology literature studying overconfidence finds that subjects tend to be overconfident about
their performance on difficult tasks and underconfident about their performance on easy tasks (Moore
and Healy 2008). A similar pattern in beliefs is suggested by the Disposition Effect, where investors
sell winning stock too soon and hold on to losing stock for too long (see Shefrin and Statman, 1985,
and subsequent literature). Benjamin (2019) reviews evidence that beliefs tend to have thicker tails
than the objective distribution.

Such findings can be explained by the hypothesis that subjects overestimate small probabilities.
We show that an overestimation of low probability states can arise as a consequence of the inductive
inference property in our model. As a property of the support of p, inductive inference implies that
impossible states can be deemed possible. By a simple continuity argument, inductive inference can
also lead the agent to overestimate the probability of a very unlikely state.

To illustrate, suppose there are N > 0 companies and that Ωi denotes the possible earnings of
company i. For each company i ∈ Γ there is an elementary state li ∈ Ωi representing a low earning.
Let l = (l1, ..., lN ) ∈ Ω denote the “bad state” where all companies perform badly. Let E = Ω\{l}
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denote all other states. Start with any objective distribution q that has full support, and for each
α ∈ (0, 1] consider the objective distribution qα defined by

qα(x) = αq(x) + (1− α)q(x|E),

where q(x|E) is the conditional objective probability of x given E. Thus, qα(x) has full support for
all α > 0, and as α→ 0 it must be that the objective probability qα(l) of the bad state l = (l1, ..., lN )
goes to 0. When α→ 0 let us say that the market is improving.

Suppose pα is an Intuitive Belief trained by qα in the sense of Proposition 4. While the objective
probability of the bad state satisfies limα→0qα(l) = 0, we verify in Appendix I that

limα→0pα(l) > 0.

That is, the agent overestimates the likelihood of a bad state. The reason is that each pair lilj is
possible according to the limit distribution q(�|E) (and thus p(�|E)) and thus inductive inference
implies that l will be considered possible in the limit. By continuity of pα in α, the agent will exhibit
limα→0pα(l) > 0 = limα→0qα(l).

In the above illustration, the improving market still allows the possibility that two or more
companies could have a low earning simultaneously. If we consider instead a market that improves
so much that at most one company can have a low earning at a time (that is, E now only includes
states x where xi = li for at most one i ∈ Γ), then this overestimation of the probability of the
bad state l does not hold anymore and indeed, limα→0pα(l) = 0. This is because the inductive
inference property only extends to those states wholly constructed using pairwise occurrences xixj
that feature in E. Nevertheless, overestimation still exists for other vanishing states. For instance,
since occurrences such as lixj and xj lk appear in E, the agent still believes in the possibility of
states that include lixj lk, even though these have vanishing objective probability.

5.3 Experience Effect
An agent who has lived in a highly competitive environment will carry her experience with her even
when dealing with people in a different, more cooperative environment. This illustrates an experience
effect. Malmendier and Nagel (2011) demonstrate empirically that subjective expectations about
inflation are largely determined by investors’ life-time experience of inflation rather than available
historical data. Experience effects are also studied in Bordalo et al (2019) in a deterministic choice
context. While not highlighted in Gilboa and Schmeidler (2001, 2003) and Billot et al (2005),
case-based beliefs also exhibit experience effects.

Consider a doctor who is evaluating whether a treatment plan is appropriate for a patient. Let
K denote a generic patient (identified with, say, demographic information and medical history), let
θ denote the various possible outcomes of the treatment and let µ denote the current vital signs,
etc. The doctor sees a patient K with characteristics µ and is assessing the probability of outcome
θ of some given treatment.

Suppose that the relative frequency distribution over past cases (θ, µ,K) is given by:

q(θ, µ,K) = q(θ|µ,K)q(µ)q(K),

so that patient’s demographics and historyK and her characteristics µ are independently determined,
but they jointly determine the likelihood of the outcome θ of the treatment. We show that11

11Proof: Given the functional form for q and the independence assumption q(µ,K)
q(µ)q(K)

= 1, by Proposition 4 trained
beliefs take the form

p(θ, µ,K) =
1

Z

q(θ, µ)

q(θ)q(µ)

q(θ,K)

q(θ)q(K)

q(µ,K)

q(µ)q(K)
q(θ)q(µ)q(K) =

1

Z

q(θ, µ)q(θ,K)

q(θ)
=

1

Z
q(θ, µ)q(K|θ).
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Proposition 5 If the agent’s Intuitive Beliefs p are trained in the sense of Proposition 4 then the
Bayesian conditional of the beliefs over θ given characteristics µ and identity K is given by

p(θ|µ,K) =
1

W
q(K|θ)

∑
K̂

q(θ|µ, K̂)q(K̂)

for some normalizing constant W .

That is, conditional on observing patient K with characteristics µ, the agent’s belief p(θ|µ,K)
about outcome θ involves several terms, of which the most relevant for our purposes is∑

K̂

q(θ|µ, K̂)q(K̂).

This is the objective conditional distribution q(θ|µ, K̂) of outcome θ averaged over all patients K̂
with vitals µ the agent has observed. This implies the existence of an experience effect: the belief
p(θ|µ,K) does not depend only on the objective data q(θ|µ,K) that pertains to this patient, but
also on the agent’s experience of how well the treatment performed on all patients with the same
characteristics.

In case-based beliefs (Gilboa and Schmeidler 2001, 2003, Billot et al 2005), the agent’s beliefs
about the outcome for a particular patient can depend on the outcomes observed for other (similar)
patients. In Billot et al (2005), when the patient K is fixed and µ is eschewed, case-based beliefs can
be written as pCB(θ) = 1

W

∑
K̂ r(θ|K̂)v(K̂,K) where r denotes a subjective probability distribution

over outcomes for patient K̂ and v(K̂,K) denotes the subjective similarity between K̂ and the
fixed patient K. Writing our model as p(θ|µ,K) = 1

W

∑
K̂ q(θ|µ, K̂)v(K̂,K, θ) where v(K̂,K, θ) :=

q(K̂)q(K|θ) helps provide some comparison and contrast in this application.

5.4 Belief Biases
Research in psychology reveals that subjects’ beliefs derived in experiments bear little semblance to
the Bayesian model (Kahneman and Tversky 1972, Tversky and Kahneman 1974, Benjamin 2019).
Subjects appear to believe that relative frequencies in small samples are similar to those in large
samples, in contrast with what the Law of Large Numbers dictates. Thus, they believe that the
proportion of heads in any sample of tosses of a fair coin will be approximately 50% even in small
samples. This is known as the Law of Small Numbers (Tversky and Kahneman 1974). On the other
hand, they believe that relative frequencies in large samples will have more spread than the Law of
Large Numbers dictates. This is known as Non-Belief in the Law of Large Numbers (Benjamin et
al 2016). Subjects believe that a fair coin is more likely to give rise to a tail than a head following 3
heads – this is known as the gambler’s fallacy. Subjects also exhibit a belief in the hot hand effect:
they believe the bias of a coin changes temporarily to make a streak more likely. We show that
trained Intuitive Beliefs can produce these findings.

Denote the probability of heads by µ ∈ [0, 1]. Let K denote the sample size of tosses. Then the
objective probability of getting a proportion θ ∈ [0, 1] of heads in a sample of K tosses of a coin
with bias µ is q(θ|µ,K) = K!

θK!(1−θ)K!µ
θK(1 − µ)(1−θ)K , where this probability is zero if θK is not

Using this to compute the Bayesian conditional p(θ|µ,K) =
p(θ,µ,K)
p(µ,K)

yields the expression p(θ|µ,K) =

q(µ,θ)q(K|θ)∑
θ′ q(µ,θ

′)q(K|θ′) . Expanding the q(µ, θ) term yields

p(θ|µ,K) =

[∑
K̂ q(θ|µ, K̂)q(µ)q(K̂)

]
q(K|θ)∑

θ′

[∑
K̂ q(θ′|µ, K̂)q(µ)q(K̂)

]
q(K|θ′)

=

[∑
K̂ q(θ|µ, K̂)q(K̂)

]
q(K|θ)∑

θ′

[∑
K̂ q(θ′|µ, K̂)q(K̂)

]
q(K|θ′)

=
1

W

∑
K̂

q(θ|µ, K̂)q(K̂)

 q(K|θ).
as desired.�
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an integer. Assume that the objective probability q(µ) of the coin having bias µ and the objective
probability q(K) of observing a sample of size K are independent. Therefore the agent’s experience
is given by the objective probability distribution:

q(θ, µ,K) = q(θ|µ,K)q(µ)q(K).

Assume that q has a support with arbitrarily large but finite cardinality. The following proposition
writes the expression in Proposition 5 differently:12

Proposition 6 If the agent’s Intuitive Beliefs p are trained in the sense of Proposition 4 then the
Bayesian conditional of the beliefs over θ given bias µ and sample size K is given by

p(θ|µ,K) =
q(µ|θ)q(θ,K)∑
θ′ q(µ|θ

′)q(θ′,K)
.

Thus, when told that a coin with bias µ will be tossed K times, the intuitive assessment of the
proportion of heads θ depends on (i) the objective marginal probability q(θ,K) indicating how likely
it is that θ and K are observed and (ii) the objective marginal probability q(µ|θ) = q(θ,µ)

q(θ) that a
coin has bias µ given that it yields a proportion θ of heads in the sample.

5.4.1 Experience Effect: Law of Small Numbers and Non-Belief in the Law of Large
Numbers

Observe that q(µ|θ) depends on the distribution q(K̂) over the sample sizes that the agent has
experienced:

q(µ|θ) =
∑
K̂

q(µ, K̂, θ)

q(θ)
=
q(µ)

q(θ)
×
∑
K̂

q(θ|µ, K̂)q(K̂).

In particular, q(µ|θ) is a (scaled) average of sampling distributions q(θ|µ, K̂) across K̂ (with respect
to q(K̂)). Therefore, her belief p(θ|µ,K) for a given sample size K will depend on what she has
observed in other samples, including those of different sizes. Given that the sample distribution
becomes less spread out as the sample size increases, we can expect that if K is smaller than many
of the samples she has experienced, then she will exhibit the Law of Small Numbers, whereas if it is
larger, then she will exhibit Non-Belief in the Law of Large Numbers.

5.4.2 Gambler’s Fallacy

To simplify the exposition, suppose that the agent has only observed coins with a given bias µ. Thus
we are effectively in a two-dimensional environment, and it is readily established that p(θ, µ,K) =
p(θ,K) = q(θ,K), that is, the agent learns the true distribution. Moreover, conditional beliefs
satisfy

p(θ|µ,K) = q(θ|K),

that is, p(θ|µ,K) reflects the objective sampling distribution q(θ|K). This is worth emphasizing.
While experimental evidence adequately reveals that subjects have a poor intuitive understanding
of probability theory, we suggest a reason for why this may be so: intuition is trained by sample
distributions, rather than the axioms of probability theory. Her intuitive understanding of what

12Proof: Following the proof for Proposition 5,

p(θ, µ,K) =
1

Z

q(θ, µ)

q(θ)q(µ)

q(θ,K)

q(θ)q(K)

q(µ,K)

q(µ)q(K)
q(θ)q(µ)q(K) =

1

Z

q(θ, µ)q(θ,K)

q(θ)
=

1

Z
q(µ|θ)q(θ,K).

Using this to compute the Bayesian conditional p(θ|µ,K) =
p(θ,µ,K)
p(µ,K)

yields the result. �
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it means for a coin to have bias µ = 1
2 is that it generates samples that are more likely to have a

balanced number of heads and tails than an unbalanced number. At an intuitive level she has no basis
for understanding the analytical meaning of “the probability of L heads in K tosses”. Consequently,
if an experimenter asks this agent what is the probability of “3 heads in 3 tosses” and “2 heads and
a tail in 3 tosses”, she responds with p(θ = 1| 12 , 3) = 1

8 and p(θ = 2
3 |

1
2 , 3) = 3

8 respectively, thereby
exhibiting the Gambler’s Fallacy.

It is worth emphasizing that the literature has focused on models of non-Bayesian updating to
capture the Gambler’s Fallacy (see for instance Rabin 2002 and Benjamin et al 2019). In contrast,
we posit that the experimental evidence can be accommodated in a model of Intuitive Beliefs with
standard Bayesian updating. That is, we suggest that the Gambler’s Fallacy is a property of prior
beliefs, and not necessarily updating.

5.4.3 Hot-Hand Effect

As in the literature (for instance, see Rabin and Vayanos 2010), let us view the Hot-Hand effect
as arising from a belief that the bias of the coin is not fixed, despite the information given to the
agent. Imagine, in particular, that the agent’s belief about the sample mean θ in K tosses is not
conditioned on µ. This yields the expression:13

p(θ|K) =
∑
µ

q(θ|µ,K)q(µ),

that is, p(θ|K) is the sampling distribution q(θ|µ,K) averaged over the different µ the agent has
experienced. If there is a single µ experienced, then p(θ|K) = q(θ|µ,K) is bell-shaped with mean µ.
Indeed, as above, the agent exhibits the Gambler’s Fallacy, since sample means are considered more
likely if they are closer to µ. However, if the agent has experienced various µ then p(θ|K) may no
longer be bell-shaped. To illustrate, if the agent has only experienced three coins – a fair coin and
two coins with bias µ = 0, 1 – and these have been experienced in equal proportions, then p(θ|K)
is a symmetric tri-modal distribution with modes at µ = 0, 1

2 , 1. It follows that if the agent is told
that the coin will be tossed thrice then she may consider 3 heads more likely than 2 heads and a
tail, in line with the Hot Hand Effect.

A Appendix: Geometric Marginals
Consider any probability measure p ∈ ∆(Ω), not necessarily an Intuitive Belief. Denote the cardi-
nality of Ωi by Ki. Then for any φ 6= I ⊂ Γ, the cardinality of ΩI =

∏
i∈I Ωi is KI :=

∏
i∈I Ki.

For any φ 6= I ⊂ Γ, define the geometric I-marginal of p ∈ ∆(Ω) by

pg(xI) :=
1

ZI

∏
z−I∈Ω−I

p(xIz−I)
1

K−I xI ∈ ΩI ,

where ZI :=
∑
yI∈ΩI

∏
z−I∈Ω−I

p(yIz−I)
1

K−I . The first lemma shows that we can equivalently, and
conveniently, take a product over all z ∈ Ω instead. The simple proofs for the results are omitted.

Lemma 1 For any φ 6= I ⊂ Γ, and any xI ∈ ΩI ,

pg(xI) =

∏
z∈Ω p(xIz−I)

1
K∑

yI∈ΩI

∏
z∈Ω p(yIz−I)

1
K

.

13Compute that

p(θ|K) =
∑
µ

q(θ, µ)q(θ,K)/q(θ)

q(K)
=
q(θ,K)

q(K)
=

∑
µq(θ|µ,K)q(µ)q(K)

q(K)
=
∑
µ

q(θ|µ,K)q(µ).
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Recall that the marginal of a marginal defines a corresponding marginal of the original probability
measure. The next lemma shows that the corresponding property holds for geometric marginals

Lemma 2 For any φ 6= J ⊂ Γ and j ∈ J let I = J\{j}. Then for any xI ∈ ΩI ,

pg(xI) =

∏
zj∈Ωj

pg(xIzj)
1
Kj∑

yI∈ΩI

∏
zj∈Ωj

pg(yIzj)
1
Kj

xI ∈ ΩI .

Say that p exhibits statistical independence if p(x) =
∏
i∈Γ p

m(xi) for all x ∈ Ω. Write pm(xI) =∏
i∈I p

m(xi) for any φ 6= I ⊂ Γ. The next lemma shows that marginals and geo-marginals coincide
under statistical independence.

Lemma 3 If p exhibits statistical independence then for any φ 6= I ⊂ Γ and x ∈ Ω

pg(xI) = pm(xI).

In particular
pg(xI) =

∏
i∈I

pg(xi)

B Appendix: Proof of Theorem 3

B.1 Basic Identification Result
Consider any Intuitive Belief p and any representation (a, b). Let Ω+ := supp(p). Without making
it explicit, we make use of the fact that for any x ∈ Ω+ and i, j ∈ Γ, a(xixj) > −∞ and b(xi) > −∞.

Lemma 4 For all x, z ∈ Ω and y, yiz−i ∈ Ω+,
(i) p(x)

p(y) = exp
[∑

i<j [a(xixj)− a(yiyj)] +
∑
i[b(xi)− b(yi)]

]
(ii) p(xiz−i)

p(yiz−i)
= exp

[∑
i6=j∈Γ[a(xizj)− a(yizj)] + [b(xi)− b(yi)]

]
.

Proof. The first claim follows trivially from the model. The second follows just as easily: for any
yiz−i ∈ Ω+,

p(xiz−i)

p(yiz−i)
= exp[[

∑
i 6=j∈Γ

a(xizj)+
∑

i 6=k<j 6=i

a(zkzj)]−[
∑
i 6=j∈Γ

a(yizj)+
∑

i6=k<j 6=i

a(zkzj)]+b(xi)−b(yi)+
∑
i6=j∈Γ

[b(zi)−b(zi)]

= exp

 ∑
i 6=j∈Γ

[a(xizj)− a(yizj) + b(xi)− b(yi)]

 ,
as desired.

The next key result provides the connection between a and p in any representation.

Lemma 5 For any Intuitive Belief p and any z ∈ Ω+ and xixj s.t. xiz−i, xjz−j ∈ Ω+,

exp[a(xixj) + a(zizj)]

exp[a(xizj) + a(zixj)]
=

p(xixjz−ij)p(z)

p(xiz−i)p(xjz−j)
.
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Proof. By the representation and the previous lemma, for any z ∈ Ω+ and xixj s.t. xiz−i, xjz−j ∈
Ω+,

p(xixjz−ij)

p(zizjz−ij)
= exp[[a(xixj)− a(zizj)] +

 ∑
ij 6=k∈Γ

a(xizk)− a(zizk)

+

 ∑
ij 6=k∈Γ

a(xjzk)− a(zjzk)


+ [b(xi)− b(zi) + b(xj)− b(zj)]]

= exp[[a(xixj)− a(zizj)− [a(xizj)− a(zizj)]− [a(xjzi)− a(zjzi)]]

+

 ∑
i 6=k∈Γ

[a(xizk)− a(zizk)] + [b(xi)− b(zi)]

+

 ∑
j 6=k∈Γ

[a(xjzk)− a(zjzk)] + [b(xj)− b(zj)]


= exp [a(xixj)− a(xizj)− a(xjzi) + a(zjzi)]×

p(xiz−i)

p(ziz−i)

p(xjz−j)

p(zjz−j)

=
exp[a(xixj) + a(zizj)]

exp[a(xizj) + a(zixj)]
× p(xiz−i)

p(ziz−i)

p(xjz−j)

p(zjz−j)

which rearranges to

p(xixjz−ij)

p(xiz−i)p(xjz−j)
=

p(zizjz−ij)

p(ziz−i)p(zjz−j)
× exp[a(xixj) + a(zizj)]

exp[a(xizj) + a(zixj)]

=
1

p(z)
× exp[a(xixj) + a(zizj)]

exp[a(xizj) + a(zixj)]
,

thereby establishing the claim.

Below we will often use the following convenient fact without explicit reference to it. Adopt the
notation

∏
i<j≤m :=

∏
i,j:i<j≤m. Take any scalars cij satisfying cij = cji.

Lemma 6 For any m ≥ 2 and strictly positive scalars cij defined for each distinct i, j ≤ m, it must
be that ∏

i<j≤m

cij =
∏
i≤m

∏
i 6=j≤m

c0.5ij .

Proof. The term
∏
i<j≤m cij takes each i and multiplies the terms cij where j > i, and then takes

the product over all i. We obtain the same expression if we take each i and multiply the terms c0.5ij
with all j 6= i, and then take the product over all i.

B.2 Proof of Uniqueness Theorem
Proof. Take any Intuitive Belief p and suppose there exists a reference state, that is, z̄ ∈ Ω s.t.
p(z̄) > 0 and for any i ∈ Γ and xi ∈ Ωi, p(xi) > 0 =⇒ p(xiz̄−i) > 0. Step 1 establishes the first
desired claim in the Theorem, Step 2 and 3 establish sufficiency of the second desired claim and
Step 4 establishes its necessity.

Step 1 : Show that p is represented by (a, b) iff it is represented by (α, 0) where

α(xixj) = a(xixj) +
1

(N − 1)
[b(xi) + b(xj)].

Suppose p is represented by (a, b). By definition the normalizing constant Z is strictly positive.
Therefore, given Σy∈Ωp(y) = 1, it must be that Σy∈Ωexp[

∑
i<j a(yiyj) +

∑
i b(yi)] = Z > 0.

23



Take any x ∈ Ω, and observe that∑
i<j α(xixj) +

∑
i 0

=
∑
i<j a(xixj) +

∑
i<j

1
(N−1) [b(xi) + b(xj)]

=
∑
i<j a(xixj) + 1

(N−1)
1
2

∑
i

∑
i6=j∈Γ[b(xi) + b(xj)]

=
∑
i<j a(xixj) + 1

(N−1)
1
2

∑
i[(N − 1)b(xi) +

∑
i 6=j∈Γ b(xj)]

=
∑
i<j a(xixj) + 1

(N−1)
1
2

∑
i[(N − 2)b(xi) +

∑
j∈Γ b(xj)]

=
∑
i<j a(xixj) + 1

(N−1)
1
2 [(N − 2)

∑
i b(xi) +N

∑
j∈Γ b(xj)]

=
∑
i<j a(xixj) + 1

(N−1)
1
2 [2(N − 1)

∑
i b(xi)]

=
∑
i<j a(xixj) +

∑
i b(xi).

Therefore exp[
∑
i<j α(xixj)] = exp[

∑
i<j a(xixj)+

∑
i b(xi)]. Moreover, Σy∈Ωexp[

∑
i<j α(yiyj)] =

Σy∈Ωexp[
∑
i<j a(yiyj)+

∑
i b(yi)] > 0. Consequently p(x) =

exp[
∑
i<j a(xixj)+

∑
i b(xi)]

Σy∈Ωexp[
∑
i<j a(yiyj)+

∑
i b(yi)]

=
∑
i<j α(xixj)

Σy∈Ωexp[
∑
i<j α(yiyj)]

,
establishing the result.

Step 2 : Show that, if p is represented by (a, 0) and (α, 0) then there exists a function (j, xi) 7→
γ∗j (xi) s.t. for any x ∈ Ω and distinct i, j ∈ Γ,

a(xixj) = α(xixj) + γ∗j (xi) + γ∗i (xj).

Suppose p is represented by (a, 0) and (α, 0). If p(xi) = 0 then define γ∗j (xi) arbitrarily. If
p(xi) > 0 then consider the reference state z ∈ Ω and for any j 6= i let

γ∗j (xi) = a(xiz̄j)− α(xiz̄j)−
1

2
[a(z̄iz̄j)− α(z̄iz̄j)].

Since p(z) > 0 and p(xiz−i) > 0, by the representation all the terms in the expression are real
valued.

Now we show that the desired equality holds. Take any xixj . If p(xi)p(xj) = 0 then p(xixj) = 0
and by the representation, it must be that a(xixj) = α(xixj) = −∞. The desired equality holds
trivially.

Next suppose p(xi)p(xj) > 0. Then by Lemma 5,

exp [a(xixj) + a(z̄iz̄j)]

exp [a(xiz̄j) + a(z̄ixj)]
=

p(xixj z̄−ij)p(z̄)

p(xiz̄−i)p(xj z̄−j)
=

exp [α(xixj) + α(z̄iz̄j)]

exp [α(xiz̄j) + α(z̄ixj)]]
,

and it follows that

a(xixj) = α(xixj) + [a(xiz̄j)− α(xiz̄j)] + [a(z̄ixj)− α(z̄ixj)]− [a(z̄iz̄j)− α(z̄iz̄j)]

= α(xixj) + [a(xiz̄j)− α(xiz̄j)] + [a(z̄ixj)− α(z̄ixj)]

−1

2
[a(z̄iz̄j)− α(z̄iz̄j)]−

1

2
[a(z̄j z̄i)− α(z̄j z̄i)]

= α(xixj) + γ∗j (xi) + γ∗i (xj),

where we exploited the symmetry of a.
Step 3 : Show that for each i ∈ Γ there is ki s.t. for each xi ∈ Ωi,∑

i6=j∈Γ

γj(xi) = ki,
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Suppose as in Step 3 that p is represented by both (a, b) and (α, β). Begin by defining, for each
x and i, the quantities

K(xi) :=
∑
i 6=j∈Γ

γj(xi), and K(x) =
1

2

∑
i∈Γ

K(xi).

Observe that for any x ∈ Ω,∑
i<j a(xixj)

=
∑
i<j [α(xixj) + γj(xi) + γi(xj)]

=
∑
i<j [α(xixj)] +

∑
i<j [γj(xi) + γi(xj)]

=
∑
i<j [α(xixj)] + 1

2

∑
i∈Γ

∑
i 6=j∈Γ γj(xi)]

=
∑
i<j [α(xixj) + 1

2

∑
i∈ΓK(xi), that is,∑

i<j

a(xixj) =
∑
i<j

[α(xixj)] +
1

2
K(x).

Given this observation, note that since p is represented by both (a, b) and (α, β) , we have that for
all x ∈ Ω,

exp
[∑

i<j α(xixj)
]

∑
y∈Ω exp

[∑
i<j α(yiyj)

] = p(x) =
exp

[∑
i<j a(xixj)

]
∑
y∈Ω exp

[∑
i<j a(yiyj)

]

=
exp

[∑
i<j α(xixj) + 1

2K(x)
]

∑
y∈Ω exp

[∑
i<j α(yiyj) + 1

2K(y)
]

= exp[
1

2
K(x)]×

exp
[∑

i<j α(xixj)
]

∑
y∈Ω exp

[∑
i<j α(yiyj) + 1

2K(y)
] .

Looking at the first and last terms in this sequence of equalities, we see that for all x ∈ Ω,

exp[
1

2
K(x)] =

∑
y∈Ω exp

[∑
i<j α(yiyj) + 1

2K(y)
]

∑
y∈Ω exp

[∑
i<j α(yiyj)

] .

Since the RHS is independent of x, it follows that K(x) is independent of x. Therefore, K(x) = K(y)
for all x, y.

Finally, for any x and i, consider xiz̄−i and observe that
K(xiz̄−i) = K(z̄)
=⇒ K(xi) +

∑
i 6=j∈ΓK(z̄j) = K(z̄i) +

∑
i 6=j∈ΓK(z̄j)

=⇒ K(xi) = K(z̄i)
=⇒

∑
i 6=j∈Γ γj(xi) =

∑
i 6=j∈Γ γj(z̄i).

Define ki =
∑
i 6=j∈Γ γj(z̄i) to complete the step.

Step 5 : Establish necessity.
Suppose that (a, 0) represents p and consider (α, 0) as in the desired statement. Observe that∑
i<j a(xixj)

=
∑
i<j [α(xixj) + γj(xi) + γi(xj)]

=
∑
i<j α(xixj) +

∑
i<j [γj(xi)] +

∑
i<j [γi(xj)]

=
∑
i<j α(xixj) +

∑
i∈Γ

∑
i 6=j∈Γ[γj(xi)]
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=
∑
i<j α(xixj) +

∑
i∈Γ ki, that is, letting K :=

∑
i∈Γ ki, it must be that∑

i<j

a(xixj) =
∑
i<j

α(xixj) +K.

It is then straightforward to see that

p(x) =
exp

[∑
i<j a(xixj)

]
∑
y∈Ω exp

[∑
i<j a(yiyj)

]

=
exp

[∑
i<j α(xixj) +K

]
∑
y∈Ω exp

[∑
i<j α(yiyj) +K

]

=
exp

[∑
i<j α(xixj)

]
∑
y∈Ω exp

[∑
i<j α(yiyj)

] ,
thereby establishing that (α, 0) also represents p, as was to be shown.

C Appendix: Proof of Theorem 1
We explore several classes of normalized representations using Theorem 3.

C.1 Normalization 1
Lemma 7 Suppose there exists a reference state z ∈ Ω. An Intuitive Belief representation (α, 0)
can be normalized by setting α(zizj) = 0 for all distinct i, j ∈ Γ, and α(xizj) = α(xizj′) for all
i 6= j, j′ ∈ Γ and x ∈ Ω. Such a normalized representation is unique, given z. Moreover, p(z)×Z = 1
holds in the representation normalized wrt z.

Proof. Take any representation (a, 0), and take any reference state z ∈ Ω with p(z) > 0. Take any
xi ∈ Ωi. If p(xi) = 0 then define γj(xi) arbitrarily. If p(xi) > 0 then define

γj(xi) = − 1

N − 1
[ζ(xi)− ζ(zi)] +

1

2
a(zizj)− a(xizj) +

1

N − 1

∑
i 6=k∈Γ

[a(xizk)− a(zizk)].

Note that∑
i 6=j∈Γ γj(xi)

= 1
2

∑
i 6=j∈Γ a(zizj)−

∑
i 6=j∈Γ a(xizj) +

∑
i 6=k∈Γ[a(xizk)− a(zizk)]

= − 1
2

∑
i6=j∈Γ a(zizj) = ki. In particular, γ along with ki := ζ(zi)− 1

2

∑
i 6=j∈Γ a(zizj) satisfy the

desired properties in Theorem 3.
Step 1 : Show that p is represented by (α, 0) defined by α(xixj) = −∞ if p(xi)p(xj) = 0 and

α(xixj) = [a(xixj) + a(zizj)− a(xizj)− a(xjzi)]

+
1

N − 1

 ∑
i6=k∈Γ

[a(xizk)− a(zizk)] +
∑
j 6=k∈Γ

[a(xjzk)− a(zjzk)]

 ,
otherwise.
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By Theorem 3 we obtain a new representation (α, 0) defined by:
α(xixj) = a(xixj) + γj(xi) + γi(xj)

= a(xixj)− 1
N−1 [ζ(xi)− ζ(zi)] + 1

2a(zizj)− a(xizj) + 1
N−1

∑
i6=k∈Γ[a(xizk)− a(zizk)]

− 1
N−1 [ζ(xj)− ζ(zj)] + 1

2a(zjzi)− a(xjzi) + 1
N−1

∑
j 6=k∈Γ[a(xjzk)− a(zjzk)]

= a(xixj)− 1
N−1 [ζ(xi)− ζ(zi) + ζ(xj)− ζ(zj)] + a(zizj)− a(xizj)− a(xjzi)

+ 1
N−1

∑
i 6=k∈Γ[a(xizk)− a(zizk)] + 1

N−1

∑
j 6=k∈Γ[a(xjzk)− a(zjzk)].

Step 2 : Show that α satisfies for all distinct i, j, k ∈ Γ and xi ∈ Ωi,

α(zizj) = 0 and α(xizj) = α(xizk).

Use the expression for α in Step 1 to obtain α(zizj) = 2a(zizj)− 2a(zizj) + 0 = 0. If p(xi) = 0
then α(xizj) = 0 for all j. If p(xi) > 0 then

α(xizj) = a(xizj) + a(zizj)− a(xizj)− a(zjzi)
+ 1
N−1

∑
i 6=k∈Γ[a(xizk)− a(zizk)] + 1

N−1

∑
j 6=k∈Γ[a(zjzk)− a(zjzk)]

= 0 + 1
N−1

∑
i6=k∈Γ[a(xizk)− a(zizk)], which does not depend on j.

Step 3: Conclusion.
We have thus shown that there always exists a normalized representation as stated in the

lemma. Note that in a normalized representation (α, 0), since α(zizj) = 0, it must be that
p(z) = 1

Z exp[
∑
i<j α(zizj)] = 1

Z , that is, p(z) = 1
Z .

In Lemma 8 below we show that α can be written in terms of p. Therefore the uniqueness of the
representation is a corollary of that result.

Lemma 8 A network (α, 0) is a z-normalized representation for p if and only if for all distinct
i, j ∈ Γ and (xi, xj) ∈ Ωij,

exp[α(xixj)] =

 p(z)
N−3
N−1

p(xixjz−ij)

[p(xiz−i)p(xjz−j)]
N−2
N−1

0

if p(xi)p(xj) > 0

otherwise
.

Proof. If (α, 0) satisfies the noted expression then it is readily determined that α(zizj) = 0 for all
distinct i, j ∈ Γ and α(xizj) = α(xizj′) for all i 6= j, j′ ∈ Γ and x ∈ Ω. Thus (α, 0) is a z-normalized
representation.

Conversely, take any z-normalized representation (α, 0) for p. By Lemma 7, Z × p(z) = 1. Since
α(zjzk) = 0 for all distinct j, k ∈ Γ and that a(xizk) is independent of k, we see that

p(xiz−i) = 1
Z × exp

[∑
i6=k∈Γ α(xizk) +

∑
i6=j<k 6=i α(zjzk)

]
= p(z)× exp

[∑
i 6=k∈Γ α(xizk)

]
= p(z)× exp [(N − 1)α(xizj)] for any i 6= j ∈ Γ, we obtain the property that

α(xizj) =
1

N − 1
ln[

p(xiz−i)

p(z)
],

for all i 6= j ∈ Γ. Finally, observe that, by Lemma 5, when p(xi)p(xj) > 0, the representation must
satisfy:

p(xixj z̄−ij)p(z̄)

p(xiz̄−i)p(xj z̄−j)
=
exp[α(xixj) + α(zizj)]

exp[α(xizj) + α(zixj)]
=

exp[α(xixj)]

[p(xiz−i)p(z) ]
1

N−1 [
p(xjz−j)
p(z) ]

1
N−1

,

and so
exp[α(xixj)] =

p(xixjz−ij)

p(xiz−i)p(xjz−j)
× p(z)× [

p(xiz−i)

p(z)

p(xjz−j)

p(z)
]

1
N−1

= p(z)
N−3
N−1

p(xixjz−ij)

[p(xiz−i)p(xjz−j)]
N−2
N−1

,

as desired.
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C.2 Normalization 2
Lemma 9 Suppose there exists a reference state. A belief p with full support is an Intuitive Belief
if and only if, for any reference state z ∈ Ω, it is represented by an associative network (az, bz) with
the property that for any xi, xj ∈ ∪k∈ΓΩk,

exp[az(xixj)] =

{
p(xixj z̄−ij)p(z)
p(xiz̄−i)p(xj z̄−j)

0

if p(xi)p(xj) > 0

otherwise

exp[bz(xi)] =
p(xiz−i)

p(z)
.

Indeed, for any reference z ∈ Ω, there exists a representation (az, bz) where az(zizj) = az(xizj) =
bz(zi) = 0. Moreover, this representation implies the existence of the reduced form where for any
x ∈ Ω,

p(x) > 0 =⇒ p(x) = p(z̄)×

∏
i<j

p(xixj z̄−ij)p(z̄)

p(xiz̄−i)p(xj z̄−j)

×∏
i∈Γ

p(xiz−i)

p(z̄)
,

which can also be written as p(x) > 0 =⇒ p(x) = p(z̄)
(N−2)(N−1)

2 ×
∏
i<j p(xixj z̄−ij)∏
i p(xiz̄−i)

N−2 .

Proof. If there exists such a representation then p is trivially an Intuitive Belief. Conversely, suppose
p is an Intuitive Belief. Consider a normalized representation for p and re-write the expression in
Lemma 8 for the case p(xi)p(xj) > 0 as:

exp[α(xixj)] =

p(xixj z̄−ij)
p(z̄)

p(xiz̄−i)
p(z̄)

p(xj z̄−j)
p(z̄)

[
p(xiz−i)

p(z)
]

1
N−1 [

p(xjz−j)

p(z)
]

1
N−1 .

Observe that for any x ∈ Ω such that p(x) > 0, it must be that p(xi) > 0 for all i. Therefore, for
any x ∈ Ω such that p(x) > 0, inserting the above expression into the representation and redefining
the scaling factor as needed yields:

p(x) = 1
Z ×

∏
i<j exp[a(xixj)]

= 1
Z ×

∏
i<j

p(xixj z̄−ij)

p(z̄)

p(xiz̄−i)
p(z̄)

p(xj z̄−j)

p(z̄)

[p(xiz−i)p(z) ]
1

N−1 [
p(xjz−j)
p(z) ]

1
N−1

= 1
Z ×

[∏
i<j

p(xixj z̄−ij)p(z̄)
p(xiz̄−i)p(xj z̄−j)

]
×
∏
i<j [

p(xiz−i)
p(z) ]

1
N−1 [

p(xjz−j)
p(z) ]

1
N−1

= 1
Z ×

[∏
i<j

p(xixj z̄−ij)p(z̄)
p(xiz̄−i)p(xj z̄−j)

]
×
∏
i∈Γ

∏
i 6=j∈Γ[p(xiz−i)p(z) ]

1
2(N−1) [

p(xjz−j)
p(z) ]

1
2(N−1)

= 1
Z ×

[∏
i<j

p(xixj z̄−ij)p(z̄)
p(xiz̄−i)p(xj z̄−j)

]
×
∏
i∈Γ

[
[p(xiz−i)p(z) ]

N−1
2(N−1) ×

[∏
i 6=j∈Γ[

p(xjz−j)
p(z) ]

1
2(N−1)

]]
= 1

Z ×
[∏

i<j
p(xixj z̄−ij)p(z̄)
p(xiz̄−i)p(xj z̄−j)

]
×
∏
i∈Γ

[
[p(xiz−i)p(z) ]

N−1
2(N−1) × [p(xiz−i)p(z) ]

−1
2(N−1)

[∏
j∈Γ[

p(xjz−j)
p(z) ]

1
2(N−1)

]]
= 1

Z ×
[∏

i<j
p(xixj z̄−ij)p(z̄)
p(xiz̄−i)p(xj z̄−j)

]
×
[∏

j∈Γ[
p(xjz−j)
p(z) ]

N
2(N−1)

]
×
∏
i∈Γ

[
[p(xiz−i)p(z) ]

N−2
2(N−1)

]
= 1

Z ×
[∏

i<j
p(xixj z̄−ij)p(z̄)
p(xiz̄−i)p(xj z̄−j)

]
×
[∏

i∈Γ[
p(xiz−j)
p(z) ]

N
2(N−1)

+ N−2
2(N−1)

]
= 1

Z ×
[∏

i<j
p(xixj z̄−ij)p(z̄)
p(xiz̄−i)p(xj z̄−j)

]
×
[∏

i∈Γ
p(xiz−j)
p(z)

]
. By Lemma 7, 1

Z = p(z̄). This proves that if
p is an Intuitive Belief, then it must admit the desired reduced form. It is clear from the reduced
form that there exists a representation (az, bz) as in the statement of the Lemma.

Finally, to verify the alternative reduced form, note that for all x ∈ Ω with p(x) > 0,

p(x) = p(z̄)×

∏
i<j

p(xixj z̄−ij)p(z̄)

p(xiz̄−i)p(xj z̄−j)

×∏
i∈Γ

p(xiz−i)

p(z̄)
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= p(z̄)×

∏
i

∏
i 6=j∈Γ

p(xixj z̄−ij)p(z̄)

p(xiz̄−i)p(xj z̄−j)

0.5

×
∏
i∈Γ

p(xiz−i)

p(z̄)

= p(z̄)×

∏
i

p(z̄)N−1 ×
∏
i

[
1

p(xiz̄−i)

]N−1

×
∏
i

 ∏
i 6=j∈Γ

p(xixj z̄−ij)

p(xj z̄−j)

0.5

×
∏
i∈Γ

p(xiz−i)

p(z̄)

= p(z̄)1+
N(N−1)

2 ×

[∏
i

1

p(xiz̄−i)

]N−1
2

×

∏
j

1

p(xj z̄−i)N−1

0.5

×

∏
i

∏
i6=j∈Γ

p(xixj z̄−ij)

0.5

×
∏
i∈Γ

p(xiz−i)

p(z̄)

= p(z̄)1+
N(N−1)

2 −N ×
∏
i

[
1

p(xiz̄−i)

]N−1

×

∏
i<j

p(xixj z̄−ij)

×∏
i∈Γ

p(xiz−i)

= p(z̄)
(N−2)(N−1)

2 ×
∏
i<j p(xixj z̄−ij)∏
i p(xiz̄−i)

N−2
,

as desired.

C.3 Proof of Theorem 1
Proof. By the full support assumption, every state is a reference state. Collecting the p(z̄)-terms
in the reduced form established in Lemma 9 and defining 1

Zz
= p(z̄)1+

N(N−1)
2 −N = p(z̄)

(N−1)(N−2)
2 ,

we see that p is an Intuitive Belief if and only if for each z ∈ Ω, it admits the reduced form

p(x) =
1

Zz
×

∏
i<j

p(xixj z̄−ij)

p(xiz̄−i)p(xj z̄−j)

×∏
i∈Γ

p(xiz−i), x ∈ Ω.

Since the reduced form for each z ∈ Ω expresses the same p, so will the geometric mean of all these
reduced forms. Consequently, for all x ∈ Ω,

p(x) =
∏
z̄∈Ω

 1

Zz
×

∏
i<j

p(xixj z̄−ij)

p(xiz̄−i)p(xj z̄−j)

×∏
i∈Γ

p(xiz−i)

 1
K

=
1

Z ′
×

∏
i<j

ph(xixj)

ph(xi)ph(xj)

×∏
i∈Γ

ph(xi),

where 1
Z′ := 1∏

z̄∈Ω[Z
1
K
z ]

and for any I ⊂ Γ,

ph(xI) :=
∏
z̄∈Ω

p(xIz−I)
1
K , x ∈ Ω.

Given Lemma 1, dividing this by the constant
∑
yI∈ΩI

ph(yI) converts ph into a geo-marginal.
Inserting suitable constants into the expression for p(x) and defining an appropriate scaling factor
1
Z , we see that p admits a representation of the desired form.
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D Proof of Proposition 1
Proof. As noted in the proof of Theorem 1, Lemma 9 yields that p is an Intuitive Belief if and only
if for each z ∈ Ω, it admits the reduced form

p(x) =
1

Zz
×

∏
i<j

p(xixjz−ij)

p(xiz−i)p(xjz−j)

×∏
i∈Γ

p(xiz−i), x ∈ Ω.

Taking a geometric average over z∈E ∈ Σ yields

p(x) =
∏
z∈E

 1

Zz
×

∏
i<j

p(xixjz−ij)

p(xiz−i)p(xjz−j)

×∏
i∈Γ

p(xiz−i)

 1
K(z)

=
1

Z ′(E)
×

∏
i<j

pg(xixj |E)

pg(xi|E)pg(xj |E)

×∏
i∈Γ

pg(xi|E)

for any appropriate scalar Z ′(E). Letting Z(E) := p(E)Z ′(E), the Bayesian update can then be
written as

p(x|E) =
p(x)

p(E)
=

1

Z(E)
×

∏
i<j

pg(xixj |E)

pg(xi|E)pg(xj |E)

×∏
i∈Γ

pg(xi|E),

as desired.

E Proof of Theorem 2
We provide a characterization result involving just the prior p and then obtain the desired result for
the dynamic setup as a corollary.

E.1 Associative Separability Conditions
Consider a data restriction on each dimension i ∈ Γ given by a set of elementary states φ 6= Si ⊂ Ωi,
and let S =

∏
i∈Γ Si ⊂ Ω. For any dimensions i, j ∈ Γ, consider the subset of Ω = Ωij × Ω−ij that

applies the data restriction to all dimensions outside i, j:

Ωij × S−ij ,

the cardinality of which is denotedK(Ωij×S−ij). Compute a normalized geometric mean of p(xIz−I)
using only z ∈ Ωij × S−ij , that is, for any I ⊂ Γ, define the estimated geo-marginal by:

p̂S−ij (xI) :=
1

ZI

∏
z∈Ωij×S−ij

p(xIz−I)
1

K(Ωij×S−ij) xI ∈ ΩI .

Consider the following relationship between geo-PMI and estimated geo-PMI:

Definition 5 Beliefs p over Ω with full support satisfy Prior Relative Associative Separability (PRAS)
if for any φ 6= S =

∏
i∈Γ Si, any distinct i, j ∈ Γ and all (xi, xj), (yi, yj) ∈ Ωij,

pg(xixj)

pg(xi)pg(xj)
/

pg(yiyj)

pg(yi)pg(yj)
=

p̂S−ij (xixj)

p̂S−ij (xi)p̂S−ij (xj)
/

p̂S−ij (yiyj)

p̂S−ij (yi)p̂S−ij (yj)
.
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The interpretation is similar to RAS except that it applies only to the prior p and the data
restriction lies in calculating (estimated) geo-marginals.

We show that PRAS is related to a simpler condition. For any given z ∈ Ω, distinct i, j ∈ Γ and
xi, xj ∈ ∪k∈ΓΩk, consider the ratio:

az(xixj) =
p(xixjz−ij)p(z)

p(xiz−i)p(xjz−j)
, (6)

Consider the following property:

Definition 6 A belief p on Ω with full support satisfies Weak Prior Relative Associative Separability
(WPRAS) if for all z, w ∈ Ω and each distinct i, j ∈ Γ and xi ∈ Ωi, xj ∈ Ωj

p(xixjz−ij)p(zizjz−ij)

p(xizjz−ij)p(zixjz−ij)
=
p(xixjw−ij)p(zizjw−ij)

p(xizjw−ij)p(zixjw−ij)
,

that is, azijz−ij (xixj) = azijw−ij (xixj).

We first show that WPRAS is equivalent to PRAS.

Lemma 10 Any belief p on Ω with full support satisfies WPRAS if and only if it satisfies PRAS.

Proof. =⇒ : Suppose that WPRAS is satisfied. Then for any distinct i, j ∈ Γ and xi, xj ∈ ∪k∈ΓΩk,

pg(xixj)

pg(xi)pg(xj)
=
∏
z∈Ω

[
p(xixjz−ij)

p(xiz−i)p(xjz−j)

] 1
K

by definition of pg

=
1∏

z∈Ω p(z)
1
K

×
∏
z∈Ω

[
p(xixjz−ij)p(z)

p(xiz−i)p(xjz−j)

] 1
K

=
1∏

z∈Ω p(z)
1
K

×
∏
z∈Ω

[
p(xixjy−ij)p(zizjy−ij)

p(xizjy−ij)p(zixjy−ij)

] 1
K

for any fixed y−ij ∈ Ω−ij

=
1∏

z∈Ω p(z)
1
K

×
∏

(zi,zj)∈Ωij

∏
z−ij∈Ωij

[
p(xixjy−ij)p(zizjy−ij)

p(xizjy−ij)p(zixjy−ij)

] 1
K

=
1∏

z∈Ω p(z)
1
K

×
∏

(zi,zj)∈Ωij

[
p(xixjy−ij)p(zizjy−ij)

p(xizjy−ij)p(zixjy−ij)

]K−ij
K

=
1∏

z∈Ω p(z)
1
K

×
∏

(zi,zj)∈Ωij

[
p(xixjy−ij)p(zizjy−ij)

p(xizjy−ij)p(zixjy−ij)

] 1
Kij

,

that is, for any fixed y−ij ∈ Ω−ij ,

pg(xixj)

pg(xi)pg(xj)
=

1∏
z∈Ω p(z)

1
K

×
∏

(zi,zj)∈Ωij

[
p(xixjy−ij)p(zizjy−ij)

p(xizjy−ij)p(zixjy−ij)

] 1
Kij

But since this holds for any y−ij ∈ S−ij , we preserve the equality if we take a geometric mean of
the RHS expression wrt y−ij ∈ S−ij . Therefore, writing KS−ij for the cardinality of S−ij ,

pg(xixj)

pg(xi)pg(xj)
=

∏
y−ij∈S−ij

 1∏
z∈Ω p(z)

1
K

×
∏

(zi,zj)∈Ωij

[
p(xixjy−ij)p(zizjy−ij)

p(xizjy−ij)p(zixjy−ij)

] 1
Kij

 1
KS−ij
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=
1∏

z∈Ω p(z)
KS−ij
K

×
∏

(zizjyij)∈Ωij×S−ij

[
p(xixjy−ij)p(zizjy−ij)

p(xizjy−ij)p(zixjy−ij)

] 1
KijKS−ij

=

∏
(zizjyij)∈Ωij×S−ij p(zizjy−ij)∏

z∈Ω p(z)
KS−ij
K

×
∏

(zizjyij)∈Ωij×S−ij

[
p(xixjy−ij)

p(xizjy−ij)p(zixjy−ij)

] 1
K(Ωij×S−ij)

=

∏(zizjyij)∈Ωij×S−ij p(zizjy−ij)∏
z∈Ω p(z)

KS−ij
K

Zij
ZiZj

 p̂S−ij (xixj)

p̂S−ij (xi)p̂S−ij (xj)
,

where Zi, Zj , Zij are the scalars required to convert the geo-means into geometric marginals. Defining
the constant in the bracket in the last expression by ζS−ij > 0, we obtain the result that for all
(xi, xj) ∈ Ωij ,

pg(xixj)

pg(xi)pg(xj)
= ζS−ij

p̂S−ij (xixj)

p̂S−ij (xi)p̂S−ij (xj)
.

It follows that PRAS holds.
⇐= : Now suppose PRAS holds. Apply PRAS to the case where there is only one reference

state: S = {z} for some z ∈ Ω. Then K(Ωij × {z−ij}) = Kij . By definition,

p̂S−ij (xixj) :=
1

Zij

∏
z∈Ωij×{z−ij}

p(xixjz−ij)
1
Kij

=
1

Zij

∏
(zizj)∈Ωij

p(xixjz−ij)
1
Kij =

1

Zij
p(xixjz−ij),

and similarly,

p̂S−ij (xi) :=
1

Zi

∏
z∈Ωij×{z−ij}

p(xizjz−ij)
1
Kij

=
1

Zi

∏
zj∈Ωj

∏
zi∈Ωi

p(xizjz−ij)
1
Kij =

1

Zi

∏
zj∈Ωj

p(xizjz−ij)
1
Kj .

Define exp[âz−ij (xi, xj)] :=
p(xixjz−ij)

[
∏
zj∈Ωj

p(xizjz−ij)
1
Kj ][

∏
zi∈Ωi

p(zixjz−ij)
1
Ki ]

. Then,

exp[âz−ij (xi, xj)]

exp[âz−ij (yi, yj)]
=

p(xixjz−ij)
p(yiyjz−ij)

[
∏
zj∈Ωj

[
p(xizjz−ij)
p(yizjz−ij)

]
1
Kj ]× [

∏
zi∈Ωi

p(zixjz−ij)
p(ziyjz−ij)

]
1
Ki ]

.

In particular, compute

exp[âz−ij (xi, xj)]

exp[âz−ij (xi, zj)]
=

p(xixjz−ij)
p(xizjz−ij)

[
∏
zi∈Ωi

p(zixjz−ij)
p(zizjz−ij)

]
1
Ki ]

and
exp[âz−ij (zi, zj)]

exp[âz−ij (zi, xj)]
=

p(zizjz−ij)
p(zixjz−ij)

[
∏
zi∈Ωi

p(zixjz−ij)
p(zizjz−ij)

]
1
Ki ]

.

Recalling the canonical representation (ag, bg) (Theorem 1), by PRAS, it follows that

exp[ag(xi, xj)]

exp[ag(xi, zj)]
× exp[ag(zi, zj)]

exp[ag(zi, xj)]
=
exp[âz−ij (xi, xj)]

exp[âz−ij (xi, zj)]
×
exp[âz−ij (zi, zj)]

exp[âz−ij (zi, xj)]
=
p(xixjz−ij)p(zizjz−ij)

p(xizjz−ij)p(zixjz−ij)
.
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Since the left hand side expression, exp[ag(xi,xj)]
exp[ag(xi,zj)]

× exp[ag(zi,zj)]
exp[ag(zi,xj)]

, does not depend on z−ij , it follows
that the right hand side expression will not change if we replace z with zizjw−ij for any w−ij ∈ Ω−ij .
Conclude that

p(xixjz−ij)p(zizjz−ij)

p(xizjz−ij)p(zixjz−ij)
=
p(xixjz−ij)p(zizjw−ij)

p(xizjz−ij)p(zixjw−ij)
,

which establishes WPRAS.

E.2 Static Characterization Result
Theorem 5 A belief p on Ω with full support satisfies PRAS if and only if it is an Intuitive Belief.

Proof. If p is an Intuitive Belief, then by Lemma 5, for any representation (a, b) it must be that

exp[a(xixj) + a(zizj)]

exp[a(xizj)]× exp[a(xjzi)]
=

p(xixjz−ij)
p(z)

p(xiz−i)
p(z)

p(xjz−j)
p(z)

.

Conclude that
p(xixjz−ij)

p(z)

p(xiz−i)
p(z)

p(xjz−j)

p(z)

is independent of z−ij , and so, WPRAS holds. By Lemma 10, PRAS

is satisfied, as desired.
Conversely, suppose that PRAS holds. By Lemma 10, WPRAS holds. If N = 2 then obtain a

representation simply by defining exp[a(xixj)] = p(xixj). Let Z = 1 and we obtain an Intuitive
Belief representation. Henceforth assume N > 2. Fix some z ∈ Ω throughout.

Step 1 : Show that, for Z = 1
p(z) , and any xi, xj , xk,

p(xixjxkz−ijk) =
1

Z

∏
l,m∈{i,j,k}:i<j

p(xlxmz−lm)

p(xlz−l)p(xmz−m)
×

∏
l∈{i,j,k}

p(xlz−l)

Take any xi, xj , xk, z and consider w−ij = xkz−ijk. By WPRAS,

p(xixjz−ij)p(zizjz−ij)

p(xizjz−ij)p(zixjz−ij)
=
p(xixj , xkz−ijk)p(zizj , xkz−ijk)

p(xizj , xkz−ijk)p(zixj , xkz−ijk)
,

Rearranging this expression yields:
p(xixjxkz−ijk) = p(zizjz−ij)

p(xixjz−ij)p(xizjxkz−ijk)p(zixjxkz−ijk)
p(xizjz−ij)p(zixjz−ij)p(zizjxkz−ijk)

= p(z)
p(xixjz−ij)p(xixkz−ik)p(xjxkz−jk)

p(xiz−i)p(xjz−j)p(xkz−k) .

= p(z)
p(xixjz−ij)

p(xiz−i)p(xjz−j)
p(xixkz−ik)

p(xiz−i)p(xkz−k)
p(xjxkz−jk)

p(xjz−j)p(xkz−k)p(xiz−i)p(xjz−j)p(xkz−k), which yields the
desired expression.

Step 2 : Show that for any x ∈ Ω,

p(x) =
1

Z

 ∏
i,j∈{1,..,N},i<j

p(xixjz−ij)

p(xiz−i)p(xjz−j)
×

∏
i∈{1,..,N}

p(xiz−i)

 .
Assume the induction hypothesis that for any n elements of Γ, which we abuse notation for and

label as 1, .., n,14 we have the functional form

p(x1..xnz−1,...,n) =
1

Z

∏
i,j∈{1,..,n}:i<j

p(xixjz−ij)

p(xiz−i)p(xjz−j)
×

∏
i∈{1,..,n}

p(xiz−i),

14This is an abuse of notation since by definition, Γ := {1, ..., N}, whereas we will use 1, ..., n to denote generic
elements in Γ.
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where Z = 1
p(z) . To prove the induction step, take any 1, .., n, n+ 1 ∈ Γ, any xn+1 ∈ Ωn+1. Define

A = p(x1...xn−1znxn+1z−1,....,n+1), B = p(x1...xn−2zn−1xnxn+1z−1,...,n+1), C = p(x1...xn−2zn−1znxn+1z−1..n+1).

Adopt the simplifying notation yl+ml := (yl..., yl+m) for any state y. Letting w−n−1,.n :=
xn−2

1 xn+1z
N
n+2, WPRAS implies

p(xn−1xn,z−n−1,n)p(zn−1zn,z−n−1,n)
p(xn−1zn,z−n−1,n)p(zn−1xn,z−n−1,n)

=
p(xn−1xn,x

n−2
1 xn+1z

N
n+2)p(zn−1zn,x

n−2
1 xn+1z

N
n+2)

p(xn−1zn,x
n−2
1 xn+1zNn+2)p(zn−1xn,x

n−2
1 xn+1zNn+2)

= p(x1...xn+1z−1..n+1)p(x1...xn−2zn−1znxn+1z−1..n+1)
p(x1...xn−1znxn+1z−1..n+1)p(x1...xn−2zn−1xnxn+1z−1..n+1)

= p(x1...xn+1z−1..n+1)C
AB , which yields

p(x1...xn+1z−1..n+1) =

[
AB

C

] [
p(xn−1xnz−n−1,n)p(z)

p(xn−1z−n−1)p(xnz−n)

]
. (7)

By the induction step, the terms A, B, C are given by

A =
1

Z
×

∏
i,j∈{1,..,n−1,n+1}:i<j

p(xixjz−ij)

p(xiz−i)p(xjz−j)
×

∏
i∈{1,..,n−1,n+1}

p(xiz−i),

B =
1

Z
×

∏
i,j∈{1,..,n−2,n,n+1}:i<j

p(xixjz−ij)

p(xiz−i)p(xjz−j)
×

∏
i∈{1,..,n−2,n,n+1}

p(xiz−i),

C =
1

Z
×

∏
i,j∈{1,..,n−2,n+1}:i<j

p(xixjz−ij)

p(xiz−i)p(xjz−j)
×

∏
i∈{1,..,n−2,n+1}

p(xiz−i).

We see that
B

C
=

 ∏
j∈{1,..,n−2,n+1}

p(xnxjz−nj)

p(xnz−n)p(xjz−j)

× p(xnz−n)

=
1

p(xn−1xnz−n−1,n)
p(xn−1z−n−1)p(xnz−n)

 ∏
i∈{1,..n−1,n+1}

p(xixnz−in)

p(xiz−i)p(xnz−n)

× p(xnz−n)

and therefore

AB

C
=

1

Z

p(z)
p(xn−1xnz−n−1,n)

p(xn−1z−n−1)p(xnz−n)

×
∏

i,j∈{1,..,n+1}:i<j

p(xixjz−ij)

p(xiz−i)p(xjz−j)
×

∏
i∈{1,..,n+1}

p(xiz−i).

Inserting this into the equality (7) and using Z = 1
p(z) yields:

p(x1...xn+1z−1..n+1) =
1

Z

 ∏
i,j∈{1,..,n+1}:i<j

p(xixjz−ij)

p(xiz−i)p(xjz−j)
×

∏
i∈{1,..,n+1}

p(xiz−i)

 ,
completing the induction step. Conclude that p(x) can be written in the desired way.

Step 3 : Conclude the proof of sufficiency.
The expression for p in Step 2 is an Intuitive Belief with a(xixj) =

p(xixjz−ij)
p(xiz−i)p(xjz−j)

and b(xi) =

p(xiz−i), where z ∈ Ω is fixed, as desired.
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E.3 Proof of Theorem 2
Proof. Take any distinct i, j ∈ Γ and i, j-unrestricted E ∈ Σ of the form E = Ωij × S−ij . Then
there are scalars λij(E) > 0 and λi(E) > 0 such that for any x ∈ E,

pg(xixj |E) :=
1

Zij(E)

∏
z∈E

p(xixjz−ij |E)
1

K(E) =
1

p(E)Zij(E)

∏
z∈E

p(xixjz−ij)
1

K(E) = λij(E)p̂S−ij (xI)

and similarly,

pg(xi|E) :=
1

p(E)Zi(E)

∏
z∈E

p(xiwjz−ij)
1

K(E) = λi(E)p̂S−ij (xi).

These expressions imply

pg(xixj |E)

pg(xi|E)pg(xj |E)
/

pg(yiyj |E)

pg(yi|E)pg(yj |E)
=

p̂S−ij (xixj)

p̂S−ij (xi)p̂S−ij (xj)
/

p̂S−ij (yiyj)

p̂S−ij (yi)p̂S−ij (yj)
.

Given this equality, we see that RAS is equivalent to PRAS. The desired result follows from Theorem
5.

F Appendix: Proof of Theorem 4 and Proposition 2
Begin with an observation. Consider the D-training problem and say that xixj appears in D if there
exists z s.t. xixjz−ij ∈ D. Denote the set of such pairs by

ED = {(xixj) ∈ ∪i<j(Ωi × Ωj) : xixj appears in D}.

Since q(x) > 0 for all x ∈ D ⊂ supp(q), it follows that KL(q||p) = ∞ if p(x) = 0 for any x ∈ D.
Therefore, it must be that any solution p to the D-training problem satisfies p(x) > 0 for all x ∈ D.
Taking any representation (α, β) with the normalization β = 0, it must be that α(xixj) > −∞ for
all xixj that appear in D. The representation implies that p(x) > 0 for any x constructed using
xixj that appear in D.

Moreover, minimality requires p(x) = 0 for any x for which there exists i, j s.t. xixj does not
appear in D (that is, α(xixj) = −∞ for any such xixj). Thus, any solution p to the training problem
must satisfy

supp(p) = ΩD := {x ∈ Ω : xixj ∈ ED for all i, j ∈ Γ}.

Then assumption 1 implies that there is z ∈ D s.t. for any such p, p(xi) > 0 =⇒ p(xiz−i) > 0.
That is, z ∈ D is a reference state for all p satisfying supp(p) = ΩD.

Since ∆IB is not generally a convex set (though we will see that it is closed under geometric
mixtures), it will prove useful to find a convex set of representations to work with. For this purpose,
we define a class A of normalized representations next. Given Lemmas 7 and 8, any belief p ∈ ∆IB

that is minimal and for which z is a reference state can be represented by a z-normalized network
(a, 0) where a is defined for all xi, xj ∈ ∪k∈ΓΩk by

exp[a(xixj)] =

 p(z)
N−3
N−1

p(xixjz−ij)

[p(xiz−i)p(xjz−j)]
N−2
N−1

0

if p(xi)p(xj) > 0

otherwise
. (8)

Identify (a, 0) with the association function a restricted to the subdomain ED ⊂ ∪i<j(Ωi×Ωj) (given
that a(xixj) = −∞ outside ED by minimality). Therefore a is an element of Euclidean space with
dimensionality equal to the cardinality of ED. By Lemma 8, this representation is characterized by
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the restriction that a(zizj) = 0 and a(xizj) = a(xizk) for all distinct i, j, k ∈ Γ and any x ∈ Ω. Let
A denote the set of all possible minimal z-normalized networks:

A = {a : ED → R| a(zizj) = 0 and a(xizj) = a(xizk) for all distinct i, j, k ∈ Γ and any x ∈ Ω}.

Note that A depends on z ∈ Ω but we are suppressing this in the notation. Moreover, for any
a ∈ A, the corresponding pa ∈ ∆IB is defined by pa(x) = 1

Za
exp[

∑
i<j a(xixj)]. Some useful facts

are established next:

Lemma 11 The following hold:
(i) For any a1, a2 ∈ A and the respective Intuitive Beliefs p1, p2 ∈ ∆IB that they represent, it

holds that a1 = a2 ⇐⇒ p1 = p2.
(ii) A is convex. In particular, for any a1, a2 ∈ A and the respective Intuitive Beliefs p1, p2 ∈ ∆IB

that they represent, and for any θ ∈ [0, 1], the network a = θa1 +(1−θ)a2 represents Intuitive Beliefs
given by the following normalized geometric mixture: for all x ∈ Ω,

pa(x) =
pθ1(x)p1−θ

2 (x)∑
y∈Ω p1(y)θp2(y)1−θ .

Proof. (i) Necessity is obvious given (8). Conversely, suppose that a1 = a2. By (8), p1(x) ≥
0 ⇐⇒ p2(x) ≥ 0. Moreover, for all xi, xj ∈ ∪k∈ΓΩk such that p1(xi)p1(xj) > 0 (equivalently,
p2(xi)p2(xj) > 0), a1(xixj) = a2(xixj) implies

p1(z)
N−3
N−1

p1(xixjz−ij)

[p1(xiz−i)p1(xjz−j)]
N−2
N−1

= p2(z)
N−3
N−1

p2(xixjz−ij)

[p2(xiz−i)p2(xjz−j)]
N−2
N−1

.

Taking xj = zj , this implies p1(xiz−i)
p1(z) = p2(xiz−i)

p2(z) . Using this to simplify the above equality yields

p1(xixjz−ij)

p1(z)
=
p2(xixjz−ij)

p2(z)
.

But then, by the reduced form established in Lemma 9, for any x ∈ Ω such that p(x) > 0,

p1(x)

p1(z̄)
=

∏
i<j

p1(xixj z̄−ij)p1(z̄)

p1(xiz̄−i)p1(xj z̄−j)

×∏
i∈Γ

p1(xiz−i)

p1(z̄)

=

∏
i<j

p1(xixj z̄−ij)
p1(z̄)

p1(xiz̄−i)
p1(z̄)

p1(xj z̄−j)
p1(z̄)

×∏
i∈Γ

p1(xiz−i)

p1(z̄)

=

∏
i<j

p2(xixj z̄−ij)
p2(z̄)

p2(xiz̄−i)
p2(z̄)

p2(xj z̄−j)
p2(z̄)

×∏
i∈Γ

p2(xiz−i)

p2(z̄)
=
p2(x)

p2(z̄)
.

In particular, for all x, y ∈ Ω such that p1(y) > 0 (equivalently, p2(y) > 0) we have p1(x)
p1(y) = p2(x)

p2(y)

and therefore it must be that p1 = p2.
(ii) Take any a1, a2 ∈ A and the respective Intuitive Beliefs p1, p2 ∈ ∆IB with respective nor-

malizing constants Z1, Z2. Consider some a = θa1 + (1 − θ)a2. The normalizing constant Za for a
must satisfy

Za =
∑
y∈Ω exp[

∑
i<j [a(yiyj)]

=
∑
y∈Ω exp[

∑
i<j [θa1(yiyj) + (1− θ)a2(yiyj)]
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=
∑
y∈Ω

[
exp[

∑
i<j a1(yiyj)]

]θ [
exp[

∑
i<j [a2(yiyj)]

]1−θ
, and so

Za = Zθ1Z
1−θ
2 ×

∑
y∈Ω

p1(y)θp2(y)1−θ.

Therefore (a, 0) represents an Intuitive Belief p given by: for all x ∈ Ω,
p(x) = 1

Za
exp[

∑
i<j [a(xixj)]

= 1

Zθ1Z
1−θ
2

∑
y p1(y)θp2(y)1−θ exp[

∑
i<j(θa1(xixj) + (1− θ)a2(xixj))]

= 1∑
y p1(y)θp2(y)1−θ

exp[θ
∑
i<j a1(xixj)]

Zθ1
× exp[(1−θ)

∑
i<j a2(xixj)]

Z1−θ
2

=
pθ1(x)p1−θ

2 (x)∑
y p1(y)θp2(y)1−θ , as desired. It also follows that A is convex.

Now fix φ 6= D ⊂ Ω and a reference state z ∈ D, and consider the corresponding set of
representations A. For any a ∈ A let Za(D) :=

∑
y∈D exp[

∑
i<j a(yiyj)]. Define a function

KLD : ∆(Ω)×A→ R by

KLD(q||a) = q(D)lnZa(D) +
∑
x∈D

q(x)

lnq(x)− [
∑
i<j

a(xixj)]

 . (9)

Lemma 12 For any a and corresponding pa, the belief pa is a minimizer of the D-training problem
if and only if a solves

mina∈AKLD(q||a). (10)

Proof. For any a ∈ A and corresponding pa ∈ ∆IB , denote the D-conditional Intuitive Belief by
pDa (x) = pa(x)∑

y∈D pa(y) = 1
Za(D)exp[

∑
i<j a(xixj)] for all x ∈ D, where Za(D) =

∑
y∈D exp[

∑
i<j a(yiyj)].

Denote theD-conditional objective distribution by qD. TheD-training problem involvesKL(qD||pDa ),
given by. However we can define KL : ∆(Ω)×A→ R ∪ {∞} by

KL(qD||pDa ) =
∑
x∈D

qD(x)[lnqD(x)− lnpDa (x)]

=
∑
x∈D

q(x)

q(D)
[ln

q(x)

q(D)
− ln[

1

Za(D)
exp[

∑
i<j

a(xixj)]]]

=
∑
x∈D

q(x)

q(D)
[lnq(x)− [

∑
i<j

a(xixj)]] +
∑
x∈D

q(x)

q(D)
[−lnq(D) + lnZa(D)]

=
∑
x∈D

q(x)

q(D)
[lnq(x)− [

∑
i<j

a(xixj)]] + [−lnq(D) + lnZa(D)].

which is ordinally equivalent to KLD(q||a) when viewed as a function of a. Therefore choosing pa
to minimize KL(qD||pDa ) is equivalent to choosing a to minimize KLD(q||a).

Lemma 13 (i) The function a 7→ KLD(q||a) is convex.
(ii) The function is strictly convex under assumption 2.

Proof. (i) Consider networks a1, a2 ∈ A with respective Intuitive Beliefs p1, p2 ∈ ∆IB . Take any
θ ∈ [0, 1] and consider a = θa1 + (1− θ)a2. Define Mθ := Za(D)

Za1
(D)θZa2

(D)1−θ and observe that

KLD(q||a) = q(D)lnZa(D) +
∑
x∈D

q(x)[lnq(x)− [
∑
i<j

a(xixj)]]
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=
∑
x∈D

q(x)[lnq(x)− [θ
∑
i<j

a1(xixj) + (1− θ)
∑
i<j

a2(xixj)]] + q(D)lnZa(D)

=
∑
x∈D

q(x)[θ[lnq(x)−
∑
i<j

a1(xixj)] + (1− θ)[lnq(x)−
∑
i<j

a2(xixj)]] + q(D)lnZa(D)

= θKLD(q||a1) + (1− θ)KLD(q||a2) + [q(D)lnZa(D)− θq(D)lnZa1(D)− (1− θ)q(D)lnZa1(D)]

= θKLD(q||a1) + (1− θ)KLD(q||a2) + q(D)ln
Za(D)

Za1
(D)θZa2

(D)1−θ

= θKLD(q||a1) + (1− θ)KLD(q||a2) + q(D)lnMθ.

So the desired convexity is established once we show that

Mθ ≤ 1.

To determine that this inequality holds, first compute that
Za(D) :=

∑
y∈D exp[

∑
i<j a(yiyj)]

=
∑
y∈D exp[θ

∑
i<j a1(yiyj) + (1− θ)

∑
i<j a2(yiyj)]

=
∑
y∈D exp[θ

∑
i<j a1(yiyj)]× exp[(1− θ)

∑
i<j a2(yiyj)]

= Za1
(D)θZa2

(D)1−θ∑
y∈D p

D
1 (y)θpD2 (y)θ, and so

Mθ =
Za(D)

Za1
(D)θZa2

(D)1−θ =
∑
y∈D

pD1 (y)θpD2 (y)θ.

Trivially, Mθ ≤ 1 if θ ∈ {0, 1} or if θ ∈ (0, 1) and pD1 = pD2 . If θ ∈ (0, 1) and pD1 6= pD2 (in which
case pD1 (y)

pD2 (y)
cannot be constant across y ∈ D) then applying Jensen’s inequality for strictly concave

functions yields:
Mθ =

∑
y∈D p

D
1 (y)θpD2 (y)1−θ =

∑
y∈D[

pD1 (y)

pD2 (y)
]θpD2 (y)

< [
∑
y
p1(y)
p2(y)p2(y)]θ = [

∑
y p1(y)]θ = 1, and so, Mθ < 1. This establishes that Mθ ≤ 1, and thus,

KLD(q||a) is convex.
(ii) By the preceding, we see that KLD(q||a) is strictly convex in a if Mθ < 1 for all θ ∈ (0, 1)

and a1 6= a2. We also showed that for any θ ∈ (0, 1) and a1 6= a2, if we have pD1 6= pD2 then it must
be that Mθ < 1. It follows that a sufficient condition for KLD(q||a) to be strictly convex in a is that

a1 6= a2 =⇒ pD1 6= pD2 .

We show that this sufficient condition holds under assumption 2.
Consider any a1 6= a2 and suppose by way of contradiction that pD1 = pD2 . For r = 1, 2, the

corresponding Intuitive Beliefs for ar are given for all x ∈ D by

pDr (x) =
1

Zar (D)
exp[

∑
i<j

ar(xixj)],

where Zar (D) :=
∑
y∈D exp[

∑
i<j ar(yiyj)]. Since ar(zizj) = 0 for all i, j, the hypothesis implies

1
Za1 (D) = pD1 (z) = pD2 (z) = 1

Za2 (D) , that is,

Za1
(D) = Za2

(D).
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However, a1 6= a2 implies that there exists xixj s.t. a1(xixj) 6= a2(xixj). By definition, the
domain of a1, a2 are ED, the set of pairs (yi, yj) that appear in D. Therefore, there must exist
some xixjz−ij ∈ D, and in particular by assumption 2, it must be that xixjz−ij ∈ D such that
a1(xixj) 6= a2(xixj). But then by the preceding,

pD1 (xixjz−ij) =
1

Za1
(D)

exp[a1(xixj)] 6=
1

Za2
(D)

exp[a2(xixj)] = pD2 (xixjz−ij),

a contradiction.

Lemma 14 Intuitive Belief p is a solution to D-training problem if and only if p(xixj |D) =
q(xixj |D) for all distinct i, j ∈ Γ and x ∈ D.

Proof. By Lemma 12, it suffices to solve (10). Since the optimization problem is unconstrained,
the Lagrangian is

L(a) = KLD(q||a) = q(D)lnZa +
∑
x∈D

q(x)

lnq(x)−
∑
i<j

a(xixj)

 ,
As noted in Lemmas 11 and 13, A is a convex set and the function a 7→ KLD(q||a) is convex.
Consequently, the first order conditions are both necessary and sufficient for optimality. It follows
that a minimizer exists if and only if it satisfies the first order conditions, which we derive below.

For any xi, xj ∈ ∪k∈ΓΩk denote by Dxixj all the states z ∈ D that take on values zi = xi and
zj = xj on dimension i and j respectively. The first order condition wrt any a(xixj), where i, j ∈ Γ
are distinct and xi, xj ∈ ∪k∈ΓΩk, yields:

∂L
∂a(xixj)

= 0

⇐⇒ q(D)

∑
w∈Dxixj

exp[
∑
k<l a(wkwl)]∑

y∈D exp[
∑
k<l a(ykyl)]

+
[∑

z∈Dxixj
q(z)[0− 1]

]
= 0

⇐⇒ q(D)

∑
w∈Dxixj

exp[
∑
k<l a(wkwl)]∑

y∈D exp[
∑
k<l a(ykyl)]

=
∑
z∈Dxixj

q(z)

⇐⇒
∑
w∈Dxixj

p(z|D) =
∑
z∈Dxixj

q(z|D)

⇐⇒ p(xixj |D) = q(xixj |D), which yields the conclusion that the 2-dimensional marginals must
match, if a solution exists. This completes the proof.

Lemma 15 Under assumption 2, if a solution to the D-training problem exists, then it is unique in
the class of minimal solutions.

Proof. Under assumption 2 and given Lemmas 11 and 13, we have a minimization problem (10)
where A is convex and the objective function a 7→ KLD(q||a) is strictly convex. It follows that if
a solution exists, then there exists a unique minimal p ∈ ∆IB that solves the D-training problem
(10).

G Appendix: Proof of Proposition 3
Suppose assumption 3 holds and recall the set A of representations used in the proof of Theorem 4.
We show that there exists a minimal network a ∈ A (with corresponding Intuitive Belief pa) such
that

KL(qD||pDa ) =
∑
x∈D

qD(x)[lnqD(x)− lnpDa (x)] = 0.
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This is achieved by finding a network a ∈ A such that x ∈ D =⇒ pa(x)
pa(D) = q(x)

q(D) .We in fact establish
a stronger condition:

x ∈ D =⇒ exp[
∑
i<j

a(xixj)] =
q(x)

q(z)
. (11)

To see that this is stronger, consider the normalizing constant Za(D) =
∑
y∈D exp[

∑
i<j a(yiyj)]

and observe that the stronger condition implies that pa(x)
pa(D) := 1

Za(D)exp[
∑
i<j a(xixj)] = q(x)

Za(D)q(z) ,

and summing across x ∈ D yields 1 = q(D)
Za(D)q(z) , that is, Za(D)q(z) = q(D). Combining this with

pa(x)
pa(D) = q(x)

Za(D)q(z) yields p(x)
p(D) = q(x)

q(D) as desired.
We search for a network in the class A of minimal networks. Recall that each a ∈ A is normalized

so that a(zizj) = 0 and a(xizj) = a(xizk) for all distinct i, j, k ∈ Γ and all x ∈ Ω.

Lemma 16 The desired equalities (11) are solved by the network a ∈ A defined by: for any xixj
that appears in D,

exp[a(xixj)] =
q(xixjz−ij)

[q(xiz−i)]
N−2
N−1 [q(xjz−j)]

N−2
N−1

q(z)
N−3
N−1 .

Proof. For z ∈ D the desired equality yields exp[
∑
i<j a(zizj)] = q(z)

q(z) = 1, which is satisfied by any
a ∈ A due to the normalization a(zizj) = 0 for all i, j.

Since a(xizj) = a(xizk) for all distinct i, j, k ∈ Γ, let us write a(xizj) = α(xi) for all i, j ∈ Γ and
xi 6= zi. For (xiz−i) ∈ D with xi 6= zi the desired equality yields
⇐⇒ exp[

∑
i6=j∈Γ α(xi) + 0] = q(xiz−i)

q(z)

⇐⇒ exp[(N − 1)α(xi)] = q(xiz−i)
q(z)

⇐⇒ exp[α(xi)] =
[
q(xiz−i)
q(z)

] 1
N−1

.
Finally, for (xixjz−ij) ∈ D with xi 6= zi and xj 6= zj , we obtain
exp[a(xixj) +

∑
i,j 6=k∈Γ α(xi) +

∑
i,j 6=k∈Γ α(xj) + 0] =

q(xixjz−ij)
q(z)

⇐⇒ exp[a(xixj)]exp[(N − 2)α(xi)]exp[(N − 2)α(xj)] =
q(xixjz−ij)

q(z)

⇐⇒ exp[a(xixj)]
[
q(xiz−i)
q(z)

]N−2
N−1

[
q(xjz−j)
q(z)

]N−2
N−1

=
q(xixjz−ij)

q(z)

⇐⇒ exp[a(xixj)] =
q(xixjz−ij)

[q(xiz−i)]
N−2
N−1 [q(xjz−j)]

N−2
N−1

q(z)
N−3
N−1 . This completes the proof.

The preceding lemma specifies the values of a network (a, 0) for the pairs of elementary states xixj
that appear in D. By minimality, all other pairs of elementary states must have value a(xixj) = −∞.
This fully defines a ∈ A, yielding a minimal Intuitive Belief p over Ω.

H Proof of Proposition 4
The first two claims are a corollary of Proposition 3. For the final claim, we derive the reduced form
for p conditioned on Ω ⊂ Ω∗.

Lemma 17 For any x ∈ ΩD∗ ∩ Ω, the belief p(x) can be written as:

p(x) =
1

W
×

∏
i<j

q(xixj)

q(xi)q(xj)

× [∏
i∈I

q(xi)

]
.
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Proof. For any (xixj) ∈ Ωij , note that our above expression exp[a(xixj)] =
q∗(xixjz

∗
−i)

q∗(xiz∗−i)
N−2
N−1 q(xjz∗−j)

N−2
N−1

q(z∗)
(N−2)
N

is similar (up to a scalar multiple) of the expression exp[anormalized(xixj)] = p(z)
N−3
N−1

p(xixjz−ij)

[p(xiz−i)p(xjz−j)]
N−2
N−1

established in Lemma 8. Arguing exactly as in Lemma 9 while using only x ∈ ΩD∗ ∩ Ω yields a
reduced form:

p(x) =
1

Z
×

∏
i<j

q∗(xixjz
∗
−ij)q

∗(z∗)

q∗(xiz∗−i)q
∗(xjz∗−j)

× [∏
i∈Γ

q∗(xiz
∗
−j)

q∗(z∗)

]

with an appropriately defined Z (which absorbs the terms that appear due to the noted scalar
multiple). Inserting the expressions for q

p(x) =
1

Z
×

∏
i<j

σ2(1− σ)N−2q(xixj)× (1− σ)N

σ(1− σ)N−1q(xi)× σ(1− σ)N−1q(xj)

× [∏
i∈I

σ(1− σ)N−1q(xi)

(1− σ)N

]

=
1

W
×

∏
i<j

q(xixj)

q(xi)q(xj)

× [∏
i∈I

q(xi)

]
,

where W absorbs the terms involving σ. This completes the proof.

I Appendix: Small Probabilities
We present a general result that subsumes the observations in Section 5.2. Fix any φ 6= E ⊂ Ω. Say
that elementary state xi appears in E if there is a state z ∈ Ω such that xiz−i ∈ E. By definition,
for each z ∈ E, the elementary state zi appears in E for all N dimensions i ∈ Γ. Consider all
states constructed using xixj that jointly appear in E, in the sense that there is a state z ∈ Ω s.t.
xixjz−ij ∈ E:

ΩE = {x ∈ Ω : ∀i, j ∈ Γ,∃z ∈ Ω s.t. xixjz−ij ∈ E}.

Clearly, E ⊂ ΩE . Consider next those states x /∈ E for which xi appears in E for only N − 1
dimensions:

F = {x ∈ Ω : xi appears in E in only N − 1 dimensions i ∈ Γ}.

To illustrate, if E = {z} then F consists of z and all states x that deviate from z in exactly one
dimension. If every elementary state appears in E then F = Ω. Finally, consider all remaining
states: G = Ω\(ΩE ∪ F ).

Consider a full support distribution q. For each α ∈ (0, 1), consider Intuitive Beliefs pα that are
trained by qα given by: for all x ∈ Ω,

qα(x) = αq(x) + (1− α)q(x|E).

Proposition 7 If Intuitive Beliefs pα are trained by qα for each α then the following properties
hold:

(a) 0 < limα→0
pα(ΩE)
pα(F ) =∞.

(b) If G 6= φ then limα→0
pα(E∪F )
pα(G) <∞.

Proof. If xi does not appear in E, then for any xj ,

qα(xixj) = αq(xixj) and qα(xi) = αq(xi).
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If zi and zj appear in E, then

qα(zizj) = αq(zizj) + (1− α)q(zizj |E), and qα(zi) = αq(zi) + (1− α)q(zi|E).

We use these marginals to compute objective PMI and their limit as α → 0: If neither xi nor xj
appear in E, and we have

qα(xixj)

qα(xi)qα(xj)
=

αq(xixj)

αq(xi)αq(xj)
=

1

α

q(xixj)

q(xi)q(xj)
→∞.

If zi and zj appear in E then

qα(zizj)

qα(zi)qα(zj)
=

αq(zizj) + (1− α)q(zizj |E)

[αq(zi) + (1− α)q(zi|E)][αq(z2j) + (1− α)q(zj |E)]
→ q(zizj |E)

q(zi|E)q(zj |E)
∈ (0,∞)

Finally, if zi appears in E and xj does not, then

qα(zixj)

qα(zi)qα(xj)
=

αq(zixj)

[αq(zi) + (1− α)q(zi|E)]αq(xj)
=

q(zixj)

[αq(zi) + (1− α)q(zi|E)]q(xj)
→ q(zixj)

q(zi|E)q(xj)
∈ (0,∞).

By definition of a qα-trained Intuitive Belief pα, there exists a scalar Zα such that for all events
A ⊂ Ω:

pα(A) =
1

Zα

∑
x∈A

∏
i<j

qα(xixj)

qα(xi)qα(xj)

×∏
i∈Γ

qα(xi).

For each x ∈ ΩE and each i, j, it is trivially the case that xi, xj and xixj appear in E. Therefore,
both the PMI and marginals converge to a strictly positive finite limit, and in particular, the limit
of Zαpα(ΩE) as α→ 0 must be strictly positive and finite:

limα→0Zαpα(ΩE) = limα→0

∑
x∈ΩE

∏
i<j

qα(xixj)

qα(xi)qα(xj)

×∏
i∈Γ

qα(xi) ∈ (0,∞).

On the other hand, limα→0Zαpα(F ) = 0: for each x ∈ F , although all PMI terms converge to a
strictly positive limit, there is an elementary state xi that does not appear in E and so qα(xi)→ 0.

This establishes the first desired claim since

limα→0
pα(ΩE)

pα(F )
= limα→0

Zαpα(ΩE)

Zαpα(F )
=
limα→0Zαpα(ΩE)

limα→0Zαpα(F )
=∞.

Next suppose G 6= φ. We verify that the limit limα→0Zαpα(G) must be strictly positive. Take
any x∗ ∈ G such that p(x∗) > 0 (which exists since G 6= φ and pα has full support). Then

limα→0Zαpα(G)

= limα→0

∑
x∈G

∏
i<j

qα(xixj)

qα(xi)qα(xj)

×∏
i∈Γ

qα(xi)

≥ limα→0

∏
i<j

1

α

q(x∗i x
∗
j )

q(x∗i )q(x
∗
j )

×∏
i∈Γ

αq(x∗i )

= limα→0

[ ∏
i α∏
i<j α

]∏
i<j

q(x∗i x
∗
j )

q(x∗i )q(x
∗
j )

×∏
i∈Γ

q(x∗i )
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= limα→0

[
1

αN(N−3)

]
Zp(x∗) > 0.

where
∏
i α∏
i<j α

= 1
αN(N−3) since the product

∏
i<j involves N !

2!(N−2)! = N(N−1)
2 combinations, so that∏

i α∏
i<j α

= 1

α
N(N−1)

2
−N

= 1
αN(N−3) . Therefore, we conclude that

limα→0
pα(ΩE)

pα(G)
= limα→0

Zαpα(ΩE)

Zαpα(G)
<∞.

In fact, whenN > 3 we see from the above expressions that limα→0Zαpα(G) ≥ limα→0

[
1

αN(N−3)

]
Zp(x∗) =

∞, and so limα→0
pα(ΩE)
pα(G) = limα→0

Zαpα(ΩE)
Zαpα(G) = 0.

As a corollary we observe a pathological possibility that arises when the complexity is high in
the sense that N > 3.

Corollary 1 Suppose G 6= φ and N > 3 then limα→0
pα(ΩE)
pα(G) = 0.

That is, although at α = 0 Intuitive Beliefs will regard G as impossible, for α close to 0 the
possibility of states in G is so salient that the agent regards it as almost certain. This is an artifact
of the way we defined qα as a linear combination. For any x ∈ G and any i, j, the marginals qα(xi),
qα(xj) and qα(xixj) go to 0 uniformly, leading to an infinitely high PMI in the limit: qα(xixj)

qα(xi)qα(xj)
=

αq(xixj)
αq(xi)αq(xj)

= 1
α

q(xixj)
q(xi)q(xj)

→∞.
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